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Abstract

This research deviates from usual studies in auction literature primarily focused on maximizing expected revenue. Instead, we concentrate on
the strategic design of discrete Dutch auctions in the context of bidder emotional attachment, wherein valuations follow a lognormal distribution.
Our objective is to attain an optimal balance between the auctioned object’s selling price and the auction duration, ultimately maximizing the
auctioneer’s expected revenue per unit of time. Our proposed models exhibit significantly higher average revenues per unit of time than coun-
terparts neglecting time considerations and emotional attachment of the bidders. This achievement results from strategically reducing auction
durations, enabling more auctions within the allotted time. This intentional trade-off ensures the marginal revenue decrease in shorter auctions
is surpassed by the substantial increase in overall revenues from heightened auction frequency. Numerical results emphasize the utility of our
modified discrete Dutch auction design, particularly in scenarios with a large number of bidders. Furthermore, increasing skewness in valuation
distributions correlates with higher revenue per unit of time. Complete knowledge of the number of participating bidders is crucial, leading to a
noticeable elevation in the auctioneer’s expected revenue per unit of time. However, the predictability of auction outcomes may be challenging,
underscoring the nuanced nature of auction dynamics.
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1. Introduction

The Dutch auction is also called Descending Price Auction
or Reverse Clock Auction. Contrary to well-known auction for-
mats, e.g., English Auction, First Price Auction, Second Price
Auction, etc., in Dutch auction, the price of an item decreases
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through a predetermined time interval established by the auc-
tioneer, commonly shown on the display screen. When the auc-
tion starts, the price is kept high so that nobody is willing to
buy but after a predefined time interval, the price falls until a
bidder is willing to buy the item. That bidder will bid for the
item by calling out ’mine’ or by stopping the Dutch clock and
will take the item by paying his bid value [1]. The auctioneer
also sets the reserve price for the item after which the auction
will be terminated and the object will go unsold.

In ascending price auction formats, the bidders continue to
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bid again and again by raising their bid value but in Dutch auc-
tion, the first bidder who bids will stop the clock and the item
will be sold to him so it results in faster transactions [2]. This
auction format is widely used to sell perishable goods whose
value decreases over time, e.g., cut flowers, fish, concert tick-
ets, plane tickets, seasonal items, etc. The name of the Dutch
auction came from a flower auction market in the Netherlands
[3]. Dutch Auction is also used for after-Chrismas sales [4],
tobacco sales [5], initial public offerings [6], airline booking
[7], and repurchasing the shares [8]. In addition to these stud-
ies, auctions have recently been examined in various contexts,
including renewable energy market design [9], future invest-
ment cost estimation [10], edge computing applications [11],
blockchain integration [12, 13], and resource management and
pricing [14], among others.

In literature, the valuation of the bidders is usually taken
as a continuous variable in a specified interval [15–17]. In this
case, auctioneers choose small price decrements as the valua-
tions are assumed to be continuous, leading to long auctions.
Such kinds of auctions are preferable to sell unique objects like
paintings, antiques, art, etc. but using this kind of bidders’ val-
uation is not suitable for faster transactions in the case of per-
ishable goods or services that need to be sold quickly [3, 18].
Many auctions, in reality, last for a very short time duration,
for example, in Italian fish markets, almost fifteen transactions
are completed in a minute, and at Royal Flora Holland, each
auction lasts on average for four seconds [19, 20].

In another study by Li et al. [3], the bidders’ valuations
in discrete Dutch auctions are taken to follow different kinds
of distribution including standard uniform distribution, expo-
nential distribution, and truncated normal distribution, and the
auctioneer’s revenue per unit of time is maximized by devel-
oping a nonlinear program (NLP) and solving it subject to the
inequality constraints. Other than Li et al.[3], there are only
a limited number of studies in the literature that consider the
discrete bid levels in Dutch auctions and those studies prove
that the expected revenue of the auctioneer increases by con-
sidering the discrete settings [15, 16, 21, 22]. In literature, it is
traditional to consider that the auctioneer works in the seller’s
interest and he/she wants to maximize the revenue of the seller
[23, 24] but in reality, this is not exactly the case. Normally,
the auctioneers run multiple auctions for different sellers simul-
taneously, and therefore, auctioneers usually prefer auctions to
last for less time and go through a larger number of transac-
tions rather than going through very long auctions with compar-
atively higher revenue and a smaller number of transactions. It
refers that auctioneers want to maximize their revenue per unit
of time instead of maximizing the revenue of the seller only [3].
The auctioneers prefer to go to the next auction and save time
even if they expect a higher bid, and it assures the fact that the
fast Dutch auctions are practiced in reality. Chipty et al. [25],
in their studies observed almost 400 auctioneers from the Na-
tional Auctioneers Association and reported that 92 percent of
the auctioneers in outcry English auctions would prefer to go to
the next auction to save time instead of waiting for the higher
bid.

Bidders’ emotions significantly influence the bidding pro-

cess, thereby impacting the auctioneer’s revenue. Adam et
al. [26] conducted a series of experiments demonstrating that
external factors and emotional states can lead to higher bids,
ultimately increasing auctioneer revenue. In another study,
Adam et al. [27] introduced the ”emotional bidding frame-
work,” which outlined how human emotions affect electronic
auctions through six key propositions. While the framework
emphasized the importance of immediate emotional responses,
that lacked empirical evaluation due to limited data on real-time
emotional experiences of bidders. Later advancements in Neu-
roIS research, however, then allow for a comprehensive assess-
ment of these propositions using neurophysiological evidence.
In Ref. [28], the author builds on this foundation, synthesizing
insights from previous work, refining the framework, and iden-
tifying new directions for future research that address the re-
maining gaps in understanding the emotional dynamics of bid-
ding. Ku et al. [29] describe competitive arousal as driven
by elements like rivalry, time pressure, social facilitation, and
the first-mover advantage. These factors highlight how emo-
tional influences can play a powerful role in urgent, competitive
decision-making, offering insights into their significant impact
in various auction environments.

In this research, we considered for-profit discrete Dutch
auctions to maximize the auctioneers’ expected revenue per unit
of time when the bidders are emotionally attached to the items
to be auctioned off or they want to get those items even if they
need to bid higher. For instance, in case, if a market supplier
participates in the auction when he/she has already taken the
responsibility of providing a certain item/items to the market,
he/she will not be willing to lose the item while waiting for
the bid level to decrease enough until another bidder bids and
wins the auction. In such cases, the valuations of the bidders
can best be depicted by lognormal distribution instead of the
standard normal distribution.

We propose a novel framework for optimizing discrete
Dutch auctions by incorporating lognormal valuation distribu-
tions, which effectively capture the skewness in bidders’ be-
havior, particularly in scenarios where emotional attachment to
auctioned items significantly impacts their willingness to pay.
Previous studies, such as Li et al. [3], have focused on max-
imizing auction revenue per unit of time within time-sensitive
auction frameworks. However, our work extends this approach
by addressing situations where bidders’ valuations deviate from
symmetric assumptions, specifically when psychological fac-
tors lead to higher valuations for some bidders compared to the
majority.

To model this asymmetry, we employ lognormal distri-
butions, denoted as LN(µ, σ2), as they better represent the
right-skewed nature of bidder valuations in these emotionally
charged auctions. In our analysis, we fixed the scale parameter
at µ = 0 and examined three cases of the shape parameter σ,
reflecting different levels of skewness: (1) near symmetry with
σ = 0.1, (2) moderate skewness with σ = 0.2, and (3) signif-
icant skewness with σ = 0.3. We then compared our results
with the standard normal distribution N(0, 1), often assumed in
the literature for symmetric valuations.

Our research not only highlights the importance of account-
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ing for asymmetry in bidder behavior but also explores the im-
pact of auction duration on revenue maximization. We demon-
strate that, under specific conditions, reducing the duration of
auctions in the presence of emotionally attached bidders can
yield higher overall revenue, a finding that contributes signif-
icantly to the optimization of real-world, time-based auctions.
This nuanced integration of bidder dynamics into the auction
model marks a substantial advancement over existing litera-
ture, providing new insights into the interplay between valua-
tion asymmetry and auction efficiency.

Another aim of this study is to compare the auction out-
comes when the number of bidders is fixed and when it is a
random variable. Such kinds of studies are very limited in the
literature until now. In earlier literature, before the 80s, the
number of bidders was often considered to be given but in re-
cent studies, it is considered as a random variable [5, 30, 31].
Here, in our study, we compared the auctioneer’s expected rev-
enue per unit of time when the valuations of the bidders follow
the lognormal distribution for two models; a model for a fixed
number of bidders, and a model for a random number of bid-
ders. Thus the effect of the information about the number of
bidders is also investigated.

Furthermore, we determined the optimal number of bid lev-
els necessary to optimize the auctioneer’s anticipated revenue
per unit of time in scenarios where certain bidders exhibit emo-
tional attachments to the auctioned items, leading to bid valu-
ations following a lognormal distribution. We also conducted
a comparative analysis with instances where bidder valuations
adhere to the standard normal distribution.

The rest of the paper is organized as follows. Section 2 de-
tails the mathematical formulation of four distinct models based
on the bidders’ valuations, whether lognormal or normal, and
the fixed or random number of bidders. The first model in Sec-
tion 2.1 refers to a discrete Dutch auction model with a fixed
number of bidders when the valuations of the bidders follow
the lognormal distribution. The second model in Section 2.2 is
the case when the valuations of the bidders follow the standard
normal distribution and the number of bidders is fixed. In Sec-
tion 2.3, a discrete Dutch auction model when the number of
bidders is a Poisson variable and the valuations of the bidders
follow the lognormal distribution is developed and discussed.
The model is then modified for the case when the valuations
of the bidders follow the standard normal distribution in Sec-
tion 2.4. The major findings and comparisons are made and
discussed in Section 3. Finally, the significance of the research
and future work suggestions are given in Section 4.

2. Model Formulation

In this paper, we developed an NLP to describe the discrete
Dutch auction in an independent private value (IPV) setting
with symmetric information. In the IPV setting, each bidder
is sure about the value he/she gives to the object auctioned off
and his valuation doesn’t depend on the valuation of other par-
ticipants, nor does any other bidder know his/her valuation. We
aim to maximize the auctioneer’s revenue per unit of time when
all the bidders are rational to bid as per their valuations and are

risk-neutral. There are n number of bidders participating in the
auction and the valuation of bidder j, j = 1, 2, 3, . . . , n is v j

which is an independent and identically distributed continuous
random variable having probability density function f and cu-
mulative density function F.

Suppose that we are required to set the bid levels
l1, l2, . . . , lm where m ≥ 1 and the object that is to be auctioned
has a reserve price u, then we have 0 ≤ u ≤ l1 ≤ l2 ≤ . . . ≤ lm.
When the auction unfolds, the price of the item will be com-
paratively high, say lm+1, so that nobody is willing to buy at
this point. If s is the Dutch clock speed then after each s > 0
seconds, the price falls sequentially as lm+1, lm, . . ., l2, l1. If
no bidder bids higher than li+1, and there exist q ≥ 1 number of
bidders whose valuations are in the interval [li, li+1), and the rest
of the n−q bidders’ valuations lie below li, i = 1, 2, . . . ,m, then
the selling price will be li (refer to Figure 1). If two or more
bidders’ valuations lie in the interval [li, li+1), then the first bid-
der who stops the clock will be the winner.

2.1. Model with a fixed number of bidders and lognormal val-
uations

In this section, a discrete Dutch auction is modeled as an
NLP when the number of bidders is fixed. Let us suppose that
we have n number of bidders and the probability that the object
is sold at the bid level li, i = 1, 2, . . . ,m, is P(li), then P(li) is
given by the binomial distribution as below;

P(li) =
n∑

q=1

(
n
q

)
F(li)n−q[F(li+1) − F(li)]q,

=

[ n∑
q=1

(
n
q

)
F(li)n−q[F(li+1) − F(li)]q

]
+ F(li) − F(li),

=

[ n∑
q=0

(
n
q

)
F(li)n−q[F(li+1) − F(li)]q

]
− F(li).

(1)

Using the binomial expansion,
n∑

q=0

(
n
q

)
an−qbq = (a + b)n, within

the square brackets(1) becomes;

P(li) = F(li+1)n − F(li)n. (2)

As we are interested in finding the revenue per unit of time, we
calculated the auction duration D1. The auction duration is the
product of the clock speed s and the number of expected bid
levels E(m) that the auction lasts. Here, E(m) is the sum of the
expected number of bid levels when the item goes unsold and
the number of bid levels required to sell the object.

Therefore, the auction duration D1 is given by;

D1 = sE(m),

= s

 m∑
i=1

(m + 2 − i)P(li) + (m + 1)

1 − m∑
i=1

P(li)

 ,
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Figure 1. Discrete Dutch auction mechanism.

D1 = s

 m∑
i=1

(m + 2 − i)
[
F(li+1)n − F(li)n]

+(m + 1)

1 − m∑
i=1

[
F(li+1)n − F(li)n] ,

= s
[
(1 + m) (1 + F(l1)n − F(l1+m)n)

+

m∑
i=1

(2 − i + m) (F(li+1)n − F(li)n)

 .
(3)

Now, the auctioneer’s expected revenue per unit of time, Z1,
is obtained by dividing the expected selling price by the auction
duration D1 and it follows as under;

Z1 =

m∑
i=1

liP(li) + u
(
1 −

m∑
i=1

P(li)
)

D1
,

=


m∑

i=1

li
[
F(li+1)n − F(li)n]

+u

1 − m∑
i=1

[
F(li+1)n − F(li)n]


s
[
(1 + m) (1 + F(l1)n − F(l1+m)n)

+

m∑
i=1

(2 − i + m) (F(li+1)n − F(li)n)



,

=


u + uF(l1)n − uF(lm+1)n

+

m∑
i=1

li
[
F(li+1)n − F(li)n]


s
[
(1 + m) (1 + F(l1)n − F(l1+m)n)

+

m∑
i=1

(2 − i + m) (F(li+1)n − F(li)n)



.

(4)

Hence, our required model can be formulated as an NLP given
below, where l1, l2, . . . , lm are decision variables and m, n, s and
u are the parameters.

Maximize

Z1 =

u + uF(l1)n − uF(lm+1)n

+
m∑

i=1
li [F(li+1)n − F(li)n]


s
[
(1 + m) (1 + F(l1)n − F(l1+m)n)

+
m∑

i=1
(2 − i + m) (F(li+1)n − F(li)n)

]

,

subject to the constraints;

li+1 ≥ li, i = 1, 2, . . . ,m ,

l1 ≥ u.
(5)

When certain bidders are emotionally attached to the auctioned
item, their valuations are best modeled by a lognormal distri-
bution, which is characterized by a right-skewed shape. This
indicates that the emotionally attached bidders have relatively
higher valuations compared to the majority. In this context, the
bidders’ valuations are treated as lognormally distributed pos-
itive random variables, with their natural logarithms following
a normal distribution with mean µ and variance σ2. It follows

that f (li) = 1
liσ
√

2π
exp

(
−

(lnli−µ)2

2σ2

)
and F(li) = 1

2 erfc
(
−

lnli−µ
σ
√

2

)
where erfc is the complementary error function defined by

erfc(x) = 2
√
π

∞∫
x

e−t2
dt.

Hence the modified NLP we get is as under;
Maximize

Z1 =


u + u

[
1
2 erfc

(
−

lnl1−µ
σ
√

2

)]n
− u

[
1
2 erfc

(
−

lnlm+1−µ

σ
√

2

)]n

+
m∑

i=1
li
{[

1
2 erfc

(
−

lnli+1−µ

σ
√

2

)]n
−

[
1
2 erfc

(
−

lnli−µ
σ
√

2

)]n}


s
[
(1 + m)

(
1 +

[
1
2 erfc

(
−

lnl1−µ
σ
√

2

)]n
−

[
1
2 erfc

(
−

lnlm+1−µ

σ
√

2

)]n)
+

m∑
i=1

(2 − i + m)
{[

1
2 erfc

(
−

lnli+1−µ

σ
√

2

)]n
−

[
1
2 erfc

(
−

lnli−µ
σ
√

2

)]n}]

,
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subject to;

li+1 ≥ li, i = 1, 2, . . . ,m ,

l1 ≥ u,
(6)

where n, m, s, u, µ, and σ are parameters and l1, l2, . . . , lm+1 are
decision variables.

In the above NLP (6), each of the constraints is a convex
set being a half-space. The convexity of the feasible region is
obvious by the fact that the intersection of the convex sets is a
convex set. Moreover, the objective function is concave. Hence,
the optimal solution of NLP (6) exists [32].

Numerical analysis
In this section, we solved the NLP (6) as a function of pa-

rameters m, n, u, µ, σ, and s subject to the inequality con-
straints. The clock speed s is taken as 1 second because by
taking s = k seconds, the revenue per unit of time will simply
decrease by k times [33]. In our discussion, we took the number
of bidders, n, from the set {2, 5, 10, 20, . . . , 100} and the salvage
value, u, from the set {0, 0.1, . . . , 0.8}. Furthermore, the number
of bid levels goes up to 6, i.e., m ∈ {1, 2, . . . , 6}, µ is taken as
0, and σ ∈ {0.1, 0.2, 0.3}. With the different combinations of n,
u, m, σ, and µ with s = 1 seconds, the NLP (6) is set up and
solved using the software R.

Before proceeding with the discussion, we first outline the
rationale behind selecting the aforementioned parameters. The
values of m, n, u, and s have been justified based on the findings
of Li et al. [3]. In our study, we model bidders’ valuations us-
ing a lognormal distribution, where µ and σ represent the mean
and standard deviation of the natural logarithm of the variable,
respectively. We have chosen µ = 0, which places the me-
dian of the distribution at 1. This serves as a neutral baseline,
facilitating comparison across different levels of variability in
the bidders’ valuations, while allowing for a clear interpretation
of how valuations are distributed around the median. The pa-
rameter σ, controlling the spread of the distribution, allows us
to capture different degrees of variability in the bidders’ emo-
tional responses. We explore three distinct cases: σ = 0.1,
σ = 0.2, and σ = 0.3, representing increasing levels of disper-
sion. A lower σ value of 0.1 implies that the majority of bidders
have similar valuations close to the median, suggesting minimal
emotional attachment to the auctioned item. As σ increases to
0.2 and 0.3, the distribution becomes more spread out, indi-
cating a wider range of valuations among bidders as shown in
Figure 2. This greater spread signifies a stronger emotional at-
tachment, as some bidders place substantially higher value on
the object, distinguishing themselves from the rest. By varying
σ, we effectively capture the impact of emotional attachment on
bidding behavior, with higher values of σ reflecting increased
emotional investment and a broader disparity in bidders’ val-
uations. To start the discussion, a special case of auctioneer’s
expected revenue per unit of time for the item that has no sal-
vage value, i.e., u = 0 for s = 1, µ = 0, and σ ∈ {0.1, 0.2, 0.3}
is summarized in Table 1, where Z∗1,m=1, Z∗1,m=2, Z∗1,m=3, Z∗1,m=4,
Z∗1,m=5 and Z∗1,m=6 denote the auctioneer’s maximum expected
revenue per unit of time at m = 1, m = 2, m = 3, m = 4,

m = 5 and m = 6 respectively. The boldfaced value in each row
represents the maximum value of Z∗1 among all the values of m
for a particular value of n. The case for n = 70 is depicted in
Figure 3 where Z∗1 increases until it reaches its highest value at
m = 3 for both σ = 0.1 and 0.2 and at m = 4 for σ = 0.3, and
then decreases a little for higher values of m. A close look at
Table 1 shows that, in most of the cases, the highest expected
revenue per unit of time exists at either m = 3 or m = 4). In
a few cases, it also lies at m = 5 or m = 6 (but still the value
is only slightly greater than the case for m = 3 or 4) and these
exceptions are logical and are due to the lognormal distribution
of the valuations of the bidders. If the bidders follow the log-
normal distribution, the expected revenue per unit of time will
not be predictable due to the asymmetry of the distribution and
the same happens in the real-world auctions. The maximization
of the revenue at m = 3 or m = 4 is in agreement with the fact
that most of the transactions in real-world fast Dutch auctions
are completed in less than a minute [20, 34] or even in four
seconds [19]. In literature, most of the studies reveal that the
revenue of the auctioneer increases with the number of bid lev-
els [15, 16, 22] but in real-world scenarios it doesn’t happen for
fast oral Dutch auctions. Li et al. [3], in their studies, revealed
the fact that the auctioneers in reality are interested in revenue
maximization per unit of time rather than per unit auction and
that’s why the fast oral Dutch auctions are commonly used in
reality. In our new modified model, we encountered real-world
Dutch auctions when some of the bidders are emotionally at-
tached to the items to be auctioned off and their valuations fol-
low the lognormal distribution.

Lastly, if we look closely at Table 1(a) with σ = 0.1 when
the distribution of the valuations of the bidders is close to sym-
metry, Table 1(b) with σ = 0.2 when the distribution of the val-
uations of the bidders is slightly skewed, and Table 1(c) with
σ = 0.3 when the distribution of the valuations of the bidders is
highly skewed, we observe that if σ increases, the correspond-
ing auctioneer’s maximum expected revenue per unit of time
increases for each value of n except for the case when n = 2. It
shows that with the increase in skewness of the distribution of
the valuations of the bidders, the expected revenue per unit of
time increases. This result is logical because when the skewness
of the distribution of the valuations of the bidders increases, the
higher number of participants will have comparatively higher
valuations than the majority of the participants, and hence they
are supposed to bid higher which results in higher revenue per
unit of time.

In Table 2, the optimal number of bid levels m∗ along
with corresponding maximum expected revenue per unit of
time Z∗1,m∗ of the auctioneer for different values of the salvage
value u ∈ {0, 0.1, . . . , 0.8} and the different values of shape
parameter of the distribution of the valuations of the bidders
σ ∈ {0.1, 0.2, 0.3} are presented. From Table 2, it is evident
that Z∗1,m∗ increases with the increase in the number of partici-
pants n in the auction for all values of u and σwith some excep-
tions when u = 0.1 or 0.2. The fact of increasing the maximum
revenue per unit of time with the increase in the number of par-
ticipants in the auction for u ∈ {0, 0.3, 0.4, . . . , 0.8} makes in-
tuitive sense because the higher the number of participants, the

5
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Figure 2. Probabilty density function of lognormal distribution for µ = 0 and σ = 0.1, 0.2, 0.3.

higher is the competition and hence the selling price [3]. Now,
the maximum expected revenue per unit of time for u = 0.1 and
0.2 is also increasing with the increase in n for each value of σ
until n reaches a specific value (n = 60 in most of the cases) and
then it doesn’t follow the increasing pattern. The value of Z∗1,m∗
drops abruptly and then either goes constant (for σ = 0.1, 0.2)
or increases again and then drops and goes constant (for u = 0.1
and σ = 0.3). The unusual behavior in the auctioneer’s maxi-
mum expected revenue per unit of time makes sense when we
take into account the bidders’ valuations following the lognor-
mal distribution. This means predicting revenue isn’t always
straightforward; it tends to follow an abnormal pattern due to
asymmetry in the valuations of the bidders. In real situations,
emotional connections and various factors make it tricky to pre-
dict auctioneers’ maximum revenue per unit of time, adding to
the unpredictability of the pattern.

Moreover, in most cases, a maximum of four bid levels are
required (i.e., m∗ ≤ 4) to maximize the auctioneer’s expected
revenue per unit of time except for a few cases when five of six
bid levels are needed (still the value is very close to three or four
bid levels’ value). Also, with the increase in the value of u, the
maximum number of bid levels required to maximize the auc-
tioneer’s expected revenue per unit of time reduces up to one re-
gardless of the number of participants. For instance, for u = 0.8
in Table 2, only one bid level is required to maximize the auc-
tioneer’s expected revenue per unit of time for each value of n
and σ. It makes logical sense because, in reality, most of the
discrete Dutch auctions need very little time to finish and hence
the required number of bid levels to maximize the auctioneer’s
expected revenue per unit of time is four at highest in most of
the cases. If the salvage value is higher, it will likely lead to
increased competition, and it makes sense for there to be only
one reasonable bid level. Finally, with the increase in the sal-
vage value u, the maximum expected revenue increases in most
of the cases until u = 0.6, and when the value of u increases
0.6, the maximum expected revenue falls except in some cases.
These exceptional cases are obvious due to the unpredictability

of the revenue when the valuations of the bidders follow the log-
normal distribution. When σ = 0.1, for n ∈ {70, 80, 90, 100},
the highest expected revenue per unit of time is observed at
u = 0.8. When σ = 0.2 and 0.3, for n ∈ {2, 5}, the highest
expected revenue per unit of time is at u = 0.4 and for n = 100
it lies at u = 0.8.

2.2. Model with a fixed number of bidders and standard normal
valuations

Li et al. [3] developed a discrete Dutch auction model when
the valuations of the bidders follow the truncated normal distri-
bution to maximize the auctioneer’s expected revenue per unit
of time. In this section, we considered the valuations of the bid-
ders following the standard normal distribution N(µ, σ2) where
µ = 0 and σ = 1 to maximize the auctioneer’s expected revenue
per unit of time. The modified discrete Dutch auction model for
the fixed number of bidders is formulated and its properties are
explored below.

If the valuations of the bidders follow the standard normal
distribution, then the PDF and CDF are respectively f (li) =

1
√

2π
e−

1
2 l2i and F(li) = 1

2

[
1 + erf

(
li√
2

)]
where erf is the error

function given by erf(x) = 2
√
π

x∫
0

e−t2
dt. Hence, the NLP (5)

in this case becomes;
Maximize

Z2 =


u + u

[
1
2

(
1 + erf

(
l1√

2

))]n
− u

[
1
2

(
1 + erf

(
lm+1√

2

))]n

+
m∑

i=1
li
{[

1
2

(
1 + erf

(
li+1√

2

))]n
−

[
1
2

(
1 + erf

(
li√
2

))]n}


s
[
(1 + m)

{
1 +

[
1
2

(
1 + erf

(
l1√

2

))]n
−

[
1
2

(
1 + erf

(
lm+1√

2

))]n}
+

m∑
i=1

(2 − i + m)
{[

1
2

(
1 + erf

(
li+1√

2

))]n
−

[
1
2

(
1 + erf

(
li√
2

))]n}]

,

subject to the constraints;

li+1 ≥ li, i = 1, 2, . . . ,m ,

l1 ≥ u ,
(7)

6



Shamim et al. / J. Nig. Soc. Phys. Sci. 7 (2025) 2291 7

Table 1. Auctioneer’s maximum expected revenue per unit of time for a fixed number of bidders whose valuations follow lognormal distribution vs. number of
bidders and number of bid levels with u = 0, s = 1, µ = 0, and σ ∈ {0.1, 0.2, 0.3}.

n Z∗1,m=1 Z∗1,m=2 Z∗1,m=3 Z∗1,m=4 Z∗1,m=5 Z∗1,m=6

2 0.44148617 0.44968853 0.4499683 0.44997542 0.44997526 0.44997525
5 0.48486967 0.49159576 0.49176554 0.4917639 0.49176485 0.49176391

10 0.51296263 0.51877695 0.51889514 0.51889396 0.51889401 0.518894
20 0.53781077 0.54289311 0.54297772 0.5429771 0.54297713 0.54297703
30 0.55111072 0.55583872 0.55590941 0.5559089 0.55590892 0.5559089
40 0.56007542 0.56458081 0.56464349 0.56464307 0.56464307 0.56464311
50 0.56678627 0.57113383 0.57119118 0.57119082 0.57119082 0.57119082
60 0.57212406 0.57635151 0.57638507 0.57640466 0.57640466 0.57640466
70 0.57654141 0.58067309 0.58072358 0.58072329 0.5807233 0.5807233
80 0.5803007 0.58435346 0.5843814 0.58438247 0.58438682 0.58440131
90 0.58356717 0.58755326 0.58758334 0.58758156 0.58757942 0.58759917
100 0.58645137 0.59038007 0.59042458 0.59040362 0.59042438 0.59042435

(a) For σ = 0.1
2 0.41010832 0.42412031 0.42492038 0.42495232 0.42495318 0.42495309
5 0.4869579 0.50013472 0.5007457 0.50076599 0.50076542 0.50076552

10 0.54090918 0.55327198 0.55375629 0.55376978 0.55376943 0.55376943
20 0.59146377 0.60302571 0.60341027 0.60341855 0.60341907 0.60341907
30 0.61963358 0.63076329 0.63110141 0.63110551 0.63110538 0.6311062
40 0.63906082 0.64990481 0.65021459 0.65021661 0.65021266 0.65021807
50 0.65383591 0.66447093 0.66476108 0.66476026 0.66476003 0.66475935
60 0.66572991 0.67620245 0.67647794 0.67647656 0.67647624 0.67647656
70 0.67566798 0.68600891 0.68627289 0.68627126 0.6862713 0.68627133
80 0.68419332 0.69442446 0.69467909 0.69467767 0.69467762 0.69467743
90 0.6916516 0.70178908 0.70203589 0.70203399 0.7020335 0.70203459
100 0.69827611 0.7083323 0.70857246 0.70857021 0.70857118 0.70857046

(b) For σ = 0.2
2 0.39086159 0.40880794 0.41001047 0.41005332 0.41005308 0.41005297
5 0.49781529 0.51683671 0.51799273 0.51803987 0.51804109 0.51804094

10 0.57838762 0.59758366 0.59861944 0.59865801 0.59865902 0.59865896
20 0.65785759 0.67693971 0.6778449 0.67787452 0.67787378 0.67787378
30 0.70376054 0.72271135 0.7235455 0.7235707 0.72357006 0.72357017
40 0.73607827 0.75492349 0.75571109 0.75573358 0.75573302 0.75573318
50 0.76101276 0.77977338 0.78052725 0.78054787 0.7805474 0.78054749
60 0.78130581 0.79999719 0.80072507 0.8007443 0.80074389 0.80074389
70 0.7984113 0.8170448 0.81775179 0.81776994 0.81776953 0.81776954
80 0.81319283 0.83177707 0.83246675 0.83248403 0.83248368 0.83248369
90 0.8262052 0.84474687 0.84542188 0.84543843 0.8454381 0.84543812

100 0.83782589 0.85633031 0.85699265 0.85700858 0.85700827 0.8570083
(c) For σ = 0.3

where s, n, m, and u are the parameters and li, i = 1, 2, . . . ,m+1
are the decision variables.

To compare the results of the above NLP (7) with NLP (6),
we solved it using software R. For the relevant numerical anal-
ysis, we choose n ∈ {2, 5, 10, 20, . . . , 100}, u ∈ {0, 0.1, . . . , 0.8},
m ∈ {1, 2, . . . , 6} and s = 1. As the standard normal distribution
is symmetric, we compared the results with case (a) (i.e., close
to symmetry) of the NLP (7).

Table 3 and Table 4 refer to the NLP (7) where the optimal
number of bid levels and the corresponding auctioneer’s maxi-
mum expected revenue per unit of time for the fixed number of

participants are shown respectively. The results are quite simi-
lar to the results in the study of Li et al. [3] when the valuations
of the bidders follow the truncated normal distribution.

In our research, Table 3 is the case for u = 0, and it can
be seen that with the increase in the number of bidders n, the
number of bid level m to maximize the auctioneer’s expected
revenue per unit of time also increases until it reaches m = 5
and then stays constant. Also, with the increase in the num-
ber of bidders n, the revenue per unit of time increases for each
value of m. It shows that only five bid levels are required to
maximize the auctioneer’s expected revenue per unit of time

7
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Figure 3. Auctioneer’s maximum expected revenue per unit of time vs. number of bid levels when u = 0 n = 70 and s = 1.

when the valuations of the bidders follow the standard normal
distribution and the salvage value u is taken as zero. If we com-
pare these results with the results in Table 1 (a), we see that in
most of the cases, the maximum number of bid levels required
to maximize the auctioneer’s expected revenue per unit of time
is three which is a better representation of the discrete Dutch
auctions in the real-world scenario [3, 19, 20].

Table 4 shows that for each u ∈ {0, 0.1, . . . , 0.8}, with the
increase in the number of participants n in the auction, the max-

imum expected revenue per unit of time increases. Also, with
the increase in the salvage value u, the optimal number of bid
levels m decreases and reaches m = 1 when u > 0.6 for each
value of n. In only a few cases, the optimal number of bid lev-
els m∗ reaches 5, and in all other cases m∗ ≤ 4. These trends
here are quite similar to those in Table 2 except for the cases
where the maximum expected revenue per unit of time is un-
predictable as in real-world auctions.

8
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Table 2. Auctioneer’s maximum expected revenue per unit of time for a fixed number of bidders whose valuations follow lognormal distribution vs. number of
bidders and salvage value with s = 1, µ = 0 and σ ∈ {0.1, 0.2, 0.3}.

n u = 0 u = 0.1 u = 0.2 u = 0.3 u = 0.4 u = 0.5 u = 0.6 u = 0.7 u = 0.8

m∗ Z∗1,m∗ m∗ Z∗1,m∗ m∗ Z∗1,m∗ m∗ Z∗1,m∗ m∗ Z∗1,m∗ m∗ Z∗1,m∗ m∗ Z∗1,m∗ m∗ Z∗1,m∗ m∗ Z∗1,m∗

2 4 0.44997542 4 0.44997547 4 0.44997554 3 0.44997632 2 0.45007428 1 0.45432627 4 0.49176881 1 0.46550849 1 0.47504228
5 3 0.49176554 3 0.49176629 3 0.49176716 3 0.49176816 2 0.49177693 1 0.49343213 4 0.51889613 1 0.50034713 1 0.50595054

10 3 0.51889514 3 0.51889549 4 0.51889688 3 0.51889636 3 0.51889691 1 0.51953525 4 0.54297793 1 0.52460021 1 0.52854731
20 3 0.54297772 3 0.54297791 3 0.54297811 3 0.54297835 3 0.54297862 1 0.54303244 4 0.55590954 1 0.54690246 1 0.54981683
30 3 0.55590941 3 0.55590954 3 0.55590968 3 0.55590984 3 0.55591003 2 0.5559142 4 0.56464356 1 0.55910809 1 0.56159836
40 3 0.56464349 3 0.5646436 3 0.56464371 3 0.56464384 4 0.56464411 2 0.56464537 4 0.57119124 1 0.56742565 1 0.56967138
50 3 0.57119118 3 0.57119127 3 0.57119136 3 0.57119147 3 0.57119159 2 0.57119138 4 0.57640501 1 0.5736952 1 0.575777
60 4 0.57640466 1 0.05000000 5 0.57640476 6 0.57640483 5 0.57640489 4 0.57640547 4 0.58072361 1 0.57870643 1 0.58066848
70 3 0.58072358 1 0.05000000 1 0.10000000 4 0.58072344 5 0.58072349 4 0.58072402 4 0.58440158 1 0.58286895 1 0.58473848
80 6 0.58440131 1 0.05000000 1 0.10000000 6 0.58440145 6 0.58440149 4 0.58440197 4 0.58759943 1 0.58642183 1 0.58821703
90 6 0.58759917 1 0.05000000 1 0.10000000 6 0.5875993 6 0.58759935 4 0.58759978 4 0.5904246 1 0.58951642 1 0.59125015
100 3 0.59042458 1 0.05000000 1 0.10000000 6 0.59042448 5 0.59042452 4 0.59042492 2 0.59043432 1 0.59225442 1 0.59393617

(a) For σ = 0.1
2 5 0.42495318 4 0.42495327 3 0.42496654 2 0.42536314 1 0.57497469 1 0.43964938 4 0.50076864 1 0.4635029 1 0.48100463
5 4 0.50076599 4 0.50076623 4 0.50076651 3 0.50077199 1 0.57929075 1 0.50640113 4 0.55377068 1 0.52089756 1 0.53134511

10 4 0.55376978 4 0.55376987 4 0.55376998 4 0.5537701 1 0.58296774 1 0.55570454 4 0.60341959 1 0.5660992 1 0.57335127
20 5 0.60341907 4 0.60341928 4 0.60341932 4 0.60341937 3 0.60341979 2 0.60349381 4 0.63110875 1 0.61091963 1 0.6161728
30 6 0.6311062 4 0.63110856 4 0.63110859 4 0.63110862 4 0.63110866 2 0.63113393 4 0.65022085 1 0.63664977 1 0.64109097
40 6 0.65021807 4 0.65022071 4 0.65022068 4 0.65022076 4 0.65022078 2 0.65022251 4 0.66476663 1 0.6546427 1 0.65861991
50 3 0.66476108 5 0.66476649 5 0.66476646 5 0.66476618 4 0.66476658 4 0.6647666 4 0.67648299 1 0.66844357 1 0.67211186
60 3 0.67647794 1 0.05000000 1 0.10000000 6 0.67648285 6 0.67648286 3 0.6764832 4 0.68627757 1 0.67961879 1 0.6830626
70 3 0.68627289 1 0.05000000 1 0.10000000 6 0.68627394 5 0.68627492 3 0.68627761 4 0.69468347 1 0.68899727 1 0.69226842
80 3 0.69467909 1 0.05000000 1 0.10000000 6 0.69467968 6 0.69468195 3 0.69468339 4 0.70203988 1 0.69707019 1 0.70020315
90 3 0.70203589 1 0.05000000 1 0.10000000 6 0.70203641 6 0.70203718 3 0.70203986 4 0.70857542 1 0.70415231 1 0.70717136
100 3 0.70857246 1 0.05000000 1 0.10000000 6 0.70857288 5 0.70857352 3 0.70857616 2 0.70859621 1 0.71045728 1 0.71338027

(b) For σ = 0.2
2 4 0.41005332 3 0.41008587 2 0.41064083 1 0.41439497 1 0.68184957 1 0.43798637 4 0.51805543 1 0.4720754 1 0.49444572
5 5 0.51804109 4 0.51804118 3 0.51805322 2 0.51833421 1 0.69018593 1 0.52891161 4 0.59866318 1 0.55005334 1 0.56397092

10 5 0.59865902 5 0.59865904 4 0.59865915 3 0.59866839 1 0.69748646 1 0.60201777 4 0.67787658 1 0.61718268 1 0.62694127
20 4 0.67787452 4 0.67787476 4 0.67787503 4 0.67787533 1 0.70397652 2 0.67810932 4 0.72357197 1 0.68778504 1 0.69487103
30 4 0.7235707 4 0.72357085 4 0.72357102 4 0.72357121 3 0.72357205 2 0.72364041 4 0.75573451 1 0.72991327 1 0.7359053
40 4 0.75573358 4 0.75573369 4 0.75573382 4 0.75573396 4 0.75573412 3 0.7557393 4 0.7805486 1 0.76001314 1 0.76537921
50 4 0.78054787 4 0.78054796 4 0.78054806 5 0.78054758 4 0.7805483 4 0.78054844 4 0.80074492 1 0.78344215 1 0.78839141
60 4 0.8007443 1 0.05000000 1 0.10000000 4 0.80074456 6 0.80074412 3 0.80074597 4 0.81777047 1 0.80262506 1 0.80727153
70 4 0.81776994 4 0.81777001 1 0.10000000 4 0.81777016 6 0.8177698 3 0.81777056 4 0.8324845 1 0.81886666 1 0.82328032
80 4 0.83248403 6 0.83248372 1 0.10000000 4 0.83248423 5 0.83248386 6 0.8324839 4 0.84543885 1 0.83295004 1 0.83717743
90 4 0.84543843 1 0.05000000 1 0.10000000 4 0.84543861 6 0.84543827 5 0.84543831 4 0.85700897 2 0.84559956 1 0.84945606
100 4 0.85700858 1 0.05000000 1 0.10000000 4 0.85700875 5 0.85700841 6 0.85700847 6 0.8570085 2 0.85714354 1 0.86045459

(c) For σ = 0.3

Table 3. Auctioneer’s maximum expected revenue per unit of time for a fixed number of bidders whose valuations follow standard normal distribution vs. number
of bidders and number of bid levels with u = 0, s = 1.

n Z∗2,m=1 Z∗2,m=2 Z∗2,m=3 Z∗2,m=4 Z∗2,m=5 Z∗2,m=6

2 0.15159223 0.15053723 0.13881274 0.12756683 0.11827636 0.11090719
5 0.28936203 0.29757087 0.28844512 0.28060803 0.27597318 0.27295334

10 0.42394118 0.44273236 0.43987166 0.43747813 0.43659812 0.43634733
20 0.57016821 0.59691713 0.59775745 0.59738084 0.59727475 0.59725696
30 0.65642471 0.6858042 0.68746598 0.6874113 0.6873847 0.68738094
40 0.71689002 0.74735379 0.74924787 0.74928088 0.74927258 0.74927136
50 0.7631264 0.79407212 0.79602389 0.79608667 0.79608439 0.79608391
60 0.80039396 0.83154351 0.83349029 0.83356364 0.83356375 0.83356312
70 0.83151396 0.86272481 0.86464218 0.86471862 0.86471977 0.86471926
80 0.85816929 0.88936348 0.89124211 0.89131846 0.89132007 0.89131961
90 0.88144177 0.91257497 0.91441203 0.91448688 0.9144887 0.9144883
100 0.90206662 0.9331132 0.93490879 0.93498153 0.93498341 0.9349831

2.3. Model with a random number of bidders and lognormal
valuations

In real-world scenarios, the number of bidders in the auc-
tion is not fixed but it varies very often. So, in this section, we
modeled the discrete Dutch auction with the number of bidders
as a random variable. In this case, the arrival of the bidders is
taken as Poisson’s distributed having a non-negative mean λ,
i.e., λ ≥ 0 [16, 35, 36]. So, the probability of having n number

of bidders in the auction is given by

P(n) =
λne−λ

n!
, n = 0, 1, . . . . (8)

Hence, the probability of the item to be sold at the bid level

9
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Table 4. Auctioneer’s maximum expected revenue per unit of time for a fixed number of bidders whose valuations follow standard normal distribution vs. number
of bidders and salvage value with s = 1.

n u = 0 u = 0.1 u = 0.2 u = 0.3 u = 0.4 u = 0.5 u = 0.6 u = 0.7 u = 0.8

m∗ Z∗2,m∗ m∗ Z∗2,m∗ m∗ Z∗2,m∗ m∗ Z∗2,m∗ m∗ Z∗2,m∗ m∗ Z∗2,m∗ m∗ Z∗2,m∗ m∗ Z∗2,m∗ m∗ Z∗2,m∗

2 1 0.15159223 1 0.18376061 1 0.21732315 1 0.25226957 1 0.28857758 1 0.32621282 1 0.36512937 1 0.40527056 1 0.44657026
5 2 0.29757087 1 0.31050312 1 0.33310504 1 0.3572504 1 0.38301359 1 0.41045725 1 0.4396287 1 0.47055662 1 0.50324838
10 2 0.44273236 2 0.44679466 1 0.45323952 1 0.46969119 1 0.48750015 1 0.50678852 1 0.52767893 1 0.55029008 1 0.57473123
20 3 0.59775745 2 0.59868508 2 0.60065192 2 0.60285364 1 0.61205945 1 0.62489097 1 0.63890139 1 0.65423027 1 0.67102801
30 3 0.68746598 3 0.68761172 2 0.68815336 2 0.68951981 2 0.69104563 1 0.69958334 1 0.71059621 1 0.72265519 1 0.73589826
40 4 0.74928088 3 0.74933719 3 0.74943665 2 0.75007116 2 0.75117182 1 0.75362183 1 0.76294106 1 0.77313272 1 0.78431807
50 4 0.79608667 4 0.79609143 3 0.79615534 3 0.79623213 2 0.79709524 2 0.79805489 1 0.80392392 1 0.81289731 1 0.82273199
60 5 0.83356375 4 0.83356686 3 0.83358946 3 0.83364685 2 0.83406197 2 0.83485297 1 0.83747451 1 0.84558371 1 0.85445751
70 5 0.86471977 4 0.86472097 4 0.86472356 3 0.86476638 2 0.86489501 2 0.8655708 2 0.86631889 1 0.87326309 1 0.88141424
80 5 0.89132007 4 0.89132026 4 0.89132224 3 0.89134444 3 0.89138549 2 0.89187114 2 0.89252443 1 0.8972227 1 0.90480791
90 5 0.9144887 6 0.91448836 4 0.91448989 3 0.91449873 3 0.91453327 2 0.91482472 2 0.91540641 1 0.91831507 1 0.92544318

100 5 0.93498341 4 0.93498271 4 0.93498399 4 0.93498541 3 0.93501355 2 0.9351597 2 0.93568541 1 0.93713286 1 0.9438828

li, i = 1, 2, . . . ,m consistent with equation (2) is

P(li) =
∞∑

n=1

λne−λ

n!
[
F(li+1)n − F(li)n] ,

= e−λ(eλF(li+1) − eλF(li)).

(9)

If no bidder comes to the auction, obviously the object will
go unsold, and in that case, the probability of such an occur-
rence is;

P(n = 0) =
λ0e−λ

0!
,

= e−λ.
(10)

Thus the expected auction duration D3 in this case will be equal
to the sum of the expected time when no bidder arrives, the
expected time for which the item goes unsold, and the expected
time to sell the item. Taking (9) and (10) into consideration, we
have;

D3 = sE(m),

= s

 m∑
i=1

(m + 2 − i)P(li)+

(m + 1)

1 − P(n = 0) −
m∑

i=1

P(li)

 + P(n = 0)

 ,
= s

 m∑
i=1

(m + 2 − i)(e−λ(eλF(li+1) − eλF(li)))

+ (m + 1)

1 − (e−λ) −
m∑

i=1

(e−λ(eλF(li+1) − eλF(li)))


+(e−λ)

}
,

D3 = s
{

e−λ +
(
1 − eλ + e−λ+λF(l1) − e−λ+λF(lm+1)

)
(1 + m)

+

m∑
i=1

e−λ
(
eλF(li+1) − eλF(li)

)
(2 − i + m)

 ,
= e−λs

{
− m +

(
eλ + eλF(l1) − eλF(lm+1)

)
(1 + m)

+

m∑
i=1

(
eλF(li+1) − eλF(li)

)
(2 − i + m)

 .
(11)

Now, the auctioneer’s expected revenue per unit of time, Z3 can
be written as;

Z3 =

m∑
i=1

liP(li) + u
(
1 − P(n = 0) −

m∑
i=1

P(li)
)

D3
,

Z3 =


m∑

i=1
li
(
e−λ(eλF(li+1) − eλF(li))

)
+u

(
1 − e−λ −

m∑
i=1

(
e−λ(eλF(li+1) − eλF(li))

))
e−λs

{
−m +

(
eλ + eλF(l1) − eλF(lm+1)

)
(1 + m)

+
∑m

i=1

(
eλF(li+1) − eλF(li)

)
(2 − i + m)

} 
,

=


(
−1 + eλ + eλF(l1) − eλF(lm+1)

)
u

+
m∑

i=1
li
(
eλF(li+1) − eλF(li)

) 
s
{
−m +

(
eλ + eλF(l1) − eλF(lm+1)

)
(m + 1)

+
m∑

i=1

(
eλF(li+1) − eλF(li)

)
(2 − i + m)

} 
.

(12)

Hence, our required model can be formulated as an NLP given
below, where l1, l2, . . . , lm are decision variables and m, λ, s and
u are the parameters.

Maximize

Z3 =


(
−1 + eλ + eλF(l1) − eλF(lm+1)

)
u

+
m∑

i=1
li
(
eλF(li+1) − eλF(li)

) 
s
{
−m +

(
eλ + eλF(l1) − eλF(lm+1)

)
(m + 1)

+
m∑

i=1

(
eλF(li+1) − eλF(li)

)
(2 − i + m)

} 
,

subject to the constraints;

li+1 ≥ li, i = 1, 2, . . . ,m ,

l1 ≥ u.
(13)

If the bidders’ valuations are drawn from the lognormal distri-

bution, it follows that f (li) = 1
liσ
√

2π
exp

(
−

(lnli−µ)2

2σ2

)
and F(li) =

1
2 erfc

(
−

lnli−µ
σ
√

2

)
where erfc is the complementary error function

defined by erfc(x) = 2
√
π

∞∫
x

e−t2
dt.

10
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Hence the modified NLP we get is as under;
Maximize

Z3 =


(
−1 + eλ + e

λ
[

1
2 erfc

(
−

lnl1−µ
σ
√

2

)]
− e
λ
[

1
2 erfc

(
−

lnlm+1−µ

σ
√

2

)])
u

+
m∑

i=1
li

(
e
λ
[

1
2 erfc

(
−

lnli+1−µ

σ
√

2

)]
− e
λ
[

1
2 erfc

(
−

lnli−µ

σ
√

2

)])


s
{
−m +

(
eλ + e

λ
[

1
2 erfc

(
−

lnl1−µ
σ
√

2

)]
− e
λ
[

1
2 erfc

(
−

lnlm+1−µ

σ
√

2

)])
(m + 1)

+
m∑

i=1

(
e
λ
[

1
2 erfc

(
−

lnli+1−µ

σ
√

2

)]
− e
λ
[

1
2 erfc

(
−

lnli−µ

σ
√

2

)])
(2 − i + m)

}

,

subject to;

li+1 ≥ li, i = 1, 2, . . . ,m ,

l1 ≥ u.
(14)

Numerical analysis

The NLP (14) for different combinations of n ∈

{2, 5, 10, 20, . . . , 100}, u ∈ {0, 0.1, . . . , 0.8}, m ∈ {1, 2, . . . , 6}
and s = 1 is set up and solved using the software R to under-
stand how various combinations of the parameters can effect the
auction outcomes. To start the discussion, in Table 5, we rep-
resented a special case of the auctioneer’s maximum expected
revenue per unit of time when the valuations of the bidders fol-
low the lognormal distribution and the salvage value u is set as
zero. Table 5(a), Table 5(b), and Table 5(c) are respectively
the cases when σ = 0.1, σ = 0.2, and σ = 0.3 while µ = 0
in each case. The highest value of Z∗3 among all the bid lev-
els corresponding to each value of λ where m ∈ {1, 2, . . . , 6} is
boldfaced. Again, we see that in most of the cases, Z∗3 increases
with m and reaches the highest value at m = 3 or 4 with only a
few exceptions when the revenue per unit of time is maximum
for m = 5 or 6 which is slightly higher in value than that of
m = 3 or 4. It verifies the fact that in most cases, only four
bid levels are required to maximize the auctioneer’s expected
revenue per unit of time when the number of bidders in discrete
Dutch auction follows the Poisson distribution [3], and some-
times it is tricky to predict.

Furthermore, in Table 6, a summary of the optimal number
of bid levels along with the auctioneer’s maximum expected
revenue per unit of time Z∗3,m∗ for each of u ∈ {0, 0.1, . . . , 0.8}
is given. Almost similar observations and interpretations can
be made here as in Section 2.2 and the Table 6 shows that in
most cases the optimal number of bid levels is 3 or 4 except in
a few cases when it could be 5 or 6 with a very small incriment.
Moreover, with the increase in the value of u, the optimal num-
ber of bid levels reduces to 1, i.e., as few as one bid level is
enough to maximize the auctioneer’s expected revenue per unit
of time regardless of the size λ of the bidding population. It can
also be seen that Z∗3,m∗ is a non-decreasing function of u except
for only a few exceptions when Z∗3,m∗ = 0.1 or 0.05.

Lastly, a comparison between the results for Z∗1,m in Sec-
tion 2.1 with fixed number of bidders and Z∗3,m in Section 2.3
with random number of bidders shows that Z∗1,m > Z∗3,m vis-a-
vis in all cases except a few. The cause of these exceptions, the
unpredictability of the revenue, is already discussed in Section

2.1. It makes intuitive and logical sense because the complete
information about the bidding population’s size goes in the auc-
tioneer’s favor and he/she can design more effective auctions to
get better payoffs in such cases.

2.4. Model with random number of bidders and standard nor-
mal valuations

In this section, we took the valuation of the bidders follow-
ing the standard normal distribution N(µ, σ2) where µ = 0 and
σ = 1 with the number of bidders as a Poisson random variable.
The modified discrete Dutch auction is formulated below.

If the valuations of the bidders follow the standard normal
distribution, then the PDF and CDF are respectively f (li) =

1
√

2π
e−

1
2 l2i and F(li) = 1

2

[
1 + erf

(
li√
2

)]
, where erf is the error

function given by erf(x) = 2
√
π

x∫
0

e−t2
dt. Hence, the NLP (14) in

this case becomes;
Maximize

Z4 =


(
−1 + eλ + e

λ
[

1
2

(
1+erf

(
l1√

2

))]
− e
λ
[

1
2

(
1+erf

(
lm+1√

2

))])
u

+
m∑

i=1
li

(
e
λ
[

1
2

(
1+erf

(
li+1√

2

))]
− e
λ
[

1
2

(
1+erf

(
li√

2

))])


s
{
−m + (m + 1)

(
eλ + e

λ
[

1
2

(
1+erf

(
l1√

2

))]
− e
λ
[

1
2

(
1+erf

(
lm+1√

2

))])
+

m∑
i=1

(2 − i + m)
(
e
λ
[

1
2

(
1+erf

(
li+1√

2

))]
− e
λ
[

1
2

(
1+erf

(
li√

2

))])}

,

subject to;

li+1 ≥ li, i = 1, 2, . . . ,m ,

l1 ≥ u.
(15)

The NLP (15) for different combinations of n ∈

{2, 5, 10, 20, . . . , 100}, u ∈ {0, 0.1, . . . , 0.8}, m ∈ {1, 2, . . . , 6}
and s = 1 is set up and solved using the software R to un-
derstand the effect of different combinations of the parameters
on the auction outcomes. In Table 7, we have shown a special
case of the auctioneer’s maximum expected revenue per unit
of time when the valuations of the bidders follow the standard
normal distribution and the salvage value u is set as zero. The
highest value of Z∗4 among all the bid levels corresponding to
each value of λ where m ∈ {1, 2, . . . , 6} is boldfaced. Here,
we see that with the increase in the value of m, Z∗4 keeps on
increasing until reaches its maximum value. When λ is small,
the optimal bid level is m = 2 or 3 but when the number of
bidders increases, it turns m = 4 or 5 and doesn’t go beyond
m = 5. It verifies the fact that only five bid levels are required
to maximize the auctioneer’s expected revenue per unit of time
when the number of bidders in discrete Dutch auction follows
the Poisson distribution and the valuations of the bidders follow
the standard normal distribution.

Furthermore, in Table 8, a summary of the optimal number
of bid levels along with the auctioneer’s maximum expected
revenue per unit of time Z∗4,m∗ for each of u ∈ {0, 0.1, . . . , 0.8}
is given. Almost similar observations and interpretations can

11
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Table 5. Auctioneer’s maximum expected revenue per unit of time for a variable number of bidders whose valuations follow lognormal distribution vs. number of
bidders and number of bid levels with u = 0, s = 1, µ = 0, and σ ∈ {0.1, 0.2, 0.3}.

λ Z∗3,m=1 Z∗3,m=2 Z∗3,m=3 Z∗3,m=4 Z∗3,m=5 Z∗3,m=6

2 0.39518572 0.40652595 0.40710181 0.40712359 0.40712311 0.40712318
5 0.46478831 0.4740611 0.47452285 0.47454006 0.47453928 0.47453928

10 0.50411712 0.51123585 0.51147535 0.51148453 0.51148399 0.51148398
20 0.5339513 0.53965087 0.53977422 0.53977246 0.53977255 0.53977247
30 0.5486898 0.5538073 0.55389837 0.5538974 0.55389741 0.55389747
40 0.55832568 0.56311211 0.56318798 0.56318731 0.56318731 0.56318735
50 0.56542214 0.56998816 0.570055 0.57005447 0.57005447 0.5700545
60 0.5710092 0.57541464 0.57547542 0.57547498 0.575475 0.57547502
70 0.57560047 0.57988194 0.57993831 0.57993793 0.57993794 0.57993794
80 0.57948776 0.58366959 0.58372258 0.58372227 0.58372225 0.58372225
90 0.58285225 0.58695159 0.58697908 0.58700159 0.58700159 0.5870016
100 0.58581386 0.58984332 0.58986913 0.58989113 0.58986921 0.58989114

(a) For σ = 0.1
2 0.36424917 0.38101932 0.38228251 0.38234358 0.38234486 0.38234459
5 0.46077752 0.47530803 0.47618152 0.47621043 0.47620965 0.4762092

10 0.52779777 0.54136422 0.54203169 0.54205666 0.5420569 0.54205654
20 0.58517499 0.5975154 0.59799615 0.59801103 0.59801039 0.59801047
30 0.61551777 0.62719526 0.62759219 0.62760241 0.62760214 0.62760215
40 0.63600699 0.64727104 0.64762202 0.64763007 0.64762666 0.64762661
50 0.65141038 0.66238544 0.66270686 0.66271029 0.66271337 0.66270983
60 0.66371917 0.67447715 0.67477762 0.67478341 0.67477987 0.67477614
70 0.67395137 0.68453816 0.68482282 0.68482127 0.68482106 0.68482114
80 0.68269606 0.69314307 0.69341526 0.69341367 0.69341367 0.69341384
90 0.69032415 0.70065402 0.70091606 0.70091425 0.7009145 0.70091462
100 0.697084 0.70731369 0.70756724 0.70756514 0.70756584 0.70756555

(b) For σ = 0.2
2 0.34776507 0.36729663 0.36874431 0.36875009 0.36873919 0.36873807
5 0.46805136 0.48669614 0.48761929 0.48755673 0.48753914 0.48753764

10 0.56198961 0.5818029 0.58294301 0.5829707 0.58296602 0.58296513
20 0.64938874 0.66916139 0.67019258 0.67023198 0.67023306 0.67023289
30 0.69802012 0.71752711 0.71845188 0.71848371 0.71848306 0.71848303
40 0.73172332 0.75102599 0.75188248 0.75190966 0.75190882 0.75190888
50 0.75749805 0.77664611 0.77745505 0.77747922 0.77747856 0.77747856
60 0.77835591 0.79738328 0.79815682 0.79817886 0.79817827 0.79817832
70 0.79586757 0.81479781 0.81554368 0.81556413 0.81556359 0.81556366
80 0.81095549 0.82980556 0.83052904 0.83054825 0.83054778 0.83054779
90 0.82420734 0.8429899 0.84369474 0.84371296 0.84371254 0.84371262

100 0.83602047 0.85474521 0.85543424 0.85545163 0.85545126 0.85545126
(c) For σ = 0.3

be made here as in Section 2.2 and the Table 8 shows that in
most cases the optimal number of bid levels is 2 or 3 except in a
few cases when it could be 4 or 5. Moreover, with the increase
in the value of u the optimal number of bid levels reduces to 1
regardless of the size λ of the bidding population. It can also be
seen that Z∗4,m∗ is a non-decreasing function of u.

Lastly, a comparison between the results for Z∗2,m in Section
2.2 with fixed number of bidders and Z∗4,m in Section 2.4 with a
random number of bidders shows that Z∗2,m > Z∗4,m vis-a-vis in
all cases, making intuitive sense that the complete information
about the participants in the auction goes in the auctioneer’s
favor [3].

3. Results and discussions

In this manuscript, the discrete Dutch auction is modeled
as four different NLPs all aimed at maximizing the auctioneer’s
expected revenue per unit of time. The scenarios considered in-
clude the situations where the valuations of the bidders follow
the lognormal distribution, i.e., some of the bidders hold signif-
icantly higher valuations for the item to be auctioned off com-
pared to the majority. The analysis is conducted for both fixed
and random numbers of bidders. Additionally, scenarios in-
volving bidders with valuations following the standard normal
distribution are explored under similar conditions. Our major

12
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Table 6. Auctioneer’s maximum expected revenue per unit of time for a variable number of bidders whose valuations follow lognormal distribution vs. number of
bidders and salvage value with s = 1, µ = 0 and σ ∈ {0.1, 0.2, 0.3}.

λ u = 0 u = 0.1 u = 0.2 u = 0.3 u = 0.4 u = 0.5 u = 0.6 u = 0.7 u = 0.8

m∗ Z∗3,m∗ m∗ Z∗3,m∗ m∗ Z∗3,m∗ m∗ Z∗3,m∗ m∗ Z∗3,m∗ m∗ Z∗3,m∗ m∗ Z∗3,m∗ m∗ Z∗3,m∗ m∗ Z∗3,m∗

2 4 0.40712359 4 0.40712388 4 0.40712423 3 0.40713087 1 0.40830981 1 0.41330317 1 0.41955622 1 0.42769432 1 0.43882281
5 4 0.47454006 4 0.47454035 4 0.47454069 2 0.47458965 1 0.4756777 2 0.47512548 1 0.48421253 1 0.49010214 1 0.49794628

10 4 0.51148453 4 0.51148469 4 0.51148489 3 0.51148716 2 0.51153899 1 0.5131475 1 0.51604363 1 0.51970985 1 0.52462126
20 3 0.53977422 3 0.53977474 3 0.53977533 3 0.53977599 3 0.53977676 1 0.54005839 1 0.54201605 1 0.54448438 1 0.54776614
30 3 0.55389837 3 0.55389862 3 0.55389889 3 0.55389921 3 0.55389957 2 0.55390941 1 0.55546389 1 0.55751387 1 0.56021609
40 3 0.56318798 3 0.56318814 3 0.56318832 3 0.56318853 3 0.56318877 2 0.56319284 1 0.56441478 1 0.56624025 1 0.56863058
50 3 0.570055 3 0.57005512 3 0.57005526 3 0.57005542 3 0.5700556 2 0.57005688 1 0.57107228 1 0.57275333 1 0.57494308
60 3 0.57547542 3 0.57547552 3 0.57547563 3 0.57547576 4 0.57547603 3 0.57547608 2 0.57549439 2 0.57551761 2 0.57554774
70 3 0.57993831 3 0.57993839 3 0.57993849 3 0.5799386 3 0.57993872 5 0.57993831 2 0.57995438 1 0.58220306 1 0.58414252
80 3 0.58372258 1 0.05000000 5 0.58372235 6 0.58372242 6 0.5837225 3 0.58372308 2 0.58373655 1 0.58584152 1 0.5876957
90 6 0.5870016 1 0.05000000 1 0.10000000 6 0.58700173 5 0.5870018 3 0.58700233 2 0.58701425 1 0.58900239 1 0.59078693
100 4 0.58989113 1 0.05000000 1 0.10000000 4 0.58989129 6 0.58989132 3 0.58989182 2 0.58990251 1 0.59179322 1 0.59351947

(a) For σ = 0.1
2 5 0.38234486 4 0.38234797 2 0.38254083 2 0.38356215 1 0.39185621 1 0.40189615 1 0.41394219 1 0.42860039 1 0.44664196
5 4 0.47621043 3 0.4762363 2 0.4764648 2 0.47717709 1 0.48223714 1 0.48966179 1 0.49842145 1 0.50897093 1 0.52196753

10 5 0.5420569 4 0.54205834 3 0.54207164 2 0.5421341 2 0.54246672 1 0.54660389 1 0.55230594 1 0.55918042 1 0.56768421
20 4 0.59801103 4 0.59801119 4 0.59801138 4 0.59801158 3 0.59801645 1 0.59839008 1 0.6023325 1 0.60704287 1 0.61281108
30 4 0.62760241 4 0.62760247 4 0.62760254 4 0.62760262 3 0.62760316 2 0.62766308 1 0.63003655 1 0.63394821 1 0.63869396
40 4 0.64763007 5 0.64762983 4 0.64763015 4 0.64763019 4 0.64763024 2 0.6476493 1 0.64908938 1 0.65256506 1 0.65675252
50 5 0.66271337 4 0.66271369 4 0.66271371 4 0.66271374 4 0.66271378 3 0.6627149 1 0.66356024 1 0.66675339 1 0.67057974
60 4 0.67478341 5 0.67478145 6 0.67478354 4 0.67478367 4 0.67478369 3 0.6747843 2 0.6748528 2 0.67495169 2 0.67507109
70 3 0.68482282 6 0.68482609 3 0.68482476 5 0.68482818 4 0.68482825 5 0.6848282 2 0.68488126 1 0.68776342 1 0.69113777
80 3 0.69341526 1 0.05000000 1 0.10000000 6 0.6934202 5 0.69342021 3 0.6934204 2 0.69346149 1 0.69598224 1 0.69920246
90 3 0.70091606 1 0.05000000 1 0.10000000 4 0.70091691 6 0.70092059 3 0.70092071 2 0.70095295 1 0.70317903 1 0.70627338
100 3 0.70756724 1 0.05000000 1 0.10000000 6 0.70756775 6 0.70756903 3 0.70757151 2 0.70759677 1 0.70957654 1 0.71256556

(b) For σ = 0.2
2 4 0.36875009 3 0.36895959 2 0.37069186 1 0.37665353 1 0.38907022 1 0.40334394 1 0.41982229 1 0.43888425 1 0.4609063
5 3 0.48761929 2 0.48778494 2 0.48902075 1 0.49053164 1 0.49988643 1 0.51051002 1 0.52268646 1 0.5367691 1 0.55318486

10 4 0.5829707 3 0.58299395 3 0.58305137 2 0.58346617 2 0.5841772 1 0.59074425 1 0.59894521 1 0.6084371 1 0.61954841
20 5 0.67023306 5 0.6702331 4 0.67023353 3 0.67024087 2 0.67032961 2 0.6707224 1 0.67583018 1 0.68244517 1 0.69012156
30 4 0.71848371 4 0.71848403 4 0.71848437 4 0.71848477 3 0.71849164 2 0.71865529 1 0.72052489 1 0.72604039 1 0.73238922
40 4 0.75190966 4 0.75190985 4 0.75191007 4 0.75191031 3 0.75191117 2 0.75195031 2 0.7522072 1 0.7569596 1 0.76257489
50 4 0.77747922 4 0.77747936 4 0.77747951 4 0.77747968 4 0.77747987 3 0.77748539 2 0.77766975 1 0.78091375 1 0.78605177
60 4 0.79817886 4 0.79817897 4 0.79817909 4 0.79817922 4 0.79817937 3 0.79818237 2 0.79830141 1 0.80046303 2 0.79878033
70 4 0.81556413 5 0.81556366 4 0.81556432 6 0.81556384 4 0.81556456 4 0.81556469 2 0.81563957 1 0.81697534 1 0.82151338
80 4 0.83054825 6 0.83054785 1 0.10000000 4 0.83054851 6 0.8305481 3 0.83054897 2 0.83058904 1 0.83126725 1 0.83560013
90 4 0.84371296 6 0.84371262 1 0.10000000 4 0.84371319 6 0.8437128 3 0.84371289 2 0.84372715 2 0.84390102 1 0.8480303
100 4 0.85545163 3 0.85543703 1 0.10000000 4 0.85545183 5 0.85545148 6 0.85545148 4 0.8554521 2 0.85560859 1 0.85915283

(c) For σ = 0.3

Table 7. Auctioneer’s maximum expected revenue per unit of time for a variable number of bidders whose valuations follow standard normal distribution vs. number
of bidders and number of bid levels with u = 0, s = 1.

λ Z∗4,m=1 Z∗4,m=2 Z∗4,m=3 Z∗4,m=4 Z∗4,m=5 Z∗4,m=6

2 0.14887966 0.14990085 0.13907163 0.12813552 0.11884314 0.1112753
5 0.27474548 0.27921953 0.26689333 0.25561712 0.24751556 0.24152551

10 0.41056476 0.4261292 0.42060115 0.41607403 0.41384138 0.41270035
20 0.56090046 0.58636238 0.58640135 0.58561455 0.58535963 0.58529909
30 0.64946585 0.67830358 0.67968006 0.6795058 0.67944645 0.67943602
40 0.71133661 0.74157787 0.74336061 0.74334873 0.74332977 0.74332677
50 0.75851025 0.7893893 0.79130087 0.7913446 0.79133801 0.79133689
60 0.79644567 0.82761163 0.82955106 0.82961609 0.82961421 0.82961373
70 0.82806518 0.85933927 0.86126561 0.86133872 0.86133889 0.86133824
80 0.85510805 0.88639271 0.8882887 0.88836421 0.88836534 0.88836472
90 0.87868989 0.90992953 0.91178825 0.91186358 0.91186516 0.91186467
100 0.89956738 0.93072961 0.93254894 0.93262286 0.93262464 0.93262425

findings encapsulate several noteworthy insights.
The emotional attachment effect, modeled using lognormal

distribution, results in higher bids and increased auctioneer rev-
enue. This aligns with the study of Adam et al. [26], which in-
vestigates the impact of incidental arousal, arousal unrelated to
the auction environment, on bidding behavior. Through a series
of experiments, they demonstrate that such arousal can signifi-
cantly increase bidding in real monetary stakes auctions. In the

first experiment, physiological measurements confirmed that
induced arousal influenced bidding patterns. The second exper-
iment illustrated that even non-competitive forms of arousal,
such as cognitive dissonance, can lead to elevated bids. The
third experiment revealed that bidders often remain unaware of
how incidental arousal affects their decisions, complicating ef-
forts to counteract its influence. These findings indicate that
external factors, such as music and ambient conditions, can in-
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Table 8. Auctioneer’s maximum expected revenue per unit of time for a variable number of bidders whose valuations follow standard normal distribution vs. number
of bidders and salvage value with s = 1.
λ u = 0 u = 0.1 u = 0.2 u = 0.3 u = 0.4 u = 0.5 u = 0.6 u = 0.7 u = 0.8

m∗ Z∗4,m∗ m∗ Z∗4,m∗ m∗ Z∗4,m∗ m∗ Z∗4,m∗ m∗ Z∗4,m∗ m∗ Z∗4,m∗ m∗ Z∗4,m∗ m∗ Z∗4,m∗ m∗ Z∗4,m∗

2 2 0.14990085 1 0.1785749 1 0.20944124 1 0.24148605 1 0.27470755 1 0.30909401 1 0.34462332 1 0.38126294 1 0.41897015
5 2 0.27921953 1 0.29774366 1 0.32205815 1 0.34775932 1 0.37491201 1 0.40357268 1 0.43378655 1 0.46558461 1 0.49898092
10 2 0.4261292 2 0.43124075 1 0.44250953 1 0.4602335 1 0.47926546 1 0.49971524 1 0.52169319 1 0.54530651 1 0.57065457
20 3 0.58640135 2 0.58847266 2 0.59080634 2 0.59340141 1 0.60544457 1 0.61894793 1 0.63362404 1 0.6496058 1 0.66703594
30 3 0.67968006 3 0.67987314 2 0.68099303 2 0.68255024 2 0.6842827 1 0.6947192 1 0.70617532 1 0.71868053 1 0.73236904
40 3 0.74336061 3 0.74347258 3 0.74359714 2 0.744608 2 0.74583062 1 0.74954403 1 0.75918394 1 0.76970279 1 0.78122001
50 4 0.7913446 3 0.79137631 3 0.79145959 2 0.79175502 2 0.79270085 2 0.79374849 1 0.80066921 1 0.80989561 1 0.81998936
60 4 0.82961609 4 0.82962036 3 0.82966768 3 0.82973514 2 0.83033685 2 0.83119072 1 0.83460745 1 0.84292012 1 0.85200352
70 5 0.86133889 4 0.86134172 3 0.86135655 3 0.86140879 2 0.8616659 2 0.86238908 1 0.8632423 1 0.87087095 1 0.87919643
80 5 0.88836534 4 0.88836646 4 0.88836893 3 0.88840486 3 0.88845145 2 0.88906064 2 0.88975441 1 0.89505247 1 0.90278582
90 5 0.91186516 4 0.91186533 4 0.91186725 3 0.91188546 3 0.91192419 2 0.91230916 2 0.91292352 1 0.91632929 1 0.9235855

100 5 0.93262464 5 0.9326247 4 0.93262581 3 0.93263223 3 0.93266522 2 0.93288389 2 0.93343661 1 0.93530267 1 0.94216494

advertently amplify arousal and contribute to what is known as
”auction fever.” The study underscores the importance of recog-
nizing emotional influences in economic decision-making and
offers practical insights for both auction organizers and partic-
ipants. Moreover, several studies support the finding that emo-
tional attachment can lead to increased revenue [27–29]. Our
results further confirm that higher bidding and increased auc-
tioneer revenue align with these findings, highlighting the criti-
cal role of emotional attachment in enhancing bidding behavior.

To optimize the auctioneer’s expected revenue per unit of
time, it is observed that a small number of bid levels generally
suffices. Specifically, in situations where the salvage value is
relatively substantial, a single bid level proves to be adequate.
This strategic choice ensures that the discrete Dutch auction at-
tains a swift conclusion, minimizing its time duration.

A notable observation emerges regarding the predictability
of auctioneer revenue per unit of time when bidder valuations
follow a lognormal distribution. The inherent unpredictability
is rationalized by the practical reality that precise predictions
are challenging until the conclusion of the auction.

Furthermore, an increase in the bidding population consis-
tently results in higher auctioneer revenue per unit of time, ir-
respective of the salvage value. This finding underscores the
inherent competitiveness in auctions, where a greater number
of bidders fosters heightened competition and, consequently,
increased revenue per unit of time.

Accurate knowledge about the number of bidders proves ad-
vantageous for the auctioneer, enabling the design of a more
effective auction format tailored to the bidding population size.
Consequently, the revenue per unit of time in scenarios with a
fixed number of bidders surpasses that in cases where the num-
ber of bidders follows a Poisson distribution.

Lastly, it is observed that the auctioneer’s maximum ex-
pected revenue per unit of time exhibits a non-decreasing trend
with the salvage value, underscoring the pivotal role of this pa-
rameter in shaping auction outcomes.

4. Conclusion

Our investigation into modified discrete Dutch auctions has
illuminated key insights into the optimization of auctioneer rev-
enue dynamics. The formulated NLP models, addressing sce-

narios where bidder valuations adhere to both lognormal and
standard normal distributions, have provided valuable observa-
tions.

Our findings highlight the efficacy of employing a strategic
choice of bid levels to shorten auction durations while maximiz-
ing the auctioneer’s expected revenue per unit of time, particu-
larly in cases where salvage values are substantial. Notably, the
inherent unpredictability in predicting auctioneer revenue per
unit of time is underscored when bidder valuations follow a log-
normal distribution, reflecting the dynamic and unpredictable
nature of real-world auction scenarios. The study underscores
the positive correlation between an increased bidding popula-
tion and augmented auctioneer revenue per unit of time, empha-
sizing the competitive dynamics inherent in auctions. Accurate
knowledge about the number of bidders emerges as a signif-
icant advantage for the auctioneer, allowing for the design of
more effective auction formats tailored to the bidding popula-
tion size. Crucially, our analysis reveals a non-decreasing trend
in the auctioneer’s maximum expected revenue per unit of time
with the salvage value. This underscores the pivotal role played
by the salvage value in influencing auction outcomes, demon-
strating its significance as a determining factor. In essence, our
research contributes valuable insights into the strategic design
of discrete Dutch auctions, offering practical considerations for
auctioneers dealing with perishable products or services and
navigating dynamic auction environments with varying bidder
valuations. These findings contribute to the broader understand-
ing of auction dynamics and provide a foundation for future re-
search in auction theory and design.

While we assert the originality and substantive contribution
of our study to the domain of auction design, it is crucial to ac-
knowledge certain limitations inherent in our work. Notably,
our inability to provide closed-form formulas for computing
optimal solutions in the four models discussed is a notewor-
thy constraint, despite our dedicated efforts to tackle the inher-
ent complexity of these problems. In contemplating future av-
enues for research, several promising directions come to the
fore. First and foremost, the assumption in our models regard-
ing the rationality of all bidders, bidding based on their true
valuations to maximize their chances of winning without over-
bidding, merits further exploration. Analyzing scenarios where
bidders may acquire additional information during the auction
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or strategically wait for a lower asking price could yield valu-
able insights. Secondly, we express a keen interest in delving
into the impact of bidders’ risk attitudes, whether they are risk-
averse, risk-neutral, or risk-seeking, on auction outcomes. The
incorporation of risk-utility functions, such as the Arrow-Pratt
coefficient of absolute risk aversion and the Arrow-Pratt–De
Finetti coefficient of relative risk aversion [37], holds the po-
tential for a significant understanding. Furthermore, while our
existing models treat clock speed as a predetermined parame-
ter, a fruitful avenue for future research involves investigating
the influence of clock speed on the auctioneer’s overall revenue.
This entails exploring scenarios where clock speed is not fixed
and its adjustment affects the decision-making dynamics of bid-
ders. Additionally, our focus on maximizing auctioneer revenue
without expanding auction house capacity prompts considera-
tion of the effects of such expansion. This entails assessing
factors like building or renting more auction rooms, extending
operating hours, or acquiring additional facilities. Lastly, our
study could be extended by introducing costs associated with
setting each bid level in a discrete Dutch auction. This would
involve accounting for various expenses incurred, such as rent
for auction rooms and administrative charges, with the over-
arching objective of maximizing the auctioneer’s expected net
revenue per unit of time. While similar concepts have been ex-
plored in the context of English [35, 38] and Dutch auctions
[22], our approach may offer unique insights and merits further
exploration in subsequent research endeavors.

Data Availability

We do not have any research data outside the manuscript
file.
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