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Abstract

Obstacle is an object positioned along a path of propagation with the potential to cause a collision and hence, an accident. While there are many
computer vision models which can detect objects, there is gap in their ability to different between actual objects and obstacles. The aim of this
paper is to develop a blind navigation guide model for obstacle avoidance using distance vision estimation-based YOLO-V8n. To achieve this, an
improved data model was developed using the MS COCO dataset and primary data collected from several indoor environments. Then, the YOLO-
V8n architecture was improved by adding a Weighted Feature Enhancement (WFE) model to the backbone for improved feature extraction, and
Bi-directional Feature Pyramid Network (Bi-FPN) was applied to the neck to improve multi-scale feature representation. In addition, a Distance
Vision Estimation (DVE) algorithm was developed and applied to the Bi-FPN before connecting it to the head of the YOLO-V8n to facilitate
simultaneous object detection and distance measurement in real-time video. Furthermore, the issue of bounding box overlap in the model was
addressed by applying a Wise Intersection over Unit (WIoU) loss function. Collectively, these formulated the new transfer learning algorithm
called YOLO-V8n+WFE+Bi-FPN+DVE+WIoU used in this work for high-level obstacle detection and distance estimation. The model was
trained considering different experimental architectures of the YOLO-V8 and loss functions, respectively, and then evaluated with precision,
recall, mean absolute precision, and average precision, respectively, before validation through comparative analysis. Upon selection of the best
model, it was further validated through comparison with other state-of-the art algorithms before deployment for obstacle avoidance in an indoor
environment, having satisfied the condition of reliability. Real world testing of the model was performed at four different indoor sites, and the
results showed that while the model was able to correctly classify objects, it could also measure their distance accurately, thereby making it
suitable for deployment as a blind vision guide navigation system.
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1. Introduction

“In the gaze of one’s eyes, the beauty of the world unfolds,
reflecting the interconnected dance of nature, where every leaf,
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every sunrise, and every object holds a unique verse in the sym-
phony of existence. According to Ref. [1], the human eyes are
gateways to the soul,” and when they are closed, “the beauty of
the outside world drops dead.” The ability to see is a gift be-
stowed upon man to bear witness to the outside world’s visual
perception. To see, the eyes collect light from the environment
or object through the lens and cornea. These lights are con-
verted to electrical signals using photoreceptors, which are cells
within the retina, and then transmitted to the part of the brain
called the visual cortex for interpretation into visual informa-
tion [2]. Vision facilitates lots of human activities such as nav-
igation, mental alertness, interaction, sport, and entertainment,
to mention a few [3]. However, Ref. [4] revealed that over 240
million people worldwide do not enjoy this grace of vision due
to visual impairment-related diseases. Hence, it is necessary to
create alternative innovations that help visually impaired peo-
ple, particularly the blind, interact with objects around them
and navigate freely without collision or accident.

Traditionally, the approach for navigation by the blind in-
volves the use of walking sticks and physical touches to de-
tect obstacles around their trajectory path and avoid them [3].
Today, the process of navigation for the blind has been trans-
formed with the invention of Computer Vision Technology
(CVT). CVTs are Artificial intelligence (AI)-based systems that
allow computers to see, localize the position of objects, and rec-
ognize the contents of digital images or videos [5].AI systems
such as deep learning [6] are specialized algorithms carefully
designed to facilitate the real-time application of CVTs for the
detection and localization of objects in video images. In the
context of blind navigation, the CVTs are applied for object de-
tection as the initial step, before conversion to sound for the
person’s hearing and navigation.

According to Ref. [3], while computer vision has greatly
improved through innovations such as 3D models, robust fea-
ture detection, and real-time image matching [7], one of the
biggest challenges remained how to detect objects of interest
in clustered scenes [8], detection of objects with dynamic be-
havior [9], detection of actionable objects [10], and real-time
object detection [11]. To address these problems, research has
leveraged the application of deep learning algorithms, specifi-
cally Convolutional Neural Networks (CNN) [11], to develop
state-of-the-art models for enhanced object detection and clas-
sification applications. These models are classified into 1-stage
detectors such as short single multi-box detectors [12], You-
Can-Only-Look-Once (YOLO) series [12, 13], and then 2-stage
detectors such as Recurrent-CNN (R-CNN) [14], Fast-R-CNN
[15], Mask-CNN [16], and Faster-R-CNN [17].

Overall, CNN models are characterized by high accuracy
of classification in object detection problems; however, in the
context of reliability [18], it was revealed that the 1-stage ob-
ject detection model is more reliable for real-time object detec-
tion tasks because of its speed of detection and classification
when compared with its 2-stage counterparts. Among the 1-
stage detectors, the You Can Only Look Once (YOLO) series
has continued to gain increased research attention when solving
real-time classification problems [19]. The application of the
YOLO series in object detection was based on several advan-

Figure 1: Description of the occlusion problem.

tages, which include speed of classification, very high accuracy
potential, integrated output made of classification results, con-
fidence scores, and labeling capabilities. However, while the
YOLOV series offers these benefits, occlusion has remained
one of the major constraints that has hindered the successful
realization of these goals by YOLOV [20]. Occlusion occurs
when an object of interest is hidden in the background by an-
other object [20]. According to Ref. [21], it is rare for an ob-
ject to exist in isolation, hence posing a significant challenge
in various applications of computer vision, including tracking,
3D reconstruction, and object recognition. Occlusion can oc-
cur in many forms [21], each informed by a particular area of
application. For instance, same object occlusion arises in appli-
cations such as autonomous vehicles, surveillance, health care,
agriculture, blind navigation guide systems, etc. In this appli-
cations, objects appears similar and also in a clustered back-
ground, hence making it very challenging for accurate segmen-
tation. While the requirements to solve these problems differ
in different applications, in this paper, the occlusion problem is
defined considering a blind guide navigation system for obsta-
cle avoidance as shown in the Figure 1.

Figure 1 demonstrates a specialized kind of occlusion prob-
lem which occurs for a blind guide navigation system. Dur-
ing blind people’s movement with assumed wearable com-
puter vision-based devices for obstacle detection and avoid-
ance, many times, the multiple same object of instance is cap-
tured as shown with the boxes; while the red box is the ac-
tual obstacle along the path of propagation, the user receives
multiple notifications on the other classified objects, and this
presents several issues, including confusion, indecision on the
actual object, a model obstacle problem, false alarms, and even
accidents. Hence, there is a need for a model that, in this kind of
situation, is able to identify the OOI and ignore other multiple
objects until they actually model obstacles in the propagation
path.

Some of the innovations tailored towards solving this prob-
lem include [22], who proposed a self-supervised method that
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recovers the ordering of occlusion and completes the invisible
part of the occluded object using R-CNN, while Ref. [23] in-
tegrated deep convolutional neural networks and compositional
models to address the partial occlusion problem. More so, Ref.
[24] proposed new loss functions to enforce predicted boxes
to locate compactly the ground truth objects that are far away
from other objects. While these studies addressed occlusion
problems, they did not solve the same object occlusion. More
recent innovation with YOLOV algorithms applied attention
mechanisms [25–29], optimization of non-maximum suppres-
sion [30–34], while others applied instant segmentation [35–42]
approaches to solve this problem of same object occlusion, but
despite the success, there is a need for a model that can identify
the right obstacle even in a clustered scene and correctly clas-
sify it so as to facilitate free navigation. Such model will be
vital to facilitate autonomous navigation by the blind without
collision. The paper contributions are as follows:

i. A systematic literature review on real-time occlusion man-
agement using transfer learning algorithm and identify new
research gap tailored towards reliable obstacle avoidance
system for blind guide navigation application.

ii. A new YOLO-V8n model with improve multiscale fea-
ture representation and extraction process using weighted
feature enhancement algorithm and bi-directional feature
pyramid network.

iii. A simple but effective distance vision estimation algorithm
capable of measuring objects distance from computer vi-
sion image in real-time

iv. A reliable model for obstacle avoidance specific to blind
guide navigation application systems

2. Related works

Recently, the issue of object occlusion has continued to
gain research attention because the reliability of every real-
time object detection model is dependent on it. To achieve
this, Ref. [25] used the convolutional block attention module
to optimize the extraction process of YOLOV-7 and then im-
prove the classification of object recognition. In another study
Ref. [26] applied hard example mining using hard positive and
negative group techniques to extract diverse features of images
and then trained YOLOV-4 to address occlusion. The improved
YOLOV-4 was trained using the GOPRO dataset of self-driving
autonomous vehicles, and the results reported an F1-score value
of 90% and a mean average precision (mAP) value of 90.49%.
In another study [27], a hard-switch layer, batch normaliza-
tion, and convolutional block were used to develop an attention
mechanism and integrate it as a YOLO-Attention Convolutional
Neural Network (YOLO-CAN) for improved object classifica-
tion. The results when evaluated showed that the addition of the
attention mechanism improved the accuracy when tested on tiny
objects, from 4% to 55%, and mAP reached 18.2%. Ref. [28]
combined Receptive Field Enhancement (RFE) module, Nor-
malized Gaussian Wasserstein Distance (NWD), and Separated
and Enhancement Attention Module (SEAM) to improve face
recognition in real time using YOLOV-2. The RFE was used

to improve feature extraction of smaller face particles, while
weight disparity between the features was addressed using a
weight function slide. NWD was used for loss evaluation, while
occlusion was addressed using SEAM. After training the model
with the WilderFace dataset and evaluating it, the detection rate
for faces was reported at 87.7%. While Ref. [29] addressed the
issues of occlusion using multiple datasets and a distributed loss
function to train YOLOV-5 and improve classification perfor-
mance with an accuracy of 6% when compared to the traditional
YOLOV-5, Overall, it was observed that while these studies fo-
cused on improving attention mechanisms to solve occlusion
problems, issues of same-object occlusion were not addressed.

The identification of the same object occlusion has been
considered by Ref. [30], who applied soft-NMS to address oc-
clusion of the same object. This was achieved using a prede-
fined threshold that suppresses bounding boxes that do not sat-
isfy the threshold detection score. While this approach is good,
it may not be reliable to classify multiple overlapping objects.
To solve this problem, an adaptive NMS was proposed by Ref.
[31], using the density of objects as a variable to differentiate
and classify OOI. In the same vein, Ref. [32] modeled the rela-
tionships between the learning pair-wise of multiple OOI within
a clustered scene to address issues of false alarm and improve
discrimination between nearby objects in real-time object clas-
sification. In Ref. [33], the application of Deterministic Point
Process (DPD) was applied as an alternative to NMS. The DPD,
through the selection of diverse detection sub-sets, was able to
address object overlap, while Ref. [34] combined NMS and
IoU-based methods to address the issues of redundancy in ob-
ject detection tasks. This was achieved through the selection of
boxes closest to other boxes within a cluster and the deletion of
highly interfering bounding boxes.

Instant segmentation is another popular approach used by
researchers to address occlusion problem in object detection.
It involves the separation of objects and predicting dense areas
[35], and to achieve this, a dynamic and sparse Related Seman-
tic Perceived Attention mechanism (RSPA) for adaptive percep-
tion of different semantic information of various targets during
feature extraction and also search for adjacency matrix in re-
gions with high semantic correlation was presented [35]. In
addition, GSConv [36], which contains two symmetric kernel-
1 convolutions, a simple attention mechanism [37], and an in-
verted bottleneck, was applied to address issues of redundancy
and strengthen the concatenation of features during feature se-
lection. Finally, a Mixed Receptive Field Context Perception
Module (MRFCPM) was applied for multi-scale feature repre-
sentation and trained on COCO dataset to generate an effective
sparse attention model. The evaluation results reported 22.1
detection times and a mAP of 45.2, which is good but needs
room for improvement. In another study Ref. [38], the instance
segmentation of tomato plants was improved by replacing C2f
[39] of the YOLOV-8 with RepBlock module [40], while Sim
convolution with a rectified linear unit activation function was
added instead of the conventional sigmoid convolution to boost
feature extraction. Ref. [41] presents a new framework called
SMFF-YOLO and applies it, for instance segmentation problem
management. To achieve this, a swin transformer network and
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convolution were fused inside the head of the SMFF-YOLO,
and then an Adaptive Atrous Spatial Pyramid Pooling (AASPP)
module and a Bi-directional feature fusion pyramid were ap-
plied for feature classification and enhancement of multiscale
classification. The experimental results of the model reported
a mAP of 42.4% when tested with UAVDT dataset, while Ref.
[42] applied a semantic segmentation dense U-shaped Network
(UNet) network to improve YOLOV-4. The YOLOV-4 was
used for the classification of salient objects in the image, while
the UNet was applied to address the occlusion problem in the
object background. Overall, while these studies have been able
to address occlusion through segmenting OOI, there is still a
general gap in the need to classify objects from multiple OOI.

3. Materials and method

The methodology used for this paper began with the data
collection of selected indoor objects, which are common ob-
stacles. These objects include chairs and tables and were pre-
pared through augmentation, annotation, and labeling before
being integrated with the MS COCO dataset. YOLO-V8n was
adopted as the transfer learning algorithm of choice and then
improved using a proposed weight enhancement algorithm that
is connected to the backbone to enhance the feature extrac-
tion process. In addition, a bi-directional feature pyramid net-
work was applied to improve multiscale representation of fea-
tures and speed up the model operation process. To address
issues of bounding boxoverlap in the model output, a wise
intersection over unit loss function was applied, while a dis-
tance vision estimation algorithm was also added to the head
to measure object distance from the camera focal point and
then apply to differentiate between objects and obstacles. The
model was trained to generate the real-time obstacle avoidance
model, which was comparatively analyzed considering other
YOLO-V8n architectures, loss functions, and other state-of-the
art obstacle avoidance algorithms. Finally, the selected model
was deployed for real-time obstacle avoidance and validated
through practical experiments.

3.1. Data collection
The primary dataset used for the work was an improved MS

COCO dataset [43]. The COCO dataset is made of 328,000
images of everyday objects, representing 91 different objects
with a total of 2.5 million labeled instances. This dataset was
improved by a secondary dataset made of two classes (chairs
and tables) collected from several indoor environments using
a ZED2i camera for 20 days, with 50 pictures taken per day,
given a total sample size of 1000 images. The number of chairs
collected was 556 images, while the number of tables collected
was 444 images. These two objects were selected because of
their popularity in most indoor environments, and are often po-
sitioned in open space, thereby indirectly posing as obstaclse.
The data diversity was artificially applied to the images using
data augmentation processes such as contrast and brightness ad-
justment techniques. Further pre-processing steps, such as an-
notation and labeling, were also applied to the dataset before
integration with the MS COCO database.

Figure 2: Block diagram of the data augmentation process.

3.2. Data augmentation and preparation

The process of augmentation was necessary to address the
issues of over-fitting during training of models. To achieve this
augmentation process, Robowflow tool was used, while con-
sidering various data augmentation techniques such as random
rotation, contrast adjustment, and flipping. The step used was
presented in Figure 2.

Figure 2 presents the steps applied to augment the new
dataset of tables and chairs classes created using Robowflow
tool. This data were imported into the tool and then the respec-
tive augmentation approach such as rotation and flipping were
applied. Upon the techniques selection, the operation settings
were configured considering diverse rotation angles and posi-
tion such as left and right respectively. In addition, the data di-
versity was captured after each steps using contrast and bright-
ness adjustment within the defined threshold, before generating
the new dataset.

3.3. Data annotation

The annotation of the new data model was also performed
using Robowflow tool. The sequence for the annotation step in-
volves loading the processed downloaded dataset back into the
Robowflow and then creates annotation task and type which in
this case is bounding box and classification. This precedes the
manual annotation of the image in the environment by assign-
ing class labels and bounding as needed. After the process, the
images were reviewed and then exported into COCO format, to
allow seamless integration into the existing COCO dataset and
then create the improve COCO data version.

3.4. YOLOV-8 model

This work applied the YOLOV-8n [44] as the transfer learn-
ing model of choice for the object classification process. The
YOLOV-8n consists of four sections: the input layer, which is
responsible for the enhancement of data; the backbone, which
performs the feature extraction process; the feature maps,
which are fed to the neck for fusioning; and the head, which
decouples the output into class probability, label, and bound-
ing box [45]. Figure 3 presents the architecture of the existing
YOLO-V8n.
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Figure 3: Existing YOLOV-8n model [46].

Figure 4: Block diagram of the weighted feature enhancement.

3.4.1. Backbone with weighted feature enhancement
The backbone of this YOLOV-8 applied Spatial Pyramid

Pooling Fast (SPPF) for the optimization of receptive field,
but Ref. [45] revealed that its inability for multi scale feature
identification makes it weak for classification of occluded ob-
jects. This is becauseocclusion objects are characterized with
low pixel information, because some of the parts are hidden in
the background of the image and hence need attention mech-
anism to help the model identifies these features. To achieve
this, there is need for an attention mechanism which prioritized
the available visible part of the image and then extracts the best
features to facilitate improved classification success. This pa-
per propose a WFE approach which utilizes the Global Average
Pooling (GAP) to condense feature maps along channel dimen-
sion and provide a compact representation of features.

3.4.2. Weighted feature enhancement
The WFE is made of multi-head convolution which intro-

duces multiscale feature representation, then the features are
extracted using average pooling techniques to allow a global ex-
traction of the features on the strides while preserving channel-
wise contents. The features are transformed using rectified lin-
ear unit activation function, with the attention weight computed
across spatial dimensions using softmax activation function,
while the weights are summed and combined with the origi-
nal features to form the new output as shown in the Figure 4.

To mathematically explain the WFE in Figure 4, let the in-
put X represent the feature as with H × W × C as the height,
weight and channel of the image input; Fx donates the number

of filters and strides presented as S , with the output features de-
fined as Y, Z is the feature map, and K is the number of attention
heads.

The WFE algorithm (Algorithm 1).

1. Start
2. Parameter initialization
3. Initialize weights (Wk) and bias Bkfor each k head.
4. Zk = Conv2D (X, Wk) + bk for each k %% for multi

head convolution
5. Zk = Z (H ∗W ∗ K)
6. Spatial pooling with average technique on Z with strides

(Pool (Z) = spatial pooling (Z, stride)
7. Outcome of pooling = Himage

stride * Wimage

stride * K * filter
8. Feature transformation = Ft =ReLU (Conv2D ( pool (Z),

W f )+b f ) :
9. Where W f is the weight for feature transformation b f is

the bias.
10. To compute the weight of the attention, the softmax was

applied as A = so f tmax (Conv2D (F, Wa) + ba) while a
is the attention mechanism.

11. The weighted sum of the features output = Yw = Y + X
12. End

3.4.3. Bi-directional feature pyramid network with distance vi-
sion estimator

The neck of the model utilized the Cross-Stage Partial
Network Fusion (C2f) module and a combination of the Path
Aggregation Network (PAN) and Feature Pyramid Network
(FPN). The FPN adapts channel-deep features to shallow lay-
ers to allow high-level insight in feature map identification. The
PAN, on the other hand, allows for precise data positioning in
an upward direction from superficial layers to the deep, rich fea-
ture strata [46]. The combination of PAN and FPN in the con-
ventional YOLOV8 as a PANET module allows for a mastery
amalgamation of shallow deep features and also detection of
deep features, thereby bolstering the quality of feature extrac-
tion [47]. However, in Ref. [46], it was revealed that the con-
ventional PANET suffers some setbacks, which include poor
information flow between different feature levels and not very
efficient multiscale feature fusion. To solve this problem, the
Bi-directional FPN innovated by Ref. [46] was adapted and
used to improve the neck of the YOLOV-8. The Bi-directional
FPN was achieved by applying an extra two lateral connection
paths to the existing PANET structure. The aim was to allow
for adaptive preservation and identification of raw features that
were extracted from the network backbone into the detection
feature map [47, 48]. More so, the p2 layer and additional de-
tection head were integrated into the architecture neck to allow
for a more expansive feature map size and fast convolutional
process and were connected to the first head. In the context of
obstacle avoidance for blind guide navigation systems, applying
this model the way it is will raise issues of reliability because,
while the model will accurately classify objects, it will struggle
to differentiate between objects and actual obstacles. To address
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Figure 5: (left) FPN, (middle) PANET, and (right) Bi-FPN with
DE.

these issues, there is a need for a distance vision estimation pro-
cess, which was proposed to be connected with the p2 layer to
the head of the YOLO-V8. Figure 5 presents the FPN, PANET,
and Bi-FPN with the Distance Vision Estimator (DVE).

3.4.4. Distance vision estimation (DVE)
To achieve this a distance computation algorithm was devel-

oped, which used key spatial information from the camera such
as bounding box sizes, camera information like pixel distance,
coordinates of the bounding box centriod, and distance cal-
culation algorithm to develop an object distance measurement
model and integrated in the model head to allow for real-time
measurement and hence identification of obstacles.The mathe-
matical model for the distance calculation of objects is defined
using the relationship between camera calibration such as focal
point defined as F, principle point of coordinated in the cap-
tured image defined as Px and Py. The object size is defined as
(x1, y1) for the top left and (x2 , y2) for the bottom right corner
of the detected image bounding box. Where Wimage = (x2 − x1)
is the weight and Himage = (y2 − y1) is the height of the bound-
ing box, where Drealdefine the actual object weigh1t and height.
To compute the distance calculation, the pinhole camera model
was applied as in equation (1) [49];

D =
F × Dreal

Wimage × Himage
, (1)

where Wimageis the weight of the image bounding box, while the
focal length is given as equation (2) [50]:

F =
Object size × bounding box size

object size
. (2)

The DVE algorithm (Algorithm 2).

1. Input
2. Pin Predicted input from YOLO-V8
3. Load camera information such as F, Himage, Wimage

4. Output
5. Estimate D
6. Load video
7. If Pin = true,
8. Convert Himage, and Wimage to D
9. Else

10. Return error
11. End if
12. End

Figure 6: Architecture of the improved YOLOV-8n with WFR
and Bi-FPN + DVE.

3.4.5. System integration of the new YOLOV-8n with WFR and
Bi-FPN + DVE

This section presented the system integration of the new
YOLO-V8n presented in this study using the WFE in algorithm
1 was proposed for facilitate multi-scale feature representation
of objects, while the Bi-FPN allows a bi-directional extraction
of features while the DVE computes the object distance from
the camera focal point. The Figure 6 presents the improved
YOLOV-8n architecture.

In the Figure 6, the backbone of the model was improved
by connected a WFE to the output of the SPPF to improve
multiscale feature extraction process. This module gives dis-
tinct weights to the characteristics features extracted from multi
scales, making sure that the more significant aspects are em-
phasized, thus bolstering the model’s capacity for more accu-
rately objects detection across varying scales. To further allows
for more expansive feature representation and improve speed of
convolution, the Bi-FPN which is made of the FPN and PANET
were applied in the neck. This structure improves the convolu-
tion performance, enabling more comprehensive feature repre-
sentation for better object detection. In addition, a DVE was
also integrated with the Bi-FPN to measure the distance of ob-
jects classified and label simultaneous with the image bounding
box of the identified object.

3.4.6. Wise-IoU loss function
Over the years, several loss function for bounding box

regression such as the Intersection over Union (IoU) [50],
Distance-IoU [51], Generalized IoU [52], Complete IoU [52],
Wise-IoU [50] have been presented. Among these IoUs, the
Wise-IoU was adopted because [50] revealed that apart from
light bounding box support, it also allows easy distance com-
putation. In addition, Ref. [53] compared the traditional IoU
techniques and identify WIoU as the best to correctly predict
bounding box for obstacle avoidance study, and also focuses on
distance between the center points of bounding box and targets
when two overlaps [53]. The WIoU loss function in equation
(5) is defined using the relationship between IoU in equation
(3) and weighted (R) IoUin equation (4).

LIoU = 1 − IoU, (3)
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RWIOU = exp


(
x − xgt

)2
+
(
y − ygt

)2(
W2

g + H2
g

)∗
 , (4)

LWIoUv1 = RWIoULIoU, (5)

where [x,y]are the bounding box coordinates and [w, h]are the
ground truth coordinates. The ground truth box defined as[
xgtygtwgthgt

]
.the exponential term is a wise factor which pri-

oritizes the importance of center location of the bounding box.
In equations (3) to (5), the WIoU minimizes the impact of ge-
ometry factor, and also amplify penalty for poor anchor boxes.

3.4.7. Training of the model
The experiments in this paper were carried out in NVIDIA

GeForce RTX 3030 Ti Laptop graphical Processing Unit
(GPU), operating with Windows 11, and equipped with In-
tel ® CoreTM i9-12900 processor, with 16GB graphics mem-
ory. In addition, the CUDA® parallel computing toolbox was
also installed in the computer to improve computation power
of the GPU and accelerate training speed of the YOLOV-8n
model. The training parameter settings for image size is 640
by 640, epochs are 300, the initial learning rate is 0.01, IoU
thresholds setting is 0.5 and the batch size is 32. To train our
new YOLOV-8n, the improved COCO dataset was splitted into
training, test and validation set in the ratio of 80:10:10 and
then apply stochastic gradient descent optimization algorithm
to train the model, minimizing bounding box classes and object
loss through back-propagation process. Finally, test and vali-
dation set were used to evaluate the model performance, con-
sidering the performance metric in equations (6)-(9), and upon
convergence, the model was generated.

3.4.8. Evaluation metrics
To evaluate the performance of the new YOLO-V8n model,

several metrics such as Precision (P),this measures the relation-
ship between successful true detection and false detection dur-
ing the classification process. Recall (R) measures the model’s
ability to detect all relevant instances. High recall means that
the model has a low false negative rate. Average precision (AP)
It combines precision and recall into a single metric by plotting
precision against recall at various threshold settings, and Mean
average precision (mAP) provides a single number to summa-
rize the performance of the model across all classes, making it
a widely used metric for object detection tasks. The metrics are
mathematically defined in equations (6)-(9), respectively.

P =
TP

T P + FP
, (6)

R =
TP

T P + FN
, (7)

AP =
∑

Pri∑
r
, (8)

mAP =
AP

num class
, (9)

where TP is true positive, FP is false positive, FN is false nega-
tive, r is ranks of each instance, and Pri is the precision sum for
all instances.

Table 1: Experimental results of YOLOV-8n with IoU loss.

Models Precision Recall mAP
YOLOV-8n + IoU 89.9 80.6 86.4
YOLOV-8n +WFE+ IoU 90.4 81.5 87.9
YOLOV-8n +WFE+ Bi-FPN+ IoU 94.7 84.3 91.5
YOLOV-8n + Bi-FPN+ DVE+ IoU 94.1 83.5 90.7

Table 2: Experimental results of YOLOV-8N with RWIoU.

Models Precision Recall mAP
YOLOV-8n + RWIoU 90.1 81.3 86.8
YOLOV-8n +WFE+ RWIoU 91.7 82.9 89.3
YOLOV-8n +WFE+ Bi-FPN+ RWIoU 96.2 84.6 92.8
YOLOV-8n + Bi-FPN+ DVE+ RWIoU 95.2 83.7 91.5

4. Results and discussions

To evaluate the model developed, several experiments were
performed considering the different loss function in equations
(3) to (5) and also various formations of the YOLOV-8N mod-
els during the development of the proposed YOLOV-8n + Bi-
FPN+ DVE using our dataset. Table 1 presents the model per-
formance during experiment with diverse architecture with IoU
loss function.

Table 1 presents the comparative results of the YOLO-V8n
architectures with IoU as the loss function. From the results
it was observed that the alteration in the different components
of the model has impact on the performance. For instance
it was observed that with WFE was added to the SPPF and
trained with our dataset, the performance was better than the
conventional standalone YOLOV8n. More so when Bi-FPN
was added to the YOLO-V8 + WFE, it was observed that the
model performance further improved. The reason was because
while the WFE improves the feature extraction process, the Bi-
FPN allows for more expansive feature representation in mul-
tiscale and hence improves training data quality. The other re-
sult showed the integration of DVE on the improved YOLO-
V8n with Bi+FPN and WFE and it was observed that the re-
sults slightly reduced from YOLOV-8n +WFE+ Bi-FPN+ IoU,
but still reported very good results. Overall, the YOLOV-8n +
WFE+ Bi-FPN+ IoU which reported the best results with P of
94.7, thus suggesting the models ability to correctly predict ob-
ject positively, which is good. The recall reported 84.3 as a
measure to detect all relevant instances, which is also good, but
leaves great room for improvement, while the mAP which sum-
marizes the model performance across diverse object classes
reported 91.5 which is also good but leave room for improve-
ment. This improvement was explored by applying RWIoU as the
loss function and the retraining the model comparatively, with
results collected reported in Table 2. Table 3 presented other
results which evaluates the different YOLO-V8n architecture
considering LWIoU. Table 4 presents experimental comparative
analysis of our model.

Table 2 present the comparative analysis of the four experi-
mental YOLO-V8n models considering RWIoU as the loss func-
tion. From the data presented, it was observed that the YOLOV-
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Table 3: Experimental results of YOLOV-8n with and LWIoU.

Models Precision Recall mAP
YOLOV-8n + LWIoU 92.2 83.7 88.2
YOLOV-8n +WFE+ LWIoU 93.9 85.4 90.1
YOLOV-8n +WFE+ Bi-FPN+ LWIoU 98.6 85.5 93.8
YOLOV-8n + Bi-FPN+ DVE+ LWIoU 97.4 84.3 92.9

Table 4: Comparative results of YOLO-V8n with different loss
functions.

Models Precision Recall mAP
YOLOV-8n + IoU 89.9 80.6 86.4
YOLOV-8n + RWIoU 90.1 81.3 86.8
YOLOV-8n + LWIoU 92.2 83.7 88.2
YOLOV-8n +WFE+ IoU 90.4 81.5 87.9
YOLOV-8n +WFE+ RWIoU 91.7 82.9 89.3
YOLOV-8n +WFE+ LWIoU 93.9 85.4 90.1
YOLOV-8n +WFE+ Bi-FPN+ IoU 94.7 84.3 91.5
YOLOV-8n +WFE+ Bi-FPN+ RWIoU 96.2 84.6 92.8
YOLOV-8n +WFE+ Bi-FPN+ LWIoU 98.6 85.5 93.8
YOLOV-8n + Bi-FPN+ DVE+ IoU 94.1 83.5 90.7
YOLOV-8n + Bi-FPN+ DVE+ RWIoU 95.2 83.7 91.5
YOLOV-8n + Bi-FPN+ DVE+ LWIoU 97.4 84.3 92.9

8n + WFE+ Bi-FPN+ RWIoU reported the best performance
with P of 96.2, R of 84.6 and mAP of 92.8 respectively. This
results demonstrates the effectiveness of the RWIoU in predicting
bounding box and overlapping ground truth, which collectively
improves the model performance.

In the Table 3, the comparative YOLO–V8n results con-
sidering LWIoU which combines the RWIoU and IoU to improve
bounding box prediction. From the results it was observed that
YOLOV-8n + WFE+ Bi-FPN+ LWIoU recoded the best perfor-
mance for P with 98.6, R with 85.5 and mAP with 93.8 respec-
tively, when compared with other models. This results signi-
fies that the integration of WFE, Bi-FPN was able to improve
feature exaction and representation during the training of the
model, while the LWIoU leverage the advantages of IoU and
RWIoU to improve bounding box and ground truth prediction
performance. In the next results, the three loss function and
various YOLO-V8n experiments were compared in Table 4, to
determine the best model for system integration. Table 4 com-
pared the performance of the experimented YOLO-V8n models
considering different loss and YOLO-V8n architectures. From
the results, it was observed that YOLOV-8n +WFE+ Bi-FPN+
LWIoU recorded the overall best performance for all the three
metrics considered, however in the context of obstacle avoid-
ance for the blind, the model will not be reliable because while
it will correctly identify every objects in the computer vision,
it will give false alarm and will not be able to different objects
from obstacles. In solving this problem, the DVE algorithm
connected to the Bi-FPN and integrated in the YOLOV head as
a YOLOV-8n + Bi-FPN+ DVE+ LWIoU model for the classifi-
cation objects and simultaneous distance detection in real time.
The results reported 97.4 for P, 84.3 for R and mAP for 92.9,
respectively. There results even though measurement wise it is
not better then YOLOV-8n +WFE+ Bi-FPN+ LWIoU , however

Table 5: Comparative analysis with other obstacle detection
models.

Author Models Precision Recall mAP
Ref. [54] SSD 72.8 66.5 70.1
Ref. [55] Faster RCNN 72.8 66.5 76.4
Ref. [56] YOLOv5n 86.7 86.8 88.8
Ref. [57] TPH-YOLO-V5 92.7 82.3 88.4
Ref. [58] YOLO-V7tiny 73.5 81.2 81.8
Ref. [44] YOLO-V8n 90.3 80.7 86.3
Ref. [59] Golf-YOLO 83 95 87.9
Ref. [46] YOLO-V8 + BI-FPN + SimAM 97.9 91.2 95.8
Our work YOLOV-8n + Bi-FPN+ DVE+ LWIoU 97.4 84.3 92.9

in terms of reliability is the holy grail of performance evaluation
model, the YOLOV-8n + Bi-FPN+ DVE+ LWIoU is the best be-
cause it will correctly classify object, differentiate objects from
obstacle and facilitate navigation without collision with obsta-
cles. Finally the YOLOV-8n + Bi-FPN+ DVE+ LWIoU was
compared with other state of the art algorithms as reported in
the Table 5.

(a)

(b)

Figure 7: (a) Test site 1 indoor environment, (b) Test site 2
indoor environment.
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(a)

(b)

Figure 8: (a) Test site 3 indoor environment, (b) Test site 4
indoor environment.

Table 5 presents a comparative results of the new model de-
veloped for same object occlusion management with YOLOV-
8n + Bi-FPN+ DVE+ LWIoU and other state of the art algo-
rithm. From the results, it was observed that new model is the
second best in term of P, R and mAP, but overall in the context
of reliability for blind vision navigation system, the new model
supersedes the other because it has the ability to different obsta-
cle of different occlusions using DVE algorithm. Therefore this
model was deployed as a computer vision system for obstacle
avoidance to facilitate blind vision navigation system.

4.1. Validation of the new YOLO-V8n model at indoor environ-
ment with obstacles

The software was validated at different indoor environments
with obstacles scattered across area as shown in the Figures 7
and 8, respectively.

Figures 7 and 8, respectively, showed the different case
study indoor test sites where the model was validated through
live experiment. The results of the four validate scenarios was
presented in Figures 9 and 10, respectively.

(a)

(b)

Figure 9: Result of the obstacle classification model with
YOLOV-8n + Bi-FPN+ DVE+ LWIoU. (a) Result at test 2 in-
door, (b) Result at test 2 indoor.

Figure 9 presents the result of the model deployment for
obstacle avoidance in two different indoor environments. The
Figure 9(a) showed the result of the model when tested at site
1, while the Figure 9(b) showed the results of the model when
tested at site 2. In another validation scenario considering site
3 and 4, the results are reported in Figure 10.

Figure 10 presents the result of the model deployment for
obstacle avoidance in two different indoor environments. Fig-
ure 10a showed the result of the model when tested at site 3,
while Figure 10b showed the results of the model when tested
at site 4. Overall these result haves shown demonstrated suc-
cess in correctly classifying objects and using distance to dif-
ferentiate obstacles. This solution will address issues of same
multiple object occlusion which has remained an open problem
in computer vision.

4.2. Discussion considering success and weakness of our
model

Without doubt YOLOV-8n has provided in literature to be
successful in solving object detection problems, however chal-
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(a)

(b)

Figure 10: Result of the obstacle classification model with
YOLOV-8n + Bi-FPN+ DVE+ LWIoU. (a) Result at indoor
three, (b) Result at test four indoor.

lenges poses by objects varies with areas of application. In the
context of obstacle avoidance, issues such as variability in ob-
stacle size, occlusion, and similarity are a common challenge
which affects performance of traditional YOLOV-8n. This
problems were addressed through improved feature extraction
using WFE, more feature representation with Bi-FPN, obstacle
detection with DVE and LWIoU. This unique introduced mod-
ules allows our YOLOV-8n to be reliable in correctly classi-
fying obstacles within indoor environments, and to the best of
our knowledge is the first to be applied to facilitate autonomous
movement y a blind person without collision with obstacles.

4.3. Weakness of our work

The weakness of this work in the context of a blind guide
navigation system is that the object identified as an obstacle
cannot be communicated to the user because that will require
a text-to-speech library which converted the classified object
label and convert to speech to notify the user about the obstacle
and hence prevent collision. However, this part is recommended
for further studies.

5. Conclusion

An obstacle avoidance model has been developed in this pa-
per using YOLOV-8n +WFE + Bi-FPN + DVE+LWIoU. While
the existing YOLO-V8n, among other techniques, has success-
fully presented models capable of object detection and classi-
fication in real-time, there is weakness in their application for
blind guide vision navigation systems due to issues of multiple
object occlusions and clustered backgrounds. This paper ad-
dresses the issues of fine-tuning YOLO-V8n with an improved
COCO dataset, using data collected from several indoor envi-
ronments. To improve the performance of the YOLO-V8, a
WFE was applied to the SPPF for enhanced feature extraction,
while to improve multiscale feature representation, the Bi-FPN
was applied in the model neck. In addition, a DVE algorithm
was developed and integrated with the Bi-FPN to allow mea-
surement of objects captured by the camera using focal length
and bounding box information. The model after training was
evaluated through several comparative analyses and then vali-
dated in real-world indoor environments. The results showed
the ability of the model to correctly classify multiple objects
and also measure their distance from the camera, thus making
it the perfect obstacle avoidance system for blind guide naviga-
tion.

Data availability

The data used for this work are available
on https://www.kaggle.com/datasets/clkmuhammed/
microsoft-coco-2017-common-objects-in-context.
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