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Abstract

Pulau Pinang has introduced several measures to enhance traffic safety and promote sustainability, including the installation of CCTV systems and
the implementation of smart solutions and green technology as part of the Penang 2030 vision, aligning with the Sustainable Development Goals
(SDGs). However, despite these efforts, road accidents persist due to non-optimised detection models, incomplete data from manual reporting,
and technological constraints in real-time video analysis and predictive modelling. This study evaluates the effectiveness of the YOLOv7+G3HN
framework for vehicle detection and near-miss analysis, with a focus on the influence of video quality on detection performance. The research
aims to understand how high- and low-quality video inputs affect the accuracy and computational efficiency of detection algorithms. High-
quality videos resulted in significantly faster computation times for vehicle detection than low-quality videos, highlighting the importance of
video resolution in optimising detection processes. Despite the robustness of the algorithm, with no errors detected in both video qualities,
higher miss detection rates in low-quality videos suggest that lower resolution may compromise detection accuracy and the effectiveness of
monitoring systems. Near-miss analysis revealed that high-quality videos had a lower probability of near-miss occurrences than low-quality
videos, highlighting the importance of video resolution for detection efficacy. These findings emphasise the critical role of high-resolution video
inputs in enhancing detection accuracy and reliability, advocating for their implementation to optimise vehicle detection and improve road safety.
Additionally, YOLOv7+G3HN outperforms YOLOv7 in both accuracy and speed. The study concludes that the YOLOv7+G3HN framework is
effective for vehicle detection and near-miss analysis, provided that video quality is considered in system design and implementation.
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1. Introduction

Pulau Pinang has introduced several measures to enhance
traffic safety and promote sustainability, including the installa-
tion of CCTV systems to monitor traffic flow and enforce reg-
ulations. As part of the Penang 2030 vision, the state is imple-
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menting smart solutions and green technology to optimise traf-
fic management, reduce congestion, and improve road safety
through IoT and data analytics. The state’s initiatives align with
the Sustainable Development Goals (SDGs) and aim to create
a sustainable transport system by enhancing public transit, in-
frastructure, and eco-friendly transportation methods. Collab-
oration with small- and medium-sized enterprises (SMEs) to
integrate sustainable practices further supports these efforts, ul-
timately improving the quality of life for citizens and promoting
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environmental sustainability.
The Pulau Pinang state government’s “Penang 2030” initia-

tive aims to reduce road fatalities and create a smart city, but
accidents persist despite numerous regulations. Current detec-
tion models like RCNN, CNN, and YOLO are not optimised for
Penang’s unique road conditions, necessitating specific preven-
tive strategies. Manual accident reporting leads to incomplete
data, and existing CCTV systems lack advanced real-time mon-
itoring and sufficient historical data due to storage limitations.
Additionally, near misses often go unreported, contributing to
accidents, and technological constraints hinder the development
of effective real-time video analysis and predictive models.

While challenges persist in traditional accident reporting
methods and the limitations of existing CCTV systems hinder
real-time monitoring, advancements in object detection tech-
nology offer promising solutions. The model of YOLO stream-
lines real-time object detection by analysing entire images at
once. By efficiently predicting bounding boxes and class prob-
abilities, YOLO models can potentially aid in detecting and
preventing accidents on particular roadways in Pulau Pinang,
where traditional detection models have struggled to adapt.

According to the YOLO (You Only Look Once) model, a
single neural network architecture is used to analyse the entire
input image at once, instead of dividing it into smaller sections
or using sliding windows like other object detection algorithms.
This unified approach allows for real-time object detection by
directly predicting bounding boxes and class probabilities from
the full image. The model divides the input image into a grid
and then predicts bounding boxes and class probabilities for
each grid cell. Each bounding box comes with a confidence
score indicating the probability of containing an object, along
with class probabilities for the predicted object categories. Fi-
nally, the object detection was computed by YOLO models.

In line with the unified approach advocated by the YOLO
model, vehicle detection commonly employs image processing
techniques to analyse images captured by cameras [1]. This
methodological synergy facilitates vehicle monitoring, count-
ing, speed calculation, and classification [2]. Researchers often
select image processing methods for vehicle detection, a strat-
egy that parallels the holistic image analysis approach utilised
by YOLO models. The vehicle detection system recognises and
tracks the vehicle using monitoring videos and displays visual-
isation reports. In the previous research, the researchers con-
nected the model or algorithm method to object detection. The
main reason is that the results will be shown in a monitoring
system, also known as a visualised report. Monitoring systems
help researchers analyse the data from image or video process-
ing.

Rouf et al. [3] implemented a real-time vehicle detection,
tracking, and counting system using the YOLOv7 algorithm,
showcasing its capability to process video streams efficiently.
The advantage of YOLOv7 lies in its ability to perform simulta-
neous detection, tracking, and counting of vehicles in real-time,
which is essential for traffic management and surveillance ap-
plications. However, the study highlighted potential limitations
such as the need for robustness in handling occlusions and vary-
ing lighting conditions, as well as the challenge of accurately

distinguishing between different types of vehicles in crowded
traffic scenarios.

Zeng et al. [4] experimented using an improved YOLOv7
algorithm, named YOLOv7-UAV, to enhance object detection
in images captured by unmanned aerial vehicles (UAVs). The
advantage of this improved algorithm includes superior accu-
racy and efficiency in detecting objects from aerial imagery,
which is critical for applications such as surveillance and en-
vironmental monitoring. However, the study identified limita-
tions such as the increased computational load and the need for
high-quality datasets for optimal performance.

The connection between vehicle detection and near misses
is crucial for understanding road safety. Vehicle detection tech-
nologies, using sensors or computer vision, recognise vehicles
near each other. Near misses happen when vehicles almost col-
lide but manage to avoid it, emphasising the need for precise
and quick detection to prevent accidents. Studying near misses
can alert drivers to dangers in traffic and enable improvements
to vehicle detection systems for safer roads. Essentially, effec-
tive vehicle detection plays a key role in reducing the probabil-
ity of near miss events on the road.

Traditionally, researchers get their empirical data from sur-
veys or questionnaires. The empirical data is then analysed us-
ing mathematical models such as regressions, binomials, and
variances, or software such as Excel and SPSS. Makizako et al.
[5] proposed a study that employs a survey method to investi-
gate the relationship between recent experience with near-miss
traffic accidents among elderly Japanese drivers and analyses
the data using the Bonferroni correction method and logistic re-
gression. Terum & Svartdal [6] shows that the study aims to
investigate concerns about safe driving behaviour and drivers’
experiences with traffic accidents and near accidents. The fre-
quency of accidents and near-accidents were used as variables
for the driver safety index in an analysis of variance (ANOVA).

Following enhancements from traditional observation
methods for near misses, the development of near miss cal-
culation has been realized. According to the research of Lim
et al. [7], near misses are detected through a monitoring sys-
tem using YOLOv3, YOLOv3-tiny, YOLOv4, YOLOv4-tiny,
YOLOv5, and Faster RCNN. The monitoring system uses ad-
vanced approaches such as YOLOv3, YOLOv3-tiny, YOLOv4,
YOLOv4-tiny, YOLOv5, and Faster RCNN to identify near
misses. Improvements have been made in the detection of near
misses, increasing the length of video analysis from 80 seconds
to 3 minutes while considering different video qualities [8].

The research of Wang et al. [9] developed YOLOv7 to en-
hance the architecture and optimization techniques to improve
performance in object detection tasks. YOLOv7 has been uti-
lized in a range of industries, such as surveillance, industrial au-
tomation, and autonomous vehicles, where accurate and timely
object detection is critical [10]. The study of Yang et al. [11]
combined YOLOv7 and Kalman filter to improve the accuracy
and precision in object tracking and perform trajectory predic-
tion.

Therefore, the primary focus of this study is to identify the
vehicles in the mixed vehicle traffic and evaluate the near-miss
events. This evaluation is conducted using a state-of-the-art,
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real-time object detection algorithm. In this study, a finely
tuned YOLOv7 model is purposefully combined with the al-
gorithm that tracks the vehicles and calculates the distance be-
tween vehicles to evaluate near miss events over a longer du-
ration of experiment videos. Besides that, the near miss events
are calculated automatically through the algorithm.

2. Methodology

2.1. Flowchart of study

Figure 1 provides a summary overview of the entire re-
search presented in this study. This project begins with Closed-
Circuit Television (CCTV), which is given by Majlis Bandaraya
Pulau Pinang (MBPP). The CCTV has two qualities of video:
high-quality video and low-quality video.

After obtaining the videos, the videos are used as input to
train and label the images; this process is called image labelling.
Then, the convolutional neural network in the YOLOv7+G3HN
model conducts the feature extraction. Feature extraction trans-
forms raw data into a lower-dimensional form by identifying
and retaining the most relevant information, enhancing model
performance and efficiency. It reduces noise and simplifies data,
making it more suitable for machine learning and pattern recog-
nition tasks.

Next, the extracted important characteristics go into the de-
tection layers, which are the backbone of YOLOv7+G3HN,
to identify and classify the objects. The output comes out
with multiple bounding boxes. Therefore, post-processing is
employed where Non-Max Suppression (NMS) reduces redun-
dancy in object detection by eliminating overlapping bounding
boxes, ensuring each object is represented by a single, best-
fitting box.

After training the YOLOv7+G3HN, the experiment con-
ducts vehicle detection, which only detects cars and motorcy-
cles in mixed-vehicle traffic. Besides that, near miss detection
is also applied in this experiment to monitor and calculate the
near-miss between vehicles.

2.2. Data description

The road traffic videos in Penang were provided by MBPP.
The videos were recorded in Bayan Lepas, which is an indus-
trial area located in Penang. The high-quality video was cap-
tured on a school holiday, while the low-quality video was taken
during the Chinese New Year. The quality of a video can be
affected by its frame rate. A higher frame rate can increase
a video’s perceived smoothness and clarity, but a lower frame
rate might make it choppy and blurry, affecting perception and
processing [12].

The difference between using different lengths of videos in
image processing experiments is primarily in the amount of vi-
sual information being presented in the outcome, the duration
of the task, and the cognitive demands in the experiment. In a
prior study by Lim et al. [13], video lengths of 20s, 40s, 60s,
and 80s were used due to the limitations of computational re-
sources. As the length of the video increases, real-time process-
ing becomes more challenging due to the increased amount of

data that needs to be processed, requiring more computational
resources.

In this experiment, the 3-minute experiment videos are used
to identify cars and near miss events in traffic and develop
strategies to address them. The first step is to watch the video
and identify any instances where two vehicles almost collide
[14]. The next step is to analyse the causes of these events, such
as driver error [15], poor road conditions [16], or other factors,
and develop strategies such as improving driver training, in-
stalling better signage or road markings, and implementing new
traffic regulations. Finally, it is important to evaluate the effec-
tiveness of strategies by reviewing video footage and analysing
traffic data [17]. By carefully analysing the video footage and
developing strategies to prevent near miss events from occur-
ring in the future, it can also help improve road safety and re-
duce the risk of accidents.

2.3. YOLOv7 model

According to Wang et al. [9], the researchers introduced
YOLOv7 as the latest version in the well-known series of real-
time object detection models called YOLO (You Only Look
Once). YOLOv7 follows a one-stage detection approach, per-
forming object localization and classification simultaneously.
This method enhances computational efficiency and makes it
more suitable for real-time applications [18]. YOLOv7’s archi-
tecture consists of three main components: the backbone, the
neck, and the head. Figure 2 shows the structure of YOLOv7.

In object detection tasks, the accuracy and efficiency of
YOLOv7 are significantly enhanced by the Extended Efficient
Layer Aggregation Network (E-ELAN). This network plays
a crucial role in improving feature fusion and gradient flow,
which allows the model to learn more effectively. By address-
ing issues such as vanishing gradients, E-ELAN ensures that
YOLOv7 can maintain strong performance even as the depth of
the network increases [11]. According to the research of Zhao
et al. [19], Hierarchical fusion is improved by Extended Effi-
cient Layer Aggregation Network (ELAN-H). This enables bet-
ter gradient flow, resulting in more robust training of intricate
structures. In this study, the transformer of YOLOv7 (E-ELAN
and ELAN-H) is replaced to develop a YOLOv7+G3HN model
to improve the accuracy.

2.4. YOLOv7+G3HN Model

The YOLOv7+G3HN model was combined by YOLOv7
with a Hornet transformer [20]. The backbone network of
YOLOv7 is replaced by a model named G3HN [21]. G3HN
utilises recursive gated convolution (gn Conv) and HorBlock,
which provides several features of transformer and CNN, like
input matching, long-range and high-level spatial interactions.
Still, it can be efficiently realised within a convolutional frame-
work; for instance, one can perform this using attention mech-
anisms without much extra cost on computation [22].

In the Hornet part, the HorNet Vision Transformer, specif-
ically the high-order spatial attention, takes a more effective
strategy for executing spatial interactions that are achieved by
a fusion of convolution layers and fully connected layers [23].

3



Lim et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 2198 4

Figure 1. Methodology Flowchart.

The layer design is in line with previous transforms, where it
replaced the self-attention sub-layer with Conv. This gn Conv
consists of standard convolution; elemental product and linear
projection enabling it to easily replace spatial mixture layers in
the Vision Transformer [24].[

pHW∗C
0 , qHW∗C

0

]
= ∅in ∈ RHW∗C . (1)

p1 = f (q0)
⊙

p0 ∈ RHW∗C , y = ∅out (p1) ∈ RHW∗C . (2)

pk+1 = fk (qk)
⊙

gk (pk) . (3)

The basic operation of HorNet is gn Conv, where x ∈RHW∗C is
the input feature and y = gConv(x) is the output. This is done
through Equation (1) and (2) such that the linear projection lay-
ers corresponding to ∅in and ∅out perform channel mixing and f
is the depth convolution [25]. Afterwards, gating convolution
is performed by the recursion equation (3) which then sends the
final recursive step back to the projection layer to get gn Conv.
From the recursive Equation (3), it can be seen that each step
causes pkto increase by 1. This shows that the gn Conv has nth-
order spatial interactions [26]. The final step usually includes
using f for deep convolution of modelling the feature concate-
nation for easier implementation and improved efficiency on the
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Figure 2. YOLOv7 structure.

GPU [27]. Figure 3 shows the YOLOv7+G3HN architecture
which is defined by the incorporation of several elements de-
signed to enhance the accuracy of object detection.

All these elements complement each other to enable the ac-
curate detection of objects in complex scenes by the model. Us-
ing different parts and techniques makes this model better suited
for the detection of objects than other versions of YOLOv7.
Figure 4 shows the combination of each component in these
elements.

These components include the idea behind the Contextual
Attention Transformer (CAT) module, which is to focus on the
attention of different parts of the scene [28]. This will make sure
that the algorithm can highlight significant characteristics when
identifying subjects. The Multi-scale Processing (MP) model is
responsible for dealing with characteristics that occur in various
sizes [29]. On the other hand, it is the responsibility of the
Upsampling (UP) process to increase feature map dimensions
so that small objects can be effectively recognised [30].

This G3 Convolution (g3Conv) convolutional layer incor-
porates the G3HN mechanism into the feature extraction pro-
cess, improving model representation learning abilities [31].
Gated Grouping Hierarchical Network (G3HN) presents hier-
archical characteristic aggregation plus gating group methods
that ease contextual understanding loss while object linking in
meanings [32]. In complex traffic scenarios, the Hornet sys-
tem enhances its capacity for object recognition by focusing its
efforts on critical areas such as occlusions and clutter.

The backbone of any object detection model is Convolution

(Conv), which is typically a conventional convolutional layer
that takes input pictures and extracts characteristics from them
[33]. The convolutional layers of the VGG network design in-
cluded Conv 3, 4, and 6, each with its capacity to hold features
at different stages. For example, Conv3 holds three layers of
convolution layers. The Convolutional-Maxpool-Convolutional
(CMC) is a module in the architecture that consists of a se-
quence of a convolutional layer, followed by a max-pooling
layer, and then another convolutional layer. It is used to ex-
tract features while reducing the spatial dimensions of the input
feature maps [34].

The Spatial Pyramid Pooling with Contextual Spatial Pyra-
mid Convolution (SPPCSPC) module was designed to effec-
tively capture multi-scale features [35]. The module of Resid-
ual Encoding Pooling (REP) encodes the residual features and
aggregates them spatially. Thus, the model improves its ability
to handle feature representations.

The overall effectiveness of YOLOv7 + G3HN is con-
tributed to by each of these components in detecting objects
in traffic scenes with occlusions and varying scales. Neverthe-
less, even after these improvements, this model may have some
drawbacks regarding the complexity of calculations as well as
the variety of teaching samples that might have an impact on its
capability to apply certain rules learned from one dataset onto
a different dataset.
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Figure 3. YOLOv7+G3HN structure.

Table 1. Comparison of high-and low-quality video in vehicle detection.
Types of videos High-quality video Low-quality video
Computational time (s) 126 139
Error detection 0 % 0 %
Miss detection 1.59 % 9.38 %

3. Vehicle detection

Vehicle detection, a crucial component of transportation
and surveillance systems, relies on sophisticated image process-
ing techniques to accurately identify vehicles within images or
videos [36]. These techniques utilise machine learning models
trained to recognise various types of vehicles. Through exten-
sive labelling and training, these models learn to classify vehi-
cles into distinct categories, including cars, motorcycles, bicy-
cles, and more [37]. Once trained, the models can effectively
analyse input images or videos and highlight the detected vehi-
cles by drawing bounding boxes around them, facilitating their
identification and tracking [38].

In the realm of vehicle detection, the YOLOv7+G3HN
framework emerges as a prominent solution due to its advanced
capabilities. YOLOv7, short for ”You Only Look Once version
7,” represents the latest iteration of the YOLO family of ob-
ject detection models [39]. Known for its real-time processing

speed and accuracy, YOLOv7 employs a unified approach that
allows it to analyse the entire input image at once rather than
dividing it into smaller sections [40]. Paired with G3HN, an en-
hancement module designed to improve the detection accuracy
of small objects like vehicles, the YOLOv7+G3HN framework
offers enhanced performance in vehicle recognition and detec-
tion tasks [21].

In the present study, the YOLOv7+G3HN framework
serves as the cornerstone for vehicle recognition and detection.
By leveraging the robust capabilities of YOLOv7 and the spe-
cialised enhancements provided by G3HN, researchers aim to
achieve precise and efficient vehicle detection in various scenar-
ios. This approach not only enables the accurate identification
of vehicles but also facilitates their tracking and monitoring,
thereby contributing to the development of effective transporta-
tion management and surveillance systems.
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Figure 4. Combination of each component in the elements.

Table 2. Analysis of near miss events by YOLOv7+G3HN.
Detection type of video Near miss detection Error detection Miss detection
High-quality video 2670

15723 × 100% = 16.98% 0
5400 × 100% = 0% 86

5400 × 100% = 1.59%
Low-quality video 976

4996 × 100% = 19.54% 0
4500 × 100% = 0% 422

4500 × 100% = 9.38%

3.1. Near miss

In previous research, near miss events are only de-
tected through a monitoring system but they cannot be cal-
culated automatically. Therefore, this experiment intro-
duces YOLOv7+G3HN which is combined with Distance-
Neighbours (DN) to identify near miss events, track vehicles
and calculate near miss events through the algorithm. Figure 5
shows the flowchart of near miss calculation.

DN calculates the nearest vehicle in front of the target ve-
hicle can be recognised as the one that is within a 2α degree
sector range and at a distance R in front of the aimed vehicle in
Equation (4).

θ = arctan

√(
xi − x j

)2
+
(
yi − y j

)2
, (4)

where the displacement coordinates of the aimed vehicle in two
frames are represented by xi and x j, and the target’s displace-
ment direction is determined by θ. The appropriate values for α
and R in this study can efficiently determine the front vehicle’s
position based on the displacement direction [41].

The following formula and process explain the calculation
of distance. Assume each vehicle as R = {Rk}

k
k=1, k is the num-

ber of vehicles, the centre of the vehicle be ck = (xk, yk) and

the speed of the vehicle as
(
vxk, vyk

)
. The pre-determined ac-

tual distance of the vehicle and the detected pixel length of the
vehicle are used to calculate the relationship between the real
distance and the pixel length [42]. The motion between the two
frames is then calculated as the pixel distance using the cen-
tre coordinates of the front and back frames of each vehicle.
The actual distance travelled by the vehicle between the two
frames can be determined using this ratio and the pixel width
[43]. Equation (5) shows the calculation of the velocity, V in-
volves dividing the distance by the time interval between the
two frames.

V =
√(

xi − x j

)2
+
(
yi − y j

)2
×W (u) /

[
(x, y) × f ps

5 × 3.6 × 3
]
. (5)

Through this study, 1 second can collect 30 frames in high-
quality video and 25 frames in low-quality video. Equation
(6) illustrates a line connects the object detection results and
a weight

(
wi j

)
is assigned to represent the intensity of the con-

nection between the two vehicles. This weight is determined
by the speed difference between the two vehicles within a given
distance unit.

wi j =
vxi − vx j√(

xi − x j

)2
+
(
yi − y j

)2 . (6)
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Figure 5. Flowchart of near miss detection and calculation.

Table 3. Comparison of the model result.
Model mAP@0.5 mAP@0.95 Times train/h Model size/MB
YOLOv7 90.8 51.6 12.83 74.8
YOLOv7+G3HN 92.1 59.2 10.7 104.9

Equations (7), (8) and (9) displays X j calculates the dif-
ference in length both horizontally and vertically between the
focused vehicles, c0 and the vehicle, c j surrounding it [21].

X j =

 S 0 j
x

|vx j|+|vx0 |

2

,
S 0 j

y

|vy j|+|v j0|
2


T

, (7)

S 0 j
x =
∣∣∣x j − x0

∣∣∣ − (L j + L0

)
2

, (8)

S 0 j
y =
∣∣∣y j − y0

∣∣∣ − (W j +W0

)
2

, (9)

where S 0 j
x and S 0 j

y represents the longitudinal and the transverse
distance between the two vehicles. L j and L0 are the length of
the aimed vehicle while W j and W0 are the width of the focused
vehicle.

Equation (10) shows the speed difference between two ve-
hicles in real-life situations contributes to the distance between
them, Distance Neighbour denoted as DN [44]. A more accu-
rate evaluation of vehicle distance is created by this method of
evaluation.

DN =
f
(
X j

)
S igmoid

(
wi j

) . (10)

Figure 6 shows the stopping distance is the combination of
thinking distance and braking distance. Thinking distance is
based on the driver’s reaction time of 1.5 seconds assuming the
driver’s behaviour is normal in this study [45]. Braking distance
is the distance from the driver pressing the brake until the vehi-
cle stops [46]. The stopping distance is also used as a threshold
value to determine the occurrence of near misses.
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Figure 6. Threshold of stopping distances.

Figure 7. High-quality video.

4. Results and discussion

4.1. Vehicle detection

Vehicle detection was performed on the YOLOv7+G3HN
in high-quality video and low-quality video correspondingly,
the accuracy and speed of the model are evaluated.

According to the research by Lim et al. [8], it was previ-
ously concluded that the location with the highest probability

Figure 8. Low-quality video.

of accidents is Lebuhraya Tun Dr. Lim Chong Eu. As a re-
sult, a high-quality video from that location was selected as
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one of the experimental videos. The high-quality video was
recorded from 18:35:00 to 18:38:00 on 18th December 2018
at Lebuhraya Lim Chong Eu, and it captured various vehicles
including cars, vans, motorcycles, and buses. As part of the ex-
periment, a low-quality video situated at the junction near UMS
was selected. Unlike the high-quality video, the low-quality
video was recorded from a different day and location, spanning
from 18:35:00 to 18:38:00.

Since the study can only detect cars, vans are considered
as cars. Motorcycles and buses are not included in the car cat-
egory. Figures 7 and 8 show the high-quality video and low-
quality video which applied YOLOv7+G3HN for vehicle de-
tection.

Table 1 presents a comparison of the time taken, er-
ror detection and miss detection for car detection by using
YOLOv7+G3HN during the three minutes of experimental
videos. Process time is a vital consideration when assessing the
computational performance of different object detection mod-
els, especially in situations where prompt analysis is necessary
or in real-time applications. High-quality video uses less time
to compute vehicle detection than low-quality video.

Error detection is the percentage of chance the detection al-
gorithm incorrectly classifies an object as a vehicle when it is
not [47]. When comparing the error detection rates, the models
of YOLOv7+G3HN show no errors in detecting cars in both
quality videos. This shows the accuracy of YOLOV7+G3HN
is very high and is not affected by the quality of the videos.

Additionally, miss detection refers to the percentage of in-
stances the detection algorithm fails to recognise actual cars that
are present on the scene [48]. The percentage of false negatives
has an immediate impact on how accurate vehicle-detecting al-
gorithms are overall. An increased rate of achievement in pre-
cisely detecting cars is shown by a decreased false negative rate
[49]. The low-quality video displays a blur or unseen objects
when the vehicle is far apart from the CCTV camera. This
quality of videos could decrease the accuracy of the model de-
tection. Therefore, the miss detection in low-quality video is
higher than in high-quality video.

Aqqa et al. [50] emphasized the significance of video qual-
ity as a crucial factor, yet it often tends to be overlooked. In
their research, they conducted tests using Faster RCNN, SSD,
YOLO, and RetinaNet for object detection under various levels
of video compression. The aim was to investigate the quality
distortion caused by compression artefacts during video cap-
ture. After conducting a comparison, it is evident that the high-
quality video is more suitable for car detection when compared
to the low-quality video. The high-quality video demonstrates
fewer error detections during the detection process [13].

4.2. Near miss detection

In the previous studies regarding near miss events, the re-
searcher used a questionnaire or survey form method to collect
the near miss data because they lacked visual evidence [51].
Therefore, the researchers only can obtain the near miss record
from people’s experiences. After that, in the research of Lim et
al. [7], the researcher used the algorithm to detect the vehicles

and calculate the number of cases of near miss events from the
monitoring system but there is a limitation where the calcula-
tion of near miss events is difficult.

Now, the experiment introduces advanced near-miss detec-
tion techniques using automatic calculation methods by em-
ploying enhanced models or fine-tuned YOLOv7 models. Table
2 shows the analysis of near miss risks and events in different
types of videos using various indicators in YOLOv7+G3HN.

The near-miss detection is calculated automatically through
the system, which is combined with the YOLOv7+G3HN mod-
els. However, machine learning has limitations; it can learn and
detect particular objects but cannot identify errors detected and
missed detection objects in the system. Therefore, the error
detection and missed detection of near misses are calculated
manually through the results of videos. The vehicle detection
and near-miss detection results are combined into an outcome
video, which is then split into frames [7, 8]. Finally, the num-
ber of error detections and missed detections is calculated man-
ually.

In the analysis of error detection, an intriguing pattern
emerged whereby both high- and low-quality videos exhibited
no errors detected by the detection algorithm. This finding sug-
gests a high level of reliability and accuracy in error detection
across varying video qualities [52]. However, a notable con-
trast arose in miss detection, with the low-quality video register-
ing a substantially higher percentage (9.38%) compared to the
high-quality counterpart (1.59%). This disparity underscores
the impact of video quality on the efficacy of miss-detection
algorithms, highlighting the need for further investigation into
factors influencing detection performance [53]. Additionally,
since both vehicle detection and near miss detection are inte-
grated into the same algorithm, similar trends were observed in
vehicle detection, further emphasizing the significance of video
quality in detection outcomes.

Upon closer examination of near miss detection outcomes,
a compelling trend emerged wherein high-quality videos ex-
hibited a lower probability (16.98%) compared to their low-
quality counterparts (19.54%). This discrepancy suggests a
nuanced relationship between video quality and the effective-
ness of near miss detection algorithms. Notably, the absence
of error-detected objects in the near-miss detection analysis un-
derscores the pivotal role of missing detection in shaping de-
tection outcomes [54]. These findings underscore the impor-
tance of considering video quality as a critical determinant in
the development and evaluation of detection algorithms, with
implications for enhancing detection accuracy and reliability in
real-world scenarios [48].

From the analysis of near miss events on both-quality
videos, this experiment can identify the blind spot’s location
through a monitoring system which contributes to near miss
incidents and prevents this location become the blackspot loca-
tion. Therefore, the YOLOv7+G3HN models play an important
role in detecting and tracking cars and calculating the distance
between the vehicles using DN indicators.
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4.3. Comparison of models

To show that YOLOv7+G3HN has better accuracy than
YOLOv7, the comparison models are conducted. Table 3
displays the accuracy, speed and size of the YOLOv7 and
YOLOv7+G3HN.

This mAP@0.5 metric measures the model’s accuracy in
detecting objects with a threshold Intersection over Union (IoU)
of 0.5. It reflects how well the model identifies and localizes
objects. The higher the mAP@0.5 indicates better performance
in object detection. YOLOv7+G3HN shows an improvement
(94.1) compared to YOLOv7 (90.8), suggesting enhanced de-
tection capabilities [55].

This mAP@0.95 metric measures the accuracy of the model
with a more stringent IoU threshold of 0.95, requiring even
more precise localization. The higher the mAP@0.95 values in-
dicate superior precision in object detection. YOLOv7+G3HN
achieves a better score (59.2) compared to YOLOv7 (51.6),
demonstrating its improved precision and localization abilities
[56].

This train time shows the time taken for the model to be
trained. The lower values indicate longer training times per
epoch or iteration. YOLOv7+G3HN has a lower value (10.7
hours) compared to YOLOv7 (12.83 hours), suggesting it takes
longer to train. This could be due to the added complexity and
enhancements in the YOLOv7+G3HN model that require more
computational effort during training [57].

The model size represents the storage size of the trained
model in megabytes. YOLOv7+G3HN has a larger size (104.9
MB) compared to YOLOv7 (74.8 MB). The increase in size
is likely due to additional parameters and layers introduced
in YOLOv7+G3HN to improve performance, which requires
more storage [58].

The improvements in YOLOv7+G3HN result in superior
detection accuracy, as indicated by higher mAP@0.5 scores,
mAP@0.95 scores and shorter training times. However, these
enhancements come with the drawbacks of increased model
size. These trade-offs are generally acceptable in situations
where high detection accuracy is crucial and sufficient compu-
tational resources are available to handle the additional com-
plexity of the model. In such scenarios, the benefits of improved
accuracy outweigh the costs of additional storage requirements.

5. Conclusion

This study aims to investigate the valuable insights garnered
regarding the relationship between video quality and detection
outcomes in the assessment of vehicle detection and near-miss
analysis utilizing the YOLOv7+G3HN framework. The imple-
mentation of this framework facilitated a comprehensive exam-
ination of both the efficiency and accuracy of vehicle detection
across diverse video qualities. Notably, findings revealed that
high-quality videos demonstrated expedited computation times
for vehicle detection relative to their low-quality counterparts,
highlighting the pivotal role of video resolution in influencing
the speed and efficacy of detection algorithms within monitor-
ing systems.

Furthermore, the examination of error and miss detection
mechanisms provided additional elucidation on the influence of
video quality on detection precision. The results show no in-
stances of error detection were identified across both high- and
low-quality videos, indicating the robustness of the detection
algorithm across varying video qualities. However, discernible
disparities were observed in miss detection, with low-quality
videos manifesting a heightened frequency of miss detections in
comparison to high-quality counterparts. This observation sug-
gests that diminished video quality may impede the accuracy
of detection processes, potentially compromising the effective-
ness of monitoring systems in the identification and tracking of
vehicles.

Moreover, an analysis of near-miss events yielded com-
pelling insights into the impact of video quality on detection
outcomes. High-quality videos exhibited a diminished prob-
ability of near-miss occurrences when contrasted with low-
quality counterparts, suggesting a plausible correlation between
video quality and the incidence of near-miss events. The inte-
gration of error and miss detection within the YOLOv7+G3HN
framework underscores the interrelated nature of these detec-
tion processes, underscoring the imperative for comprehensive
evaluation and refinement of monitoring systems to ensure pre-
cise and reliable detection outcomes across varying video qual-
ities. Overall, these findings underscore the pivotal role of
YOLOv7+G3HN in enhancing detection accuracy and reliabil-
ity, while emphasizing the necessity of factoring video quality
as a critical determinant in monitoring system design and im-
plementation.

In future research, YOLOv7 will be employed for vehicle
detection and near-miss detection. Additionally, trajectory pre-
diction will be incorporated to identify blind spots and reduce
the likelihood of black spot occurrences. This approach aims to
enhance overall traffic safety by leveraging advanced object de-
tection and predictive analytics to proactively address potential
hazards.
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