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Optimizing precision farming: enhancing machine learning
efficiency with robust regression techniques in high-dimensional
data
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Abstract

Smart precision farming leverages loT, cloud computing, and big data to optimize agricultural productivity, lower costs, and promote sustainability
through digitalization and intelligent methodologies. However, it faces challenges such as managing complex variables, addressing multicollinear-
ity, handling outliers, ensuring model robustness, and enhancing accuracy, particularly with small to medium-sized datasets. To overcome these
obstacles, reducing retraining time and resolving the complexity issue is essential for improving the machine learning algorithm’s performance,
scalability, and efficiency, especially when dealing with large or high-dimensional datasets. In a recent study involving 435 drying parameters
and 1,914 observations, two machine learning algorithms - Ridge and Lasso - were employed to analyze and compare the impact of two variable
selection techniques, specifically the regularization methods Ridge and Lasso, before and after addressing heterogeneity in highly ranked vari-
ables (50, 100, 150, 200, 250, 300). Additionally, robust regression methods such as S, M, MM, M-Hampel, M-Huber, M-Tukey, MM-bisquare,
MM-Hampel, and MM-Huber were applied. The results demonstrated that the robust methods, when applied to Ridge and Lasso, achieved the
highest efficiency, with the smallest values for MAPE, MSE, SSE, and the highest R? values, both before and after accounting for heterogeneity.
As aresult of the study, the best models are the Ridge model with the MM bisquares before heterogeneity, the Ridge model with the MM method
after heterogeneity, and the Lasso model with the MM method before heterogeneity and the Lasso model with MM Hampel after heterogeneity.
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1. Introduction approach harvests and resource efficiency. The current proce-
dure employs advanced data analysis and technology to mod-
ify the techniques of agriculture to the specific requirements
of certain fields and harvests. The application of mathemati-
cal models to simulate and predict agricultural results based on
enormous amounts of data is critical to precision farming’s ef-
ficiency. Figure 1 shows how IoT systems work. They collect
data such as moisture content, temperature, humidity, and solar

Precision farming is a crucial development in agricultural
operations, completely altering the method by which humans
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radiation, send it to the cloud, and process it. Farmers and users
can then view the results on apps to optimize agricultural pro-
cesses and increase production [1]. However, the accuracy and
utility of these models are heavily dependent on the selection
of significant variables and their ability to deal with data vari-
ances, such as outliers, which may influence results and restrict
decision-making.

Machine learning (ML) has transformed variable selection
in precision farming by providing robust instruments for ana-
lyzing large volumes of data and identifying complex patterns.
Ridge regression and Lasso are two significant advances in ma-
chine learning for variable selection. Ridge Regression, com-
monly known as L, regularization, stabilizes regression find-
ings by penalizing coefficient size while focusing on multi-
collinearity and overfitting. Lasso, also known as L; regular-
ization, allows for both variable selection and coefficient re-
duction, which is especially effective for datasets with a large
number of associated features.

The main components of precision farming are illustrated
in Figure 2, which outlines the structured workflow, including
data collection, preprocessing, analysis, testing and validation
Despite these developments, the use of irrelevant or weakly de-
scribed models can be harmful to precision agriculture. Mod-
els that fail to appropriately select significant factors and con-
trol outliers can cause a number of important issues according
to Ref. [2].

e Reduced Predictive Accuracy: Insignificant models
might ignore crucial correlations, leading to erroneous
forecasts. This might result in a lack of agricultural ideas,
affecting productivity and resource efficiency.

e Resource Misallocation: Ineffective models can result in
inaccurate recommendations for nutrient, treatment, and
water applications. This misallocation not only affects
operational efficiency, but also raises expenses and may
have a severe influence on the environmental sustainabil-
ity of seaweed farming.

e Compromised decision-Making: Models that don’t ac-
count for the intricacies of agricultural data might pro-
duce inaccurate results. This can weaken farmers’ trust
in data-driven suggestions, leading to reluctance to use
precision farming methods.

e Risk of Overfitting: Insignificant models might be over-
fitting to noise or irrelevant characteristics in data, lead-
ing to large variance and insufficient generalization to
new data. This can reduce the robustness of predictions
and make the model not as accurate in various situations.

¢ Insufficient Data Processing: Models that cannot handle
high-dimensional data or outliers might result in higher
computing costs and processing delays. This inefficiency
may restrict the scalability of precision agricultural tech-
nologies.

Beyond these technical challenges, the effective application
of precision farming models has significant implications for

broader community well-being. Accurate and robust models,
as informed by ML frameworks like the one depicted in Figure
3 can lead to substantial improvements according to Ref. [3]:

e Precision farming may improve food security by improv-
ing crop yields and resource usage, leading to a more
consistent and predictable supply, which is crucial for
both local and global food security.

o Improved model precision can minimize agricultural in-
put waste, reduce environmental effects, and improve
sustainable farming practices.

o Efficient agricultural approaches based on accurate mod-
els can reduce costs and increase profitability for farmers,
thereby benefiting the agricultural industry.

e Education and Knowledge Sharing using effective tech-
niques and technology may boost local expertise and cre-
ativity in agriculture.

Investigate the association between precision farming and ma-
chine learning, particularly the impact of using irrelevant mod-
els on agricultural practices and community results. Discuss
how complex methodologies like Ridge Regression and Lasso
improve model reliability and variable selection, resulting in
higher prediction accuracy and decision-making. This discus-
sion aims to illustrate machine learning’s important possibility
of improving precision farming while additionally supporting
sustainable agricultural growth and community well-being.

2. Literature review

Several previous studies have employed robust regression
analysis. For example, according to Mukhtar ez al. [4, 5] used
robust regression methods, including Tukey Bi-Square, Ham-
pel, and Huber, to compare the impact of different regression
algorithms (Ridge, Lasso, Elastic Net, Random Forest, Sup-
port Vector Machine, and Boosting) on forecasting an efficient
model using 30 high-ranking variables. Similarly, according
to Ibidoja et al. [6] applied robust regression techniques (M
Bi-Square, M Hampel, and M Huber) to evaluate the impact
of various regression algorithms (Random Forest, Support Vec-
tor Machine, Bagging, and Boosting) on forecasting models for
15, 25, 35, and 45 high-ranking variables. In a subsequent
study, according to Ibidoja et al. [7] utilized robust regres-
sion methods (S, M, MM, M Bi-Square, M Hampel, and M
Huber) to assess the impact of different regression algorithms
(Ridge, Lasso, Elastic Net, Random Forest, Support Vector Ma-
chine, Bagging, and Boosting) on forecasting models for 45
high-ranking variables, both before and after addressing het-
erogeneity. The previous studies such as: according to Mukhtar
et al. [4, 5] used robust regression methods such as Tukey
Bi-Square and M-Hampel in precision farming; however, this
research advances the field by using Ridge and Lasso regular-
ization with robust regression approaches. This combination
facilitates more effective dealing with high-dimensional data
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and multicollinearity, distinguishing our technique from previ-
ous studies. These studies are summarized in Table 1, which
provides an overview of the literature review.

This paper primarily focuses on analyzing and comparing
the impact of two variable selection techniques—the regres-
sion regularization algorithms Ridge and Lasso—both before
and after addressing heterogeneity in highly ranked variables
(50, 100, 150, 200, 250, 300). Subsequently, robust regres-
sion methods, including S, M, MM, M-Hampel, M-Huber, M-
Tukey, MM-bisquare, MM-Hampel, and MM-Huber, will be
applied. The study aims to evaluate and compare the per-
formance of these regularization and robust regression algo-
rithms in forecasting an efficient model using metrics such as
Mean Absolute Percentage Error (MAPE), Mean Squared Er-
ror (MSE), Sum of Squares Error (SSE), and R-square R.

Robust regression is a statistical technique designed to han-
dle outliers and leverage points in regression models, which can
otherwise lead to biased estimates when using traditional meth-
ods like Ordinary Least Squares (OLS). Outliers can cause data
to deviate from normality, making OLS estimators unreliable
according to Ref. [8]. Additionally, robust regression tech-
niques can be particularly advantageous in dealing with het-
eroscedasticity, where the variance of errors varies across ob-
servations. Various robust estimators, including robust versions
of logistic regression, ridge estimators, Lasso, and elastic net
techniques, have been developed to enhance efficiency and ac-
curacy in such scenarios according to Ref. [9]. Robust re-
gression provides a more reliable alternative to traditional re-
gression methods, especially in datasets with outliers and het-
eroscedasticity, ensuring more accurate and efficient parameter
estimation. This paper, applied robust regression techniques
to address outliers, including S-estimation, M-estimation, MM-
estimation, M-bi square, M-Hampel, M-Huber, MM-Hampel,
MM-Huber, and MM-Tukey methods.

The application of robust techniques is based on their in-
dicated efficiency in addressing outliers and heterogeneity, es-
pecially in large and high-dimensional datasets. These tech-
niques have been efficient at significantly reducing errors such
as MAPE, MSE, and SSE while increasing R?, particularly af-
ter reducing data heterogeneity. Research using these robust
methodologies indicates improved model performance for ac-
curacy and stability, finding them appropriate for situations
where data variability and outliers may significantly impact pre-
dictions. This confirms their utilization in the research to ensure
accurate predictions within the field of precision agriculture,
where environmental variables often supply noise and variabil-
ity according to Ref. [10].

Recent studies have increasingly concentrated on robust re-
gression in high-dimensional contexts, specifically in address-
ing multicollinearity via combining Ridge and Lasso with ro-
bust methodologies. Mukhtar e al. [4] utilized hybrid mod-
els that combine Ridge and robust regression techniques to en-
hance predictive accuracy in agricultural datasets, whereas ac-
cording to Rahayu ef al. [11] employed similar methods for
proficiency data, illustrating the effectiveness of MM and S-
estimators for handling outliers and improving model stabil-
ity. These studies demonstrate an increasing trend in using hy-

brid models for improving variable selection and prediction efli-
ciency in complex datasets. Using hybrid techniques improves
the theoretical framework of precision agriculture by solving
both regional and dataset-specific challenges.

3. Methodology

3.1. Flowchart of study

Figure 4 presents the flowchart of methodologies used to
achieve the study’s objectives. It shows the inclusion of all pos-
sible models up to the second order and the testing of various
assumptions. Ridge and Lasso machine learning techniques are
used to select 50, 100, 150, 200, 250, and 300 parameters be-
cause feature selection ranks important variables but does not
indicate the number of significant factors. Insignificant pa-
rameters are excluded, and parameters showing heterogeneity
are subsequently included in the modified model. Following
this, validation metrics such as mean absolute percentage er-
ror (MAPE), mean squared error (MSE), sum of squared error
(SSE), and R-squared (R?) are computed. Hybrid models are
then developed for before, after, and modified heterogeneity us-
ing robust methods and machine learning models. The robust
methods applied include the S-estimator, M-estimator, MM-
estimator, M-bi square, M-Hampel, M-Huber, MM-Hampel,
MM-Huber, and MM-Tukey methods. Finally, validation met-
rics are computed using the 2-sigma and 3 sigma limits to de-
termine the number of outliers.

The current investigation aims to improve on and build upon
the research performed by Ibidoja, which used up to 45 vari-
ables, by initiating with 50 variables and next increasing the
total an increase of 50 to evaluate the effect on the model’s
efficiency, finally selecting 100, 150, 200, 250, and 300 vari-
ables. The selection of these significant variables is motivated
by their significant role in improving model efficiency, espe-
cially in high-dimensional data environments. Research indi-
cates that including additional high-ranking variables signif-
icantly improves the predicted accuracy of robust regression
models. This improvement is especially significant after solv-
ing the problem of heterogeneity when robust methodologies
assist in handling the complexity caused by big variable sets.
This work indicates methods for using Ridge and Lasso regu-
larization methods to efficiently address multicollinearity and
improve prediction accuracy, as shown by previous studies on
precision farming datasets.

The validation measures used in this study mean absolute
percentage error (MAPE), mean squared error (MSE), sum of
squares error (SSE), and R? are crucial for evaluating the ac-
curacy and reliability of the regression models. MAPE gives
an accurate measure of prediction error concerning actual val-
ues, while MSE and SSE assist as indicators of the extent of
inaccuracies in model predictions. R2, or the coefficient of de-
termination, measures the amount of variation in the dependent
variable that can be predicted from the independent variables.
These metrics are commonly utilized in robust regression eval-
uations and are crucial for evaluating model efficacy, particu-
larly in high-dimensional environments such as precision agri-
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Figure 1: The structure of an IoT system [12].

culture, where reducing prediction error (MAPE, MSE, SSE)
and maximizing model fit (R?) are critical indicators of efficacy.

3.2. Data description

The experimental drying process data for seaweed was col-
lected using a v-Groove Hybrid Solar Drier (v-GHSD). The
dataset comprises 1914 data points, featuring 29 independent
variables and one dependent variable. Table 2 provides detailed
information on the drying factors, which are critical due to the
numerous sensors involved. This study examines the interaction
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effects among the variables, resulting in a total of 435 param-
eters when including second-order interactions. For instance,
T2*T4 denotes the interaction between T2 and T4, T5*T10 in-
dicates the interaction between T5 and T10, and T7*T6 rep-
resents the interaction between T7 and T6. The dataset in-
cludes the main effects of 29 factors and the interaction effects
of 406 variables, along with one dependent variable Y accord-
ing to Ref. [15].

3.3. Multiple Linear Regression (MLR)

Multiple linear regression is a statistical approach used for
evaluating the impact of a predictor variable on a response vari-
able. A Multiple Linear Regression (MLR) model is a regres-
sion model that includes multiple predictors xi, x3, X3, ..., Xp.
The formula for a Multiple Linear Regression (MLR) model is
according to Ref. [16]:

Yi =Bo+Bixi +paxz+ -+ Bixi + €,
or equivalently:
p
Vi :ﬂ0+2ﬁjxij+6i, )

J=1
where (y;, x;) are the values of the response and predictor vari-
ables in the i-th observation, 8y, 8, ..., B, are parameters, and
€ are error terms. The error € ~ N(0,0?) is a normally dis-

tributed random variable and is not mutually correlated accord-
ing to Ref. [17].

4. Ordinary Least Squares (OLS) method

For the estimation of the parameters of the MLR modelin
equation (1) using the Ordinary Least Squares (OLS) method,
we minimize the sum of squared residuals (SSR). The SSR is
given by:

n )4 2
S${=Z;{w—ﬁo—zgﬁﬂw]- )
i= j=

From the SSR in equation (2), the OLS estimators for the coef-
ficients can be computed using the formula:

B=XX)"Xy. A3

5. Heterogeneity

Heterogeneity refers to the variation of observations. The
variability leads to incompatible forecasts and affects results
according to Ref. [18]. Consider multiple linear regression
(MLR):

Yi=Bo+BiTi1 +BoTinp+---

where Y;, i = 1,2,...,n is the response value for the i case
(moisture content), estimates 3’s are the regression coefficients
for the predictor variables (drying parameters) 7’s, using equa-
tion (3) a; denote heterogeneity, for j = 1,2,..., f. That is, the
parameters that exhibit heterogeneity and € is the random error.

In equation 4 above, if the estimates of the regression equa-
tion are computed and a crucial variable is omitted, then the
estimate 8 will be biased and inconsistent. It is also possible
that some variables are correlated with the error term, which
violates the assumption of regression. According to Ref. [19],
the variance inflation factor in multiple regression is used to
quantify the level of severity. The coefficient of determination
can be written as:

1
R =1-—.

+aj+ei, (4)

If the R? satisfies certain conditions, then the parameter is
said to exhibit heterogeneity. According to Ref. [20] stated
that the variance inflation factor in multiple regression is used
to quantify the level of severity. It can be computed with Riz,
where Rl.2 fori = 1,2,..., p denote the quantity of determina-
tion between the i variable x; in the predictors matrix and the
variables not related to it according to Ref. [21].

Let:

I Xy Xi,p-1

1 X5 ... Xz,p—l
X' =1 . . s

1 an Xn,p—l

we can define:

e L 0’
xx=lo )

so that ryy is the correlation matrix representing the X variables.
Since:

By =

_#PnU]
0 rexl

the VIF; for i = 1,2,...,p — 1 stands for the i-th diagonal
element of r;&. If we show the proof for i = 1, the rows and
columns of rxy can be permutated for the remaining i. Let:

o’ (X*'X*)_1 ,

X12 Xl,p—l X“

X22 Xz,p_1 X21
Xy =] . : o K=

XnZ cee Xn,p—l an
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. , -1
Using Schur’s complement: = (1 ‘ﬁllx(,l)X(,—l)X(—l)ﬁle) ,

— — _] . .
rxx(1,1) = (m - rlX(_,)VX(I_I)X(_])"X<_1)1) , where B, represents the regression coefficient of X; on
X5,...,X,-1, excluding the intercept. For clarity, R% and VIF,
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are written as:

2

_ SSR_ Bix  XepXevBixe,
7 SSTO

] = Bix , XnBixc

and
1

_ -1 _
VIF, = rh(1,1) = T

6. Regression learning

6.1. Ridge Regression (RR)

Ridge regression is a valuable tool in agricultural research,
particularly when dealing with high multicollinearity accord-
ing to Ref. [22, 23]. The formula for ridge regression includes
a penalty term added to the ordinary least squares method to ad-
dress multicollinearity issues. This penalty term, controlled by
a tuning parameter A, shrinks the regression coefficients toward
zero, reducing the impact of multicollinearity while maintain-
ing the model’s predictive power according to Ref. [24]. The
coefficient of the ridge regression estimate S%* minimizes ac-
cording to Ref. [25]:

n )4 2 P
L@ =" (yi -Bo- Zﬁjxi,-] + 1> B )
1 j=1 j=1

i=

P
=SSR+ 4,
=1

where 4 > 0 is the regularization parameter controlling the
shrinkage. Ridge regression estimates coefficients that make
the SSR small and fit the data well. In equation (5) The term
A Zle ,85 is the shrinkage penalty according to Ref. [21].

6.2. Lasso Regression (LR)

Lasso regression, or Least Absolute Shrinkage and Selec-
tion Operator regression, is a type of linear regression that in-
cludes a regularization term for perform feature selection and
prediction according to Ref. [26, 27]. Lasso regression elim-
inates irrelevant data, offering an excellent fit for prediction
tasks without overfitting according to Ref. [27]. Lasso regu-
larization also provides built-in feature selection by allowing
coefficients to shrink towards zero according to Ref. [28]. The
coefficient of the Lasso regression estimate 324 minimizes
according to Ref. [27]:

; 2
L) = Z {yi —Bo - zplﬁjxij] + /12 1Bl (6)

i=1 j=1
)4
=SSR + 1 Z 1Bjl.
=1

In equation (6) the Lasso utilizes an L; penalty instead of an L,
penalty and Lasso will shrink the estimates of the coefficients
towards zero according to Ref. [28].

6.3. Robust regression

Robust regression is a technique used when the residuals do
not follow a normal distribution or when outliers influence the
model. It is a crucial tool for analyzing data affected by out-
liers, ensuring that the resulting models remain resilient against
such outliers according to Ref. [29]. In this study, we ap-
plied robust regression techniques to address outliers, including
S-estimation, M-estimation, MM-estimation, MM-bi square,
MM-Hampel, MM-Huber, M-Hampel, M-Huber, and M-Tukey
methods.

7. Robust regression estimations

7.1. S-Estimation

The robust regression model using S-estimation can elim-
inate up to 50% of outliers, resulting in a positive impact on
other data according to Ref. [30]. The S-estimator is defined
by:

Bs = Ilgn&s(el,ez,--.,en),

where G5 is determined by the minimum scale of the robust es-
timation according to Ref. [31, 32]. The S-estimator minimizes
the following:

p
& (Yi— Zj:()ﬁxij
min Z pPl———— 1|,
i=1 Is
where G5 is computed as:

median|e;—median(e;)|
0.6745

Vi S wie2. K =0.199

if iteration = 1

if iteration > 1

it

The solution is found by differentiating with respect to 3,
resulting in:

u yi = X0 Bxij
inj.pr(#]zo, j=0.1,2,....p

o
i=1 S

where p is a number of independent variables. i is a function
that represents the derivative of p:

u; [1 - (”?)2]2 , iflul <c

0 if ] > ¢

() = p'(u;) =

where c is a tunning constant.

7.2. M-Estimation method

M-estimation is a robust regression method where the prin-
ciple is to minimize the residual function. The M-estimator is
defined according to Ref. [33]:

n p
B = ngan[yi - Zﬂjx;j].
i=1 =0
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p i - i .
o o e L Vi — Zj:O B; xl{j Sns = median |e; — median(e;)| _ MAD
min )" p(u) = min ) p| =min ) p| ————|, 0.6745 0.6745
B = B 45" \OmaD B = OMAD

. . o ) In this method:
where MAD is the median absolute deviation and G yap is the

8



Afouna & Ali/ J. Nig. Soc. Phys. Sci. 7 (2025) 2314 9

B is the estimated beta of the M-estimation.

p represents the weighted residuals.

e; is the i-th residual.

The function p determines the robustness of the estima-
tor. Refer to Table 3 for detailed formulas.

7.3. MM-Estimation

The MM-estimation procedure involves two steps. First, the
regression parameters are estimated using S-estimation, which
minimizes the scale of the residuals. Then, M-estimation is
applied according to Ref. [34]. The MM-estimator is defined
as:

n
Yi—
Bum = Zpl ( x;j =0,
where SD,, ), is the standard deviation derived from the residu-
als of the S-estimation. The function p is based on the methods
of Tukey, Hampel, and Huber. Detailed formulas for these ro-
bust regression methods are provided in Table 4.

, oﬂjxu
SDym

7.4. Metrics for model comparison

Metrics for model comparison are essential to assessing the
suitability of a model. These metrics are crucial for determin-
ing whether a model is adequate. Common metrics include
Mean Absolute Percentage Error (MAPE), Mean Squared Er-
ror (MSE), Sum Squares of Error (SSE), and R-squared (R?).
These metrics measure the accuracy of the regression model in
predicting the dependent variable within an acceptable range of
accuracies. Model comparisons are typically made by consid-
ering the lowest MAPE, MSE, and SSE values, and the highest
R? value [35]. The equations for these metrics are presented in
Table 4, where:

e Y, is the actual value,
e ¥ is the mean value,
e ¥;is the predicted (estimated) value,

e 7 is the number of observations.

8. Results and discussion

Based on Figure 5, the scatter plot of standardized resid-
uals shows horizontal red lines at -3 and +3, which represent
the threshold for residuals that are three standard deviations
from the mean. Residuals outside this range (either below -3
or above 3) are flagged as potential outliers, suggesting that the
model may not be fitting these data points well. The plot re-
veals several points that exceed the -3 to +3 range, indicating
the presence of outliers. These outliers could have a significant
impact on the model’s predictions and may potentially distort
the overall results.

Table 5 and Table 6 present metrics for model comparison
for Ridge and Lasso regression using robust methods for 50,

100, 150, 200, 250, and 300 high-ranking variables, both before
and after addressing heterogeneity. The evaluation metrics in-
clude Mean Absolute Percentage Error (MAPE), Mean Squared
Error (MSE), Sum of Squares of Error (SSE), and R-squared
(R?). The results are displayed for varying numbers of high-
ranking variables: 50, 100, 150, 200, 250, and 300. To assess
prediction accuracy, the predicted responses are compared to
the actual responses for each regression model using validation
methods. For all high-ranking variables, MAPE, MSE, and SSE
decrease while R? increases as the number of high-ranking vari-
ables rises for both Ridge and Lasso across all robust methods,
including M-estimation, S-estimation, MM-estimation, MM-bi
square, MM-Hampel, MM-Huber, M-Hampel, M-Huber, and
M-Tukey methods.

In Ridge regression, the MM Hampel method significantly
outperformed other techniques for 50 high-ranking variables
before addressing heterogeneity. The performance metrics
for MM Hampel included a Mean Absolute Percentage Er-
ror (MAPE) of 8.801508, a Mean Squared Error (MSE) of
45.81388, a Sum of Squares of Error (SSE) of 87,687.77, and
an R-squared (R?) of 0.8325343. However, after heterogene-
ity was accounted for, the M method emerged as the best per-
former, with a MAPE of 9.974874, an MSE of 48.1354, an
SSE of 92,131.16, and an R-squared (R?) of 0.8240484. For
100 high-ranking variables, the MM method delivered signifi-
cantly better results before addressing heterogeneity compared
to other methods. The performance metrics for MM were:
Mean Absolute Percentage Error (MAPE) of 7.889334, Mean
Squared Error (MSE) of 34.66241, Sum of Squares of Er-
ror (SSE) of 66,343.86, and an R-squared (R?) of 0.8732968.
Even after accounting for heterogeneity, the MM method con-
tinued to demonstrate superior performance, with a MAPE of
8.973277, an MSE of 39.5754, an SSE of 75,747.32, and an
R-squared (R?) of 0.8553381. For 150 high-ranking variables,
the MM method delivered significantly better results before ad-
dressing heterogeneity compared to other methods. The per-
formance metrics for MM were: Mean Absolute Percentage
Error (MAPE) of 7.562458, Mean Squared Error (MSE) of
34.19317, Sum of Squares of Error (SSE) of 65445.73, and an
R-squared (R?) of 0.8750121. Even after accounting for het-
erogeneity, the MM method continued to demonstrate superior
performance, with a MAPE of 8.273413, an MSE of 36.40819,
an SSE of 69685.28, and an R-squared (R?) of 0.8669154.
For 200 high-ranking variables, the M-Tukey method outper-
formed other methods before addressing heterogeneity. The
performance metrics for M-Tukey included a Mean Absolute
Percentage Error (MAPE) of 7.33001, a Mean Squared Er-
ror (MSE) of 33.59276, a Sum of Squares of Error (SSE) of
64,296.54, and an R-squared (R?) of 0.8772068. After account-
ing for heterogeneity, the MM Hampel method proved to be su-
perior, achieving a MAPE of 8.010758, an MSE of 34.84692,
an SSE of 66,697, and an R-squared (R?) of 0.8726224. For
250 high-ranking variables, the M-Tukey method significantly
outperformed other approaches before addressing heterogene-
ity. The performance metrics for M-Tukey were a Mean Ab-
solute Percentage Error (MAPE) of 7.310033, a Mean Squared
Error (MSE) of 30.83707, a Sum of Squares of Error (SSE)
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of 59,022.15, and an R-squared (RZ) of 0.8872798. Even after
accounting for heterogeneity, the M-Tukey method remained
superior, achieving a MAPE of 8.098266, an MSE of 34.7557,
an SSE of 66,522.41, and an R-squared (R?) of 0.8729558. For
300 high-ranking variables, the MM-bisquare method achieved
notably better results than other methods before addressing het-
erogeneity. The performance metrics for MM-bisquare were a
Mean Absolute Percentage Error (MAPE) of 6.826407, a Mean
Squared Error (MSE) of 28.0242, a Sum of Squares of Error
(SSE) of 53,638.32, and an R-squared (R?) of 0.8975618. Af-
ter accounting for heterogeneity, the MM method still demon-
strated strong performance, with a MAPE of 6.962468, an MSE
of 29.09346, an SSE of 55,684.88, and an R-squared (R?) of
0.8936533.

In Lasso regression, for 50 high-ranking variables, the MM
Huber method achieved notably better results before address-
ing heterogeneity compared to other methods. The performance
metrics for MM Huber were: Mean Absolute Percentage Error
(MAPE) of 8.968910, Mean Squared Error (MSE) of 44.51771,
Sum of Squares of Error (SSE) of 85,206.9, and an R-squared
(R?) of 0.8372723. After accounting for heterogeneity, the MM
bi-square method demonstrated superior performance with met-
rics of MAPE of 9.210072, MSE of 43.5384, SSE of 83,332.51,
and R-squared (R?) of 0.840852. For 100 high-ranking vari-
ables, the MM Hampel method showed significantly better re-
sults before addressing heterogeneity compared to other meth-
ods. The performance metrics for MM Hampel were: MAPE of
8.800533, MSE of 45.13168, SSE of 86,382.03, and R-squared
(R?) of 0.835028. After addressing heterogeneity, the MM bi-
square method excelled with metrics of MAPE of 8.997942,
MSE of 43.99379, SSE of 84,204.11, and R-squared (R?) of
0.8391874. For 150 high-ranking variables, the MM method
achieved significantly better results before heterogeneity com-
pared to other methods. The performance metrics for MM
were: MAPE of 8.457516, MSE of 39.59102, SSE of 75,777.2,
and R-squared (R?) of 0.8552811. After addressing hetero-
geneity, the MM Huber method demonstrated superior perfor-
mance with metrics of MAPE of 8.482080, MSE of 38.69286,
SSE of 74,058.14, and R-squared (R?) of 0.8585641. For 200
high-ranking variables, the MM Hampel method achieved no-
tably better results before addressing heterogeneity compared
to other methods. The performance metrics for MM Ham-
pel were: MAPE of 8.333713, MSE of 37.74151, SSE of
72,237.25, and R-squared (R?) of 0.8620417. After account-
ing for heterogeneity, the MM method showed superior perfor-
mance with metrics of MAPE of 8.468777, MSE of 39.51445,
SSE of 75,630.66, and R-squared (R?) of 0.8555609. For 250
high-ranking variables, the M-Tukey method delivered signifi-
cantly better results before addressing heterogeneity compared
to other methods. The performance metrics for M-Tukey were:
MAPE of 8.358520, MSE of 37.88064, SSE of 72,503.54, and
R-squared (R?) of 0.8615331. After addressing heterogeneity,
the M method demonstrated superior performance with metrics
of MAPE of 8.379303, MSE of 38.59054, SSE of 73,862.29,
and R-squared (R?) of 0.8589381. For 300 high-ranking vari-
ables, the MM method achieved significantly better results
before addressing heterogeneity compared to other methods.
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The performance metrics for MM were: MAPE of 8.123120,
MSE of 37.28122, SSE of 71,356.25, and R-squared (R?) of
0.8637242. After addressing heterogeneity, the MM Hampel
method showed superior performance with metrics of MAPE of
8.197567, MSE of 37.64827, SSE of 72,058.79, and R-squared
(R?) of 0.8623825. According to Ref. [36] suggests that model
comparisons should be made based on the lowest values of
RMSE, rRMSE, MAPE, MAD, and AIC, as well as the highest
values of R? and adjusted R?. In this study, achieving accuracy
and precision was determined by finding the models with the
lowest MAPE, MSE, and SSE values, and the highest R2 values.
The R%, MAPE, MSE, and SSE are crucial metrics in regres-
sion analysis since they are specially formulated for evaluating
model performance for continuous numerical data. R? mea-
sures the percentage of variation in the dependent variable ex-
plained by the independent variables, making it a vital statistic
to evaluate the accuracy of a regression model’s fit to the data.
MAPE provides an accurate, obvious, percentage-based evalu-
ation of model error, especially helpful in forecasting applica-
tions. MSE and SSE evaluate the extent of prediction errors by
squaring the differences between actual and predicted values,
giving them sensitivity to significant variations, which is cru-
cial for ensuring that models avoid ignoring significant errors.
These measures have the purpose of evaluating the accuracy of
continuous predictions, in contrast to classification metrics like
AUC (Area Under the Curve) or the F-score, which examine
the efficacy of models predicting categorical outcomes. The
AUC is irrelevant in regression assignments since it evaluates
the relationship between true positive and false positive rates
in binary classification, while the F-score heals the two factors,
which are not relevant to continuous data. Consequently, re-
gression measures focus on the minimization of the difference
between observed and predicted continuous values, providing
them more suitable than metrics produced for classification.
Table 7 presents metrics for model comparison between the
original for Ridge and Lasso regression with the best model
of robust methods for 50, 100, 150, 200, 250, and 300 high-
ranking variables, both before and after addressing heterogene-
ity. The evaluation metrics include Mean Absolute Percentage
Error (MAPE), Mean Squared Error (MSE), Sum of Squares of
Error (SSE), and R-squared (R?). In the ridge regression for the
300 high-ranking variables before heterogeneity, the Original
Model shows a MAPE of 7.063511 and an R? of 0.9054084.
In contrast, the MM Bisquare method significantly improves
the MAPE to 6.826407, with an R? of 0.8957618. This sug-
gests that the MM Bisquare method enhances prediction ac-
curacy with only a minimal impact on the model fit, mak-
ing it an excellent choice for this high-ranking variable set
(50,100,150,200,250). After heterogeneity, the Original Model
has a MAPE of 7.019137 and an R? of 0.9059521. The MM
method improves the MAPE slightly to 6.962468, although
with a marginally lower R? of 0.8936533. This indicates that
while the MM method offers a modest improvement in accu-
racy, it comes with a slight reduction in the model fit, following
a similar pattern observed before heterogeneity was addressed.
The best model for the before heterogeneity of Ridge with MM
bisquere and the after heterogeneity of Ridge with MM method
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is shown in Figure 6 Previous studies have shown that MM es-
timation, which combines high breakdown point estimation (S-
estimation) with M-estimation, outperforms S-estimation alone
according to Ref. [33]. Additionally, research According to
Ref. [34] introduced the Robust Ridge Regression estimator
based on MM (RMM). This RMM, which incorporates a robust
MM estimator, was found to outperform other methods across
various disturbance distributions and levels of multicollinear-
ity. This suggests that RMM is the most effective estimator
for handling outliers and multicollinearity within the context of
ridge regression. Similarly, according to Jeremia et al. [19] ob-
served that addressing multicollinearity and outliers solely with
Robust regression or Ridge regression is insufficient. Instead,
Robust Ridge regression, which merges Robust regression with
Ridge regression, effectively addresses both issues simultane-
ously. Their results demonstrated that integrating Robust re-
gression with generalized Ridge regression results in a lower
Mean Squared Error (MSE) compared to using Ridge regres-
sion alone. Since a lower MSE indicates a better estimator, it
can be concluded that combining generalized Ridge regression
with Robust regression is superior to using Ridge regression on
its own.

Table 8. shows the comparison of the number and percent-
age of outliers exceeding 2-sigma and 3-sigma limits for Ridge
and Lasso with robust regression, both before and after, for
50, 100, 150, 200, 250, and 300 high-ranking variables. For
2-sigma limits, the hybrid Ridge model with the Hampel esti-
mator before heterogeneity showed the fewest outliers, totaling
74, which represents a 21% reduction compared to the original
model. For 300 high-ranking variables, the hybrid Lasso model
with the Hampel estimator after heterogeneity had the fewest
outliers at 83, marking a 9% reduction compared to the orig-
inal model. For 3-sigma limits, the hybrid Lasso model with
the S estimator before heterogeneity had the smallest number
of outliers at 17, reflecting a 26% reduction compared to the
original model. After heterogeneity, the hybrid Lasso model
with the S estimator had the fewest outliers at 16, also show-
ing a 26% reduction compared to the original model. Figure
6. shows the residuals for the best model for Ridge and Lasso
with the robust method for 300 high-ranking variables using a
3-sigma limit for before and after heterogeneity. The residual
plots for Ridge and Lasso models, before and after accounting
for heterogeneity, provide valuable insights into model perfor-
mance. Before adjusting for heterogeneity, the residuals dis-
play noticeable patterns and varying spread, suggesting poten-
tial issues with model fit. After correcting for heterogeneity us-
ing MM and Hampel estimators, the residuals are more evenly
distributed around zero, indicating improved model accuracy.
However, some residual patterns and outliers persist, highlight-
ing the need for further refinement, possibly by including addi-
tional variables or tuning the models. Overall, the adjustments
for heterogeneity significantly enhance the model’s reliability,
though more work may be needed to fully address the remain-
ing issues.

Table 9 presents a comparison between the results of this
study and previous studies. Mukhtar et al. [4] highlighted chal-
lenges related to irrelevant variables and outliers across 30 high-
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ranking variables, with the best hybrid model being Random
Forest combined with Hampel, yielding a MAPE of 9.160917
and R? of 0.838757. In another study, Mukhtar et al. [5] dis-
cussed the primary challenges of multicollinearity and outliers
for the same set of variables, where the Lasso model with Ham-
pel showed a MAPE of 9.17489 and R? of 0.8230399. Ibidoja
et al. [6] addressed outlier challenges for 15, 25, 35, and 45
high-ranking variables, with the Bagging model using M Bi-
square for 45 variables achieving a MAPE of 8.151903 and
R? of 0.876975. According to Ibidoja et al. [7], challenges
such as heterogeneity, multicollinearity, and outliers were ad-
dressed, and for 45 variables, the best hybrid model was Ran-
dom Forest with Hampel (before heterogeneity), with a MAPE
of 2.12589 and R? of 0.9732063. After accounting for hetero-
geneity, Boosting with M Hampel gave a MAPE of 8.228835
and R? of 0.5510545. Further, Ibidoja et al. [38] focused on
heterogeneity and outliers, with Lasso using M Bi-square (sin-
gle parameter added) for 45 variables achieving a MAPE of
8.149872 and R? of 0.8845778. In this study, challenges in-
volving heterogeneity and outliers were examined for 50, 100,
150, 200, 250, and 300 high-ranking variables. The Ridge
model with MM Bi-square before heterogeneity for 300 vari-
ables showed the lowest MAPE (6.826407) and highest R?
(0.897561), followed by Ridge with MM after heterogeneity
(MAPE = 6.962468, R?> = 0.8936533), Lasso with MM before
heterogeneity (MAPE = 8.123120, R? = 0.863724), and Lasso
with MM Hampel after heterogeneity (MAPE = 8.197567, R?
= 0.862382). Across 300 variables, this study demonstrated the
best overall performance, with the lowest MAPE and highest
R? values.

Robust approaches are used in statistical modeling for deal-
ing with challenges such as outliers. In research, outliers and
variability in distributions are prevalent, and traditional regres-
sion models such as Ordinary Least Squares (OLS) can demon-
strate significant sensitivity to these variables, resulting in in-
correct or inefficient results. Robust methodologies, such Lasso
and Ridge, supplemented with outlier-resistant approaches such
S, M, MM, MM Bi-square, MM Hampel, MM Huber, M Ham-
pel, M Huber and M Tukey, are specifically designed to solve
these challenges by minimizing the impact of outliers and han-
dling complex data structures more efficiently. These estima-
tors effectively handle extreme values by changing them with
more accurate estimates, so keeping the model’s ability to gen-
eralize without bias from outliers. Methods such as Lasso
and Ridge minimize multicollinearity by regularization, which
penalizes significant coefficients and improves model stability
among correlated variables. These effective techniques are cru-
cial for improving prediction accuracy and providing more reli-
able ideas, particularly when the data is noisy or displays irreg-
ular patterns. Consequently, robust methodologies are crucial
for constructing models capable of handling the complicated
nature of real-world data without reducing performance.
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Table 2: Representation of factors.

Symbols Factors Meanings

Y Dependent Moisture Content

H1 Independent Relative Humidity (Ambient)

H5 Independent Relative Humidity (Chamber)

PY Independent Solar Radiation

Tl Independent Temperature (°C) Ambient

T2, T3, T4 Independent Temperature (°C) Prior to Entering the Solar Col-
lector

TS Independent Temperature (°C) Opposite the Down V-Groove
(Solar Collector)

T6, T8 Independent Temperature (°C) in Front of the Up V-Groove (So-
lar Collector)

T7,T14,T15,T16, T21, T22 Independent Temperature(°C) for the Solar Collector

T9,T10, T11, T12 Independent Temperature (°C) Behind the Inside Chamber

T13,T17,T19 Independent Temperature (°C) in Front of the Inside Chamber

T23, T25, T26, T27, T28, T29  Independent Temperature (°C) from the Solar Collector to the

Chamber

Table 3: Formulas for robust

regression M, MM Method [5].

Methods

Objective Function

Bisquare (Tukey’s Bisquare)

d
6 °

= %{1—(1—(%)2)1, if Ju < c

if lu;| > ¢

where ¢ = 4.685.

2
ll’-

ifO<|ul <a

7,
Hampel o) = alu;| - %, ifa<|ul<b
2(;—f’b)(c—u,-)2+ Sb+c—a), ifb<lul<c
wherea =2,b=4,c =8
1.2 .
SUs, if luj] < ¢
Huber plu) =327 o
cluil = 5¢%, if ful > ¢

where ¢ = 1.345

Table 4: Metrics for model comparison [36].

Metrics

Equation

Mean Absolute Percentage Error
(MAPE)

Mean Squared Error (MSE)
Sum of Squares of Error (SSE)

R-squared (R?)

MAPE = Ly ‘%‘ x 100

A2
MSE = 1 51, (¥ - 7))
SSE = 31, (¥i- %)’

R Zhet)
2;21(1%’?)“
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9. Conclusion

The results indicate that the top-performing hybrid mod-
els across various conditions were: the best model are Ridge
model with the MM bi squares before heterogeneity, the Ridge
model with the MM method after heterogeneity and the Lasso
model with the MM method before heterogeneity, the Lasso
model with MM Hampel after heterogeneity. These models
showed better prediction accuracy (lower MAPE) arises from
its ability to reduce the influence of outliers, leading to more
reliable predictions for most data points. However, this ro-
bustness results in a model that captures slightly less overall
variance, reflected in the lower R2. Conversely, the original
model captures more variance by fitting to all data points, in-
cluding outliers, but at the cost of prediction accuracy for the
majority of the data. For 2 sigma , the best model before het-
erogeneity is the Ridge model with the Hampel estimator be-
fore heterogeneity, while after heterogeneity the Lasso model
with the S estimator . additionally, for 3-sigma limits the best
model is the Lasso model with the S estimator both before and
after heterogeneity .These models showed significantly better
performance. This study’s novelty is the combination method-
ology utilizing Ridge, Lasso, and robust regression techniques,
effectively solving important problems in precision farming, in-
cluding outliers and multicollinearity. This method has shown
higher efficiency comparing with standard regression methods
by improving prediction accuracy and model stability, espe-
cially in high-dimensional datasets. Future study require be
focused on improving these robust models to deal with larger
and more complex data, in addition to investigating their ap-
plicability in different agricultural environments. Developing
these hybrid methodologies will enable the improvement of
forecasting models for various agricultural systems and improv-
ing decision-making processes in agriculture. It demonstrates
that hybrid models, which combine Ridge and Lasso regres-
sion with robust techniques such as MM, Hampel, and S esti-
mators, could significantly improve prediction accuracy in pre-
cision agriculture. These models improve by minimizing the
impact of outliers and effectively addressing multicollinearity,
resulting in more accurate predictions. By focusing on the most
significant factors in high-dimensional datasets, farmers may
more effectively identify which variables (such as soil condi-
tions, weather, and crop features) have a significant effect on
crop yields. This improved comprehension facilitates more ef-
ficient decision-making, allowing farmers to allocate resources
with more accuracy while controlling variability between their
agricultural land more efficiently. Improving the accuracy of
prediction, these models immediately assist expense savings
and profit addition. Optimized forecasts assist farmers to maxi-
mize resource allocation, including water, fertilizers, and labor,
by selecting locations with the highest possibility of production
improvement. This reduces unnecessary costs and reduces the
wastage of resources. Moreover, minimizing the effect of out-
liers enables farmers to stay away from reacting to infrequent
or severe occurrences, hence improving decision-making relia-
bility. The end result includes higher crop yields, more efficient
application of resources, less operating costs, and finally, im-
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proved profitability in precision agriculture.
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