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Abstract

The prevalence of class imbalance is a common challenge in medical datasets, which can adversely affect the performance of machine learn-
ing models. This paper explores how several data imbalance mitigation techniques affect the performance of cardiovascular disease prediction.
This study applied various data balancing techniques on a real-life cardiovascular disease (CVD) dataset of 1000 patient records with 14 fea-
tures obtained from the University of Abuja Teaching Hospital Nigeria to address this problem. The data balancing techniques used include
random under-sampling, Synthetic Minority Over-sampling Technique (SMOTE), Synthetic Minority Oversampling-Edited Nearest Neighbour
(SMOTE-ENN), and the combination of SMOTE and Tomek Links undersampling (SMOTE-TOMEK). After applying these techniques, their
performance was evaluated on seven machine learning models, including Random Forest, XGBoost, LightGBM, Gradient Boosting, K-Nearest
Neighbours, Decision Tree, and Support Vector Machine. The evaluation metrics used are precision, recall, F1-score, accuracy, and receiver oper-
ating characteristic-area under the curve (ROC-AUC). Learning curve plots were also used to showcase the impact of the different data balancing
techniques on the challenges of overfitting and underfitting. The results showed that the application of data balancing techniques significantly
enhances the performance of machine learning models in heart disease prediction and effectively addresses the challenges of overfitting and under-
fitting with SMOTE-TOMEK, yielding the best-balanced fit as well as the highest precision, recall, F1-score, accuracy of 92%, and ROC-AUC of
96% on the Lightweight Gradient Boosting Machine (LightGBM) model. These results underscore the critical role of data balancing in predictive
modelling for heart disease and highlight the effectiveness of specific techniques and models in achieving accurate, more reliable, and generalised
predictions.
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1. Introduction

Cardiovascular disease (CVD) is a major worldwide health
issue; for every year, it is estimated to cause 31% of deaths
globally (WHO, 2024). In low and middle-income nations es-
pecially, CVD causes a very heavy burden, with about 80%
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of all CVD fatalities reported occurring in these countries [1].
Similar to many developing countries, CVD remains a growing
threat in Nigeria primarily due to factors such as urbanisation,
efficient changes in life patterns, and longer years to live [2].
It is imperative to diagnose CVD risk early and provide pre-
cise predictions to ensure early interventions and assessments.
Over the last few years, the next approaches of machine learn-
ing (ML) have demonstrated potential in improving CVD risk
estimation, which appears to provide superiority to the conven-
tional statistical techniques [3]. However, the general develop-
ment of reliable and accurate ML models for CVD prediction
encounters numerous challenges, among which is the class im-
balance problem prominent in medical datasets.

The case of class distribution where one class is signifi-
cantly smaller than the other class, for example, patients with
CVD are fewer than healthy people, is typical for medical data
[4, 5]. This can lead to the development of models that, al-
though useful in the real world, offer very high true positive
rates for the majority class and a very poor performance or iden-
tification of the minority class cases, even those that are likely to
have more clinical relevance [6]. However, this has been seen as
a challenge, and to resolve this, a number of data balancing ap-
proaches have been advocated for and have been used in differ-
ent areas of healthcare predictive modelling. Accordingly, these
methods are intended to provide a better distribution of data and
seemingly lead to better performance and better generalisation
of ML algorithms. Some of them are random sampling of the
majority class, synthetic minority oversampling technique, and
a few others are SMOTE-ENN and SMOTE-TOMEK [7, 8].

As these data balancing techniques have been demonstrated
useful in numerous medical applications, their potential for
CVD risk prediction as well as in the more diverse populations
remains relatively uninvestigated. There is a dearth of such
knowledge, particularly as it concerns the African population
groups, which form the larger part of the global population, yet
their representation in the informatics literature in the field of
global health is limited [9].

To fill this knowledge gap, our study proposes to investigate
the effect of several approaches to data imbalance handling on
the performance of developing CVD prediction models. We
use a data set from the University of Abuja Teaching Hospi-
tal in Nigeria and therefore add to the developing literature on
CVD risk in Africans. Using four approaches that include ran-
dom under-sampling, SMOTE over-sampling, SMOTE-ENN,
and SMOTE-TOMEK, it is proposed to increase the predic-
tive precision as well as the consistency of the ML models in
the evaluation of CVD risk. Furthermore, we evaluate the per-
formance of seven widely used ML algorithms: random for-
est, XGBoosting, light GBM, gradient boosting, KNN, deci-
sion tree, and SVM. These algorithms have shown significant
success in other medical prediction activities, although the re-
sponse of these algorithms to class imbalance and particularly
when classifying CVD prediction remains an area of interest
that needs further exploration [10].

For the extensive analysis of the effectiveness of the data
balancing techniques on model performance, we have used
evaluation metrics such as precision, recall, F1-score, accuracy,

and ROC-AUC. Also, using Learning Curve plots, we show the
impact of various data balancing approaches on the problems
of overfitting and underfitting, which arise in the process of de-
veloping an ML model [11]. By following this extensive ap-
proach, our effort intends to provide significant findings in the
testing efficiencies of the data balancing methods for CVD pre-
diction. These findings should be of valuable use in establish-
ing a further understanding of the variables involved as well as
more precise and justifiable expected patterns that will one day
enhance the cardiovascular health of Nigeria and perhaps other
comparable nations.

This paper is segmented into five sections, with section 1
detailing the introduction, section 2 presenting the literature
review, and section 3 talking about the materials and meth-
ods. Here the collected data was described, how the data
was processed explained, and the different algorithms used for
the model’s development for the different data balancing tech-
niques explained, in addition to the explanation of the perfor-
mance evaluation metrics. In section 4, the experiment per-
formed was explained in detail together with the results ob-
tained from them. Moreover, some comparison among the re-
sults is made in order to evaluate their applicability concerning
several criteria. Lastly, section 5 provides a conclusion and re-
search implications as well as introduces directions for future
research.

2. Review of related works

Ref. [12] focused on novel techniques to predict heart dis-
ease using machine learning dependent on artificial neural net-
works (ANNs) to examine different issues like data intricacy,
elements of selection, as well as over-learning. The researchers
aimed to enhance the precision of early diagnosis, thereby
aiding in medical decision-making and customizing treatment
strategies. To balance the dataset, the study used the SMOTE
algorithm and the Edited Nearest Neighbours (ENN) algorithm.
They used different machine learning techniques such as logis-
tic regression, decision trees, random forests, gradient-boosting
decision trees, XGBoost, SVM, and ANN. Their results re-
vealed that ANN obtained satisfactory performance, with an
accuracy of 0.808 and a recall of 0.81. This research has there-
fore shown that ANN has the possibility of enhancing the diag-
nosis and management of heart diseases. The application of the
SMOTE data balancing technique has contributed to the perfor-
mance accuracy of the model. This research did not showcase
the effect of overfitting or underfitting on the proposed mod-
els; also, the proposed models performance can be enhanced to
achieve higher accuracy using a more effective data balancing
technique.

Machine learning was used by Ref. [13] as a vital tool
to detect a heart disease because of its severe effects on the
health of individuals. This work employed oversampling tech-
niques, attribute reduction, the Classification And Regression
Tree (CART) decision tree classifier, and rule reduction by op-
timising hyperparameters for improved prediction and to de-
termine relative attributes influencing heart malfunctions. The
researcher did show that by using the SMOTE over-sampling,
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Figure 1. Methodology.

the study was able to achieve over 11% increase in overall ac-
curacy, 75% increase in precision, 62% increase in recall, and
71% increase in F1 score when compared to using the unsam-
pled datasets. It is noteworthy that the study achieved the high-
est performance of 0.801 accuracy, 0.79 precision, 0.832 recall,
0.807 f1 score, and 0.68 AUC ROC. The work showed how
this algorithm is the perfect match for dealing with highly im-
balanced datasets, along with its ability to detect key features
linked to heart disease.

Ref. [14] proposed a framework to predict heart disease, a
major killer, in the world using machine learning approaches.
The proposed Decision Tree (DT) algorithm was implemented
using the Cleveland Heart Disease dataset, with 14 significant
quantitative features. Aware of the fact that one class may con-
tain much more samples than the other, the synthetic minor-
ity oversampling technique (SMOTE) was used to balance the
data. The researcher used the Weka tool to show that tuning the
distribution to its optimal state successfully improves the clas-
sifications, with the best score of 73.3% for the DT algorithm
when using unbalanced data and the best score of 68.6% for the
sap algorithm when using balanced data. The improvement re-
sulting from the equal distribution of the dataset improved the
classification performance from 73.3% to 91.4%. This work
also emphasises the need for mitigating bias in data to enhance
the accuracy of heart disease diagnosis prediction.

Ref. [15] examined a machine learning algorithm to predict
some gentle coronary susceptibility, a major killer in global so-
ciety. Their study used classification algorithms like random
forest, logistic regression (LR), K-nearest neighbour (KNN),

decision tree, Xtreme Gradient Boosting (XGboost), convolu-
tional neural network (CNN), and Kaggle dataset based on the
parameters like age, gender, and cholesterol level. For han-
dling the issue related to data imbalance, they used methods
such as random undersampling, oversampling, SMOTE, and
density-based SMOTE (DBSMOTE) and found better model
performance. After the data balancing step, the CNN algorithm
achieved an accuracy of 90%, which is higher compared to the
results of other algorithms: XGBoost with 89.83% and LR with
89.82%. This work affirms the possibility of using machine
learning in the identification of risk factors for heart diseases
and calls for the adoption of the method in the healthcare sector
for early prognosis.

Ref. [16] proposed heart disease prediction via online con-
sultation mechanically aided by the Support Vector Machine
(SVM) machine learning model. The study employed data to
train models on features such as patients age, gender, blood
pressure, cholesterol levels, and medical history. Patients of-
fered similar information during consultations in the form of
symptoms, lifestyles, and some kind of medical tests where
they were given estimated heart disease risks. On their part,
they pointed out that Support Vector Machine (SVM) was bet-
ter than most other models with a prediction accuracy of 89%
on the heart disease factor. This approach showcases the po-
tential of machine learning in increasing the precision of heart
disease diagnoses and the utilisation of remote consultations to
lessen the load on health care facilities. The drawback of this
study is its deficiency in level of prediction accuracy, which can
be attributed to an inbalanced dataset and can be enhanced by
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applying data balancing.
Ref. [17] carried out a study on cardiovascular disease pre-

diction and how the application of machine learning can en-
hance its diagnosis, eventually diminishing mortality rates. To
increase classification accuracy, they developed the k-modes
with Huang’s initialisation strategy. Models used in the study
include Random Forest, Decision Tree, Multilayer Perceptron
(MP), and XGBoost, in all of which hyperparameter optimisa-
tion through GridSearchCV was applied. Their models perfor-
mance lies between 86.37 and 87.28% accuracy when tested on
a Kaggle dataset of 70000 samples; the Multilayer Perceptron
came out on top with an accuracy of 87.28% and an AUC of
0.95. MP usage shows that this technique can be useful in en-
hancing cardiovascular disease prediction. The prediction ac-
curacy of this study requires improvement; also, the effects of
overfitting and underfitting were not considered in this study;
these can be handled through the application of data balancing.

In their review of heart disease prediction and selection of
features for better ML model performance [18]. They evaluated
the effect of feature selection on the performance of their mod-
els on two datasets: CVD and Framingham heart disease. The
studies started with the feature transformation, cleansing, and
balancing with random down sampling and went through fea-
ture selection based on the ANOVA-F test. It was noted that re-
vealing the age, hypertension, glucose, prior heart disease, and
blood pressure statistics, the number of associated factors can
be considered to be targeted in relation to heart diseases. The
study compared full and reduced features with and without pre-
processing the data to examine the consequent accuracy, where
use of reduced features gave slightly better estimates of accu-
racy, going from 0.73 to 0.75 on the CVD dataset and from
0.66 to 0.71 on the Framingham dataset. The results suggested
that feature selection can be beneficial in increasing the level
of accuracy, on the other hand, while at the same time min-
imising the computational costs. Balancing the dataset makes
the model more reliable and also enhances the prediction accu-
racy. The authors proposed further studies by combining ma-
chine learning and deep learning to enhance the prediction of
the model and use other feature selection methodologies for the
more relevant datasets to diagnose heart disease. This study has
a deficiency in the prediction accuracy, which can be improved
on with a more effective data balancing technique.

Ref. [19] also paid attention to the problem of imbalanced
datasets in heart disease prediction and presented a new divide-
and-conquer data balance program based on the K-Means clus-
tering algorithm. This method divides the data into different
sections to increase the performance of the classifier, which is
less prone to the risk of getting overfit and underfit, mainly fo-
cusing on accuracy, precision, and recall values, which are vital
in giving correct medical predictions. In contrast to previous
research, which frequently assessed models on a single data
set, this study used two data sets to provide consistent, stable
model performance with accuracy increases ranging from 81%
to 90%. The result of the statistical analysis further supported
the reliability of the model with a confidence interval of 0.95%
for AUC at a range of 0.8187 to 0.8411. The balancing of the
dataset also contributed to the high performance accuracy of

this study. Furthermore, the combination of Explainable AI
(XAI) was used to examine feature contributions in the Ran-
dom Forest model, which was deemed the best on the compre-
hension of the subject matter specialist, which in turn enhances
the model’s interpretability and possible clinic application. The
prediction accuracy of this model requires further improvement
using a more effective data balancing technique.

In their study, Ref. [20] look at the large health threat made
by CVDs, which are now the leading global killers. Since a list
of complications linked to CVDs comprises hypertension, coro-
nary heart disease, heart failure, angina, myocardial infarction,
as well as stroke, the authors stress the significance of preven-
tion and effective early diagnosis. The study therefore recom-
mended the use of a supervised machine learning method to
create accurate prediction models for CVDs, especially given
that using SMOTE is well known to handle imbalanced data
sets. The following key risk factors were chosen as inputs for
the binary classification and for training multiple ML models
with and without SMOTE: The study confirmed that the higher
level of accuracy, recall, and specificity were observed for the
model that applied SMOTE with 10-fold cross-validation, hav-
ing accuracy of 87.8%, recall of 88.3%, precision of 88%, and
AUC of 98.2%. The authors suggested that the stacking en-
semble model provides great potential as a valid tool for the
prognosis of CVDs. The prediction accuracy of this model can
be enhanced.

Table 1 showcases the summary of the related works re-
viewed, considering their achievements and challenges.

3. Materials and methods

Cardiovascular disease datasets having 15 features, col-
lected from records of 1000 patients of the University of Abuja
Teaching Hospital, which contained features related to demo-
graphic, clinical, and lifestyle factors, along with the binary tar-
get variable indicating the presence or absence of CVD, were
utilised in this study. The dataset was preprocessed to handle
missing values, normalise features, and encode categorical vari-
ables. To evaluate the effectiveness of data imbalance correc-
tion techniques, we employed three approaches: oversampling,
undersampling, and SMOTE. Comparisons were drawn with
models developed using the baseline models. Figure 1 shows
an overview of the adopted methodology.

3.1. Data collection and description

The dataset utilised was extracted from the patient’s record
of the University of Abuja Teaching Hospital (UATH), which
contains medical information for one thousand (1000) patients.
It consists of information on 348 females and 652 males who
had come for medical help in the hospital. The dataset consists
of a total of 1000 data points with 15 features. Table 2 sum-
marizes the features of the dataset. However, four of the fifteen
features are numeric, while the remaining eleven are boolean.
Therefore, the statistical information of the numerical attributes
is tabulated in Table 3. Following that, the dataset was im-
ported into Jupyter Notebook and was subjected to exploratory
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Table 1. Summary of related works reviewed.
S/N Paper &

Year
Research Outcome Research Limitations

1 [19] Applied a new divide-and-conquer data
balance technique based on the K-
Means clustering algorithm to achieve
highest accuracy of 90%

The study did not showcase the ef-
fect of data balancing on overfit-
ting/underfitting. Also a more effective
data balancing technique can be applied
to enhance the accuracy.

2 [12] Applied SMOTE data balancing and at-
tained prediction accuracy of 0.808.

Prediction accuracy requires improve-
ment.

3 [15] Applied Random undersampling, over-
sampleing, SMOTE, and DBSMOTE
with CNN to attain highest accuracy of
90%

The accuracy can be enhanced. Also the
effect of overfitting/underfitting were
not showcased.

4 [20] Utilized SMOTE with 10-fold cross-
validation to attain highest accuracy of
87.8%.

The accuracy can be enhanced and
also the effect of overfitting/underfitting
showcased.

5 [17] Multilayer Perceptron was applied to at-
tain highest accuracy of 87.28%

There is need for data balancing and im-
provement of the prediction accuracy.

6 [16] This study utilised SVM to train their
data with selected features and attained
a highest accuracy of 89%

Data balancing was not considered,
neither was the effect of overfit-
ting/underfitting showcased.

7 [18] Applied SMOTE data balancing tech-
nique and attain highest accuracy of
91.4%

Did not showcase the effect of overfit-
ting/underfitting.

8 [13] Utilised SMOTE oversampling to
achieve prediction accuracy of 0.801
which is 11% increase compared to the
imbalanced data.

Prediction accuracy requires improve-
ment.

9 [18] Used random down-sampling for bal-
ancing their dataset and attain highest
accuracy of 75%.

Prediction accuracy requires improve-
ment using more

data analysis to ascertain its general characteristics and valid-
ity. Also, a correlation heatmap was developed, as depicted in
Figure 2, to determine the degree of correlation among the at-
tributes. Furthermore, an evaluation of the count of the target
variable (CVD) showed the dataset is highly imbalanced in the
ratio of 864 to 186. This will affect the performance of the mod-
els when developed. To validate these claims, seven different
machine learning models were developed, and the performance
of the models was evaluated.

3.2. Data processing

To process the dataset and make it fit for use data process-
ing techniques such as label encoding, missing values, and du-
plicate data checks were performed. We took necessary steps
to ensure the dataset was free of missing or null values, and
also checked for duplicates to prevent duplicate data points and
maintain accuracy and consistency in the data. Furthermore,
categorical data were converted into numerical data using label
encoding techniques.

3.3. Handling data imbalance

Data sampling techniques play a critical role in addressing
class imbalance in machine learning datasets. In this study,
we utilised four common sampling techniques, namely the
Synthetic Minority Over-sampling Technique (SMOTE), Under
Sampling, Over Sampling, and Minority Oversampling Tech-
nique, and Edited Nearest Neighbour (SMOTE-ENN), to com-
pare with the performance of models developed without sam-
pling. Figure 3 shows the data sampling techniques adopted.

3.3.1. Under sampling
Under-sampling require the number of instances in the ma-

jority class to be decreased so that the number of instances in
both majority and minority classes can be equal. This technique
creates a subset of the instances from the majority class equal
to the size of the minority class [21]. Under-sampling is simple
to implement and requires little computational power; however,
reliance on only a sample of the data means that there could be
informative instances that had to be removed from the major-
ity class [22]. Therefore, undersampling is used in combination
with other methods or compared to oversampling and SMOTE
to judge the influence on the model [23, 24].
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Figure 2. Correlation plot of the features.

Figure 3. Data balancing techniques adopted.

3.3.2. SMOTE over-sampling
SMOTE is one of the most common approaches for han-

dling the class imbalance problem through synthetic sample

creation of the minority class. how the algorithm works is that
it first picks up a sample in the minority class and then locates
the k nearest neighbour in the feature space [25]. This then
synthesises new instances along the line segments joining the
minority class instance to its neighbours. The process of gen-
erating data is repeated until the majority-mixed minority class
and majority classes are created in an appropriate proportion.
SMOTE reduced overfitting and brought synthetic different fac-
tors to the minority class that improved the generalisation abil-
ity of the machine learning models. SMOTE synthesises new
instances from the minority class by calculating a percentage
distance between different instances of the minority class.
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Table 2. Summary of the dataset.
SN Feature Data Type Description
1 Age Numeric Age of the patient
2 Gender Boolean The gender of the patient (Male/Female)
3 Smoke Boolean If the patient smokes (Yes/No)
4 Alcohol Boolean If the patient consumes alcohol (Yes/No)
5 Def in VitD Boolean Deficiency in Vitamin D (Yes/No)
6 Diabetes Boolean If the patient has diabetes (Yes/No)
7 High Cholesterol Boolean High cholesterol levels (Yes/No)
8 BMI Numeric Body Mass Index
9 CVD Boolean Cardiovascular Disease (Yes/No)
10 Chest pain Boolean Presence of chest pain (Yes/No)
11 FamilyHistoryCVD Boolean Family history of CVD (Yes/No)
12 SBP Numeric Systolic Blood Pressure
13 DBP Numeric Diastolic Blood Pressure
14 HBP Boolean High Blood Pressure (Yes/No)
15 Proteinuria Boolean Presence of protein in urine (Yes/No)

Table 3. Statistical description of numeric data.
Age BMI SBP DBP

Count 1000 1000 1000 1000
Mean 48.994 94.578 164.801 98.695
Std 14.96068 16.23433 33.7923 8.645734
Min 12 59 100 76
25% 36 83 122 92

Figure 4. Machine learning models.

3.3.3. SMOTE-ENN
The SMOTE-ENN algorithm is an acronym for the names

of two methods integrated into one: Synthetic Minority Over-
sampling Technique (SMOTE) and Edited Nearest Neighbour
(ENN). It aimed to overcome the disadvantages of imbalanced
datasets by balancing the class distributions and samples as well
as removing noise samples. SMOTE (Synthetic Minority Over-
sampling Technique): By constructing synthetic instances from
existing examples, SMOTE mainly targets the creation of syn-
thetic examples for the minority class [26].

For every minority-class observation, it generates new syn-
thetic data vectors based on the nearest neighbours of the ob-

servation. These synthetic examples are useful in balancing up
the class distribution in the class. ENN (Edited Nearest Neigh-
bor): It is a data filtering technique that determines noise or
misclassification samples as the endnote. In the case of the ob-
servation, K-nearest neighbours are searched for and found by
the ENN. For the observation, the majority of K nearest neigh-
bours belong to a class different from the observation class; the
observation is considered noisy and is disqualified from the set
[26].

3.3.4. SMOTE-TOMEK
The SMOTE+TOMEK links are the integrating of SMOTE

with TOMEK links. TOMEK links are the nearest neighbours;
while one belongs to a particular class, the other belongs to
an entirely different class. Using the SMOTE+TOMEK links
approach, we will be able to eliminate TOMEK links, which
can assist in decreasing overlapping in classes and augmenting
the separability of the classes [27]. The steps involved in the
working of the SMOTE-TOMEK Links technique are as fol-
lows: This involves the calculation of the nearest neighbour
from within a cluster from the same cluster and the nearest
neighbour from outside of the cluster of the instance in ques-
tion in a given data set. Usually, a distance measure such as
Euclidean distance can be used to identify such closest neigh-
bours [28–30]. After that, each of the datasets is examined once
again to check whether each of the two forms a Tomek link ac-
cording to the given criteria. If a Tomek link is identified, then
two occurrences are flagged for possible deletion from the data
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Figure 5. (a) Plot of performance metrics for baseline models. (b) Learning curve plot for baseline dataset

set [31]. Once all Tomek linkages within the dataset have been
identified, the cases that make up these linkages are then re-
garded as ambiguous or noisy. These are then dropped from the
dataset. This process of preparing the real data removes over-
laps between the classes and makes the classifier more accurate
[32].

3.4. Data splitting

After pre-processing and handling the data imbalances, the
dataset is split into training and testing datasets in the ratio of 80
to 20. The adoption of this train-test split ratio is based on the
fact that it gave us better results after experimenting with others
such as 90:10, 70:30, 95:5, and 50:50. The training set is used
to train the machine learning models, while the test set is used
to evaluate the performance of the machine learning models.
This research did not apply any feature selection approach.

3.5. Model development
Seven machine learning models were developed to compare

the effectiveness of the different data imbalance techniques on
the cardiovascular disease dataset. We utilised various classi-
fication algorithms implemented in popular machine learning
libraries to train models on balanced datasets generated us-
ing random under-sampling, SMOTE over-sampling, SMOTE-
ENN, and SMOTE-TOMEK techniques. The performance of
each model was evaluated using precision, recall, F1-score, ac-
curacy, and ROC-AUC. Figure 4 shows the carefully chosen
classification algorithms used in developing our models.

3.5.1. LightGBM (Light Gradient Boosting Machine)
LightGBM is an optimised boosting algorithm for high

speed, and it is mainly used for large scale data. It builds deci-
sion trees in a greedy approach, that is, to grow each leaf ab-
solutely different and split nodes based on gradients of loss
functions over a limited group of features. LightGBM also
shines where large datasets are involved because it employs

8
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Figure 6. (a) Plot of performance metrics for SMOTE over sampling (b) Learning curve plot for SMOTE over sampling.

the histogram-based method besides effectively bundling fea-
tures to lower computational needs. This makes it perfect for
low-latency functions in tasks including the classification and
ranking [33].

3.5.2. Random forest
Random forest is a method of ensemble learning model bag-

ging that constructs a multitude of trees wherein each tree is
grown on a different random boot strap sample of the data. It
utilizes both random sampling of data points and random fea-
ture selection, subsequently combining multiple weak learning
models to form a powerful single learning model. For clas-
sification the final prediction is the mode across trees and for
regression, an average is taken. This method minimises overfit-
ting and improves performance through the use of diverseness
in the tree assembly [34].

3.5.3. Gradient boosting
This algorithm constructs the decision trees sequentially;

every one of them tries to minimise the amount of errors made
by the previous trees, targeting misclassified instances. With
the help of the gradient descent technique, it applies to min-
imise the loss function, making it for both regression and clas-
sification types. But, when not well tuned, it can be easily over-
fitted and can consume even more computing power due to its
sequential processing [35].

3.5.4. Support Vector Machine (SVM)
Support Vector Machine is a supervised learning model that

seeks to generate a hyperplane or a set of hyperplanes in order
to categorise the data. Alternatively, one tries to maximise the
distance between different classes in order to make the deci-
sion line less sensitive to noise. In cases of nonlinear prob-
lems, SVM employs the method of kernels, by which data is
transformed to a higher dimension where it becomes possible
to draw a hyperplane. Thus, it is suitable where there are many
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Figure 7. (a) Plot of performance metrics for random under-sampling (b) Learning curve plot for random under sampling.

central clusters of data, which enables decision-making [36].

3.5.5. XGBoost (Extreme Gradient Boosting)
The XGBoost, considering its name, is a more efficient ver-

sion of the gradient boosting algorithm. While constructing the
trees, like in the case of the usual gradient boosting, it con-
structs them step by step, but before building the new tree, it ap-
plies some kind of regularisation to prevent overfitting. To per-
form data operations in large amounts, XGBoost also uses par-
allelism and sparsity-aware algorithms and gets used broadly in
Kaggle competition and real-world problems [37].

3.5.6. Decision tree
A decision tree is a type of machine learning model that

is non-parametric, where the modeller breaks down the whole
dataset into set levels with a space to split on the attribute that
imparts the greatest information gain in the case of decision
trees for classification and the lowest variance in the case of
decision trees for regression. despite the model being easy to

understand, it has the weakness of being very likely to overfit
hence are applied in randomised forest and gradient boosting
[38].

3.5.7. K-Nearest Neighbours (KNN)
KNN is selected as a basic, inductive instance learning

method. It partitions data elements based on the ‘k’ nearest
neighbours in the feature space and proceeds with the class that
is most frequently occurring among these data points. Although
KNN is easy to implement and understand, there are drawbacks
of the algorithm: it is slow when used on large datasets, as it re-
quires calculations of distance for each prediction; however, it
is accurate where the data has a simple structure, such as in
recommendation systems and pattern recognition [39].

The machine learning models were further developed us-
ing the specified algorithms and evaluated their performance
on balanced datasets created using random under-sampling,
SMOTE over-sampling, SMOTE-ENN, and SMOTE-TOMEK
techniques.
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Figure 8. (a) Plot of performance metrics for SMOTE-ENN technique (b) Learning curve plot for SMOTE-ENN..

3.6. Performance evaluation

The performance evaluation of this study centres on artic-
ulating how the various forms of applied data imbalance miti-
gation techniques supplemented machine learning performance
on CVD prediction. Accuracy, precision, F1-score, recall, and
ROC-AUC were used in evaluating the performance of models
developed in this study. The plots showing the different perfor-
mance evaluation metrics for the seven chosen models were cre-
ated for the different data balancing techniques as well as that
of the baseline dataset (imbalanced dataset). The performance
of the different models for the different data balancing tech-
niques was compared to determine how the different data bal-
ancing techniques affected the prediction of CVD. Also, learn-
ing curves of the chosen models were plotted for the baseline
dataset and the different data imbalance mitigation techniques
and compared against each other to determine how the differ-
ent datalancing techniques handle the issues of overfitting and
underfitting. These visualisations help understand the model’s
performance, identify any improvement areas, and make in-

formed decisions.

3.6.1. Precision
Precision is the ratio of actually positive cases, that is, the

number of correct positive predictions to the total number of
positive predictions. It is of great value when the cost associ-
ated with a false positive result is high, as used in the diagnosis
of diseases. For example, when the model predicts a healthy
person as sick, then it will lead to unnecessary treatments [40].
Precision is calculated using equation (1).

Precision =
True Positive

True Positive + False Positive
. (1)

3.6.2. Recall (Sensitivity or True Positive Rate)
Recall measures the ratio of true positives correctly flagged

out of all actual positives in the population and is useful when
false negatives are more costly, for example, when diagnosing
a disease [41]. The process of calculating recall is represented
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Figure 9. (a) Plot of performance metrics for SMOTE-TOMEK (b) learning curve plot for SMOTE-TOMEK.

in equation (1).

Recall =
True Positive

True Positive + False Negative
. (2)

3.6.3. F1-Score
F1-scores are calculated as the harmony mean between pre-

cision and recall. It is useful when there is a significant skew in
instances between the classes or both false positives and false
negatives are costly. It is recommendable when you require
equal accuracy as well as recall [42]. Equation (3) represents
the F1-Score calculation.

F1 − S core = 2 ∗
Precision ∗ Recall
Precision + Recall

. (3)

3.6.4. Accuracy
Accuracy is the ratio of how many decisions were made

correctly either positively (true positives) or negatively (true
negatives) times one hundred, divided by the total number of

cases of the decisions that were made. But it is not effective
while there is an imbalance of datasets because accuracy can
be deceptive [43]. Equation 4 is used to showcase the accuracy
calculation process.

Accuracy =
Number o f Correct Predictions
Total Number o f Predictions

. (4)

3.6.5. ROC-AUC Value (Receiver Operating Characteristic—
Area Under Curve)

The ROC-AUC quantifies how well a model separates the
space of positive class from a space of negative class. AUC of 1
is a perfect classifier, and AUC of 0.5 is a random model. This
is particularly helpful with an imbalanced dataset [44].

3.6.6. Learning curve
A learning curve is a diagram that represents the depen-

dence of model effectiveness on the amount of training data
used. It helps determine overfitting (high training performance
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Table 4. Performance evaluation of models across data balancing techniques.
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Recall 0.92 0.92 0.88 0.84 0.91 0.81 0.88 0.9 0.9 0.88 0.88 0.9 0.79 0.86
F1-Score 0.92 0.92 0.88 0.84 0.91 0.81 0.88 0.9 0.9 0.88 0.88 0.9 0.79 0.86
Accuracy 0.92 0.92 0.88 0.84 0.91 0.81 0.88 0.9 0.9 0.88 0.88 0.9 0.79 0.86
ROC-
AUC

0.96 0.96 0.94 0.84 0.96 0.86 0.95 0.97 0.97 0.94 0.88 0.96 0.84 0.94

SMOTE-ENN RANDOM UNDER SAM-
PLING
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Precision 0.91 0.9 0.91 0.89 0.91 0.9 0.9 0.82 0.81 0.73 0.76 0.76 0.77 0.73
Recall 0.87 0.84 0.84 0.8 0.85 0.74 0.74 0.82 0.8 0.73 0.75 0.76 0.75 0.73
F1-Score 0.89 0.86 0.87 0.84 0.87 0.79 0.79 0.82 0.8 0.73 0.74 0.76 0.74 0.73
Accuracy 0.87 0.84 0.84 0.8 0.85 0.74 0.74 0.82 0.8 0.73 0.75 0.76 0.75 0.73
ROC-
AUC

0.79 0.82 0.82 0.69 0.78 0.82 0.77 0.85 0.82 0.79 0.75 0.84 0.84 0.8

WITHOUT BALANCING

Evaluation
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Precision 0.87 0.84 0.85 0.85 0.85 0.77 0.8
Recall 0.88 0.88 0.87 0.84 0.86 0.88 0.85
F1-Score 0.87 0.85 0.85 0.85 0.86 0.82 0.82
Accuracy 0.88 0.88 0.87 0.84 0.86 0.88 0.85
ROC-
AUC

0.79 0.78 0.82 0.64 0.78 0.77 0.71

but low validation) or underfitting (low training as well as vali-
dation performance) [45].

4. Results and discussion

In this section, the results obtained from carrying out the
four data balancing techniques are presented. For each of the
data balancing techniques used, the seven machine learning

models were developed to evaluate the effect of the data balanc-
ing on the models’ performance. In addition, learning curves
were plotted for the seven models to evaluate how the issues of
overfitting and underfitting were addressed across the several
data balancing techniques. In a learning curve, a high training
score and a much lower validation score indicate overfitting,
while low training and validation scores are signs of underfit-
ting.
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4.1. Original imbalanced baseline data sets (Baseline)
During the first evaluation, no data balancing algorithm was

used. The dataset had a class imbalance, with the majority class
having a ratio of 874 to the minority class, which had a ratio
of 126. Before model building, the dataset was preprocessed,
and data splitting was carried out. After that, the model’s per-
formance was evaluated using various metrics, including preci-
sion, recall, F1-score, accuracy, and ROC-AUC. The results of
this evaluation are visualised in Figure 5a, which shows the per-
formance of the various models when trained and tested with-
out data balancing. Figure 5b is a learning curve of the baseline
dataset that showcased how the issue of overfitting/underfitting
affected imbalanced data sets across the different models. The
baseline dataset shows severe overfitting across most models,
with LightGBM, Random Forest, Gradient Boosting, and XG-
Boost all exhibiting high training scores but significantly lower
cross-validation scores, indicating poor generalization. SVM
initially overfits but improves slightly with additional data, but
Decision Tree and KNN suffer from significant overfitting and
underfitting, respectively. Generally, the models struggle to
generalise well, emphasising the importance of appropriate data
balancing strategies to overcome these difficulties.

4.1.1. Oversampling using SMOTE
By implementing SMOTE oversampling on the minority

class, we were able to achieve balance with the majority class.
The results of our proposed models, developed using the over-
sampled dataset, are displayed in Figure 6a. The Figure pro-
vides insight into the performance of each individual model,
including the precision, recall, F1-score, accuracy, and ROC-
AUC of the model. The learning curve showing how the issue
of overfitting/underfitting was addressed by the SMOTE Over-
sampling data balancing technique is displayed in Figure 6b.
In comparison to the baseline dataset, SMOTE oversampling
improves model generalisation, with models typically display-
ing high training scores and better cross-validation scores. Par-
ticularly, LightGBM and XGBoost exhibit good results with
steady learning curves and high cross-validation scores, sug-
gesting that data imbalance is handled well. The difference be-
tween the training and cross-validation scores is less noticeable,
despite a modest overfitting tendency, indicating that SMOTE
offers a more balanced dataset. When compared to predictive
models trained on the baseline dataset, this leads to more robust
and dependable models.

4.1.2. Random under sampling
This section demonstrates the results obtained after under-

sampling the majority dataset to match the minority data. To
achieve this, the majority class was divided into four random
sets, with one set used for model training. The distribution
of the dataset was made equal for both majority and minor-
ity classes and was set at 126. Figure 7a shows the plot of
the performance evaluation. While Figure 7b shows the learn-
ing curve of how random undersampling addresses the over-
fitting/underfitting issue across the seven models. Models that
overfit the training data are typically the result of random un-
dersampling, as seen by high training scores and significantly

lower and more variable cross-validation scores. Particularly
vulnerable to poor generalisation are models such as SVM,
Decision Tree, and KNN, whose great sensitivity to the small
amount of training data leads to inconsistent performance. Even
while XGBoost and LightGBM perform somewhat better, they
still have a noticeable overfitting problem. Random under-
sampling makes training easier when compared to the baseline
dataset, but it usually results in less generalisation ability and
more unpredictability in model performance.

4.1.3. SMOTE-ENN
The SMOTE-ENN technique was applied to the dataset,

which resulted in the minority class being resampled to have
601 instances, while the majority class had 465 instances. The
performance of the model after addressing the data imbalance
is illustrated in Figure 8a. Figure 8b is a learning curve plot
showcasing how the issue of overfitting/underfitting was ad-
dressed by the SMOTE-ENN data balancing technique. Though
overfitting persists, models with the SMOTE-ENN oversam-
pling strategy demonstrate some improvement in generalisa-
tion when compared to the baseline dataset. Slightly higher
cross-validation scores indicate less overfitting for LightGBM,
Random Forest, Gradient Boosting, and XGBoost. SVM ex-
hibits baseline-like behaviour, with some overfitting at first and
slight improvements. Even though there is a minor improve-
ment in performance for most models, Decision Tree and KNN
continue to be overfit and underfit, respectively, indicating that
SMOTE-ENN is helpful but not a complete solution for all
models.

4.1.4. SMOTE-TOMEK
After resampling the dataset using the SMOTE-TOMEK

technique, the balanced state of 859 by 859 was achieved. The
results of model performance after resampling is depicted in
Figure 9a while Figure 9b is a learning curve plot used to show-
case SMOTE-TOMEK effect on overfitting/underfitting. All
models’ generalization is greatly enhanced by the SMOTE-
Tomek oversampling strategy, which also results in consid-
erably closer alignment between training and cross-validation
scores, which suggests less overfitting. Significant gains in
cross-validation performance are demonstrated by LightGBM,
Random Forest, Gradient Boosting, XGBoost, and SVM, in-
dicating successful management of overfitting. KNN demon-
strates a considerable decrease in underfitting, whereas De-
cision Tree also benefits, however some overfitting persists.
SMOTE-Tomek offers the best data balancing overall, which
improves generalization and performance in all areas.

4.2. Impact of data balancing techniques on model perfor-
mance

Table 4 is a result summary table to aid easy comparisons
of the performance of the respective models across the differ-
ent data balancing techniques in terms of precision, recall, F1-
score, accuracy, and ROC-AUC.

The experimental results demonstrate that all four data im-
balance correction techniques: SMOTE over-sampling, ran-
dom under-sampling, SMOTE-ENN, and SMOTE-TOMEK
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improved the predictive performance of machine learning mod-
els on imbalanced CVD datasets compared to the baseline
model trained on the original imbalanced dataset. However,
the extent of improvement varied across techniques and models.
SMOTE-TOMEK consistently outperformed other data balanc-
ing techniques, achieving higher accuracy, precision, recall, and
F1 scores across different machine learning models.

4.3. Impact of data balancing techniques on overfit-
ting/underfitting

With the baseline dataset, the learning curves showed in-
creased distance between the training scores and the cross-
validation scores across all models, which indicates significant
overfitting. The SMOTE ENN technique was able to reduce
the overfitting but was not significant enough across the mod-
els, as indicated by the increased cross-validation scores. The
result from SMOTE Over Sampling shows that there are im-
provements in model generalisation indicated by the high train-
ing scores and better cross-validation scores alongside reduced
overfitting. The result from the random undersampling tech-
nique showed overfitting and poor generalisation, as indicated
by the inconsistent cross-validation scores across some of the
models, though still better than that of the baseline dataset.
While SMOTE-Tomek was the best in reducing overfitting and
enhanced generalisation, as indicated by the cross-validation
score’s significant improvement.

5. Conclusion

In conclusion, addressing data imbalance is crucial for de-
veloping accurate predictive models for cardiovascular disease
datasets. This study highlights the effectiveness of SMOTE
over-sampling, random under-sampling, SMOTE-ENN, and
SMOTE-TOMEK in mitigating the impact of class imbalance
on predictive performance and addressing the issue of overfit-
ting/underfitting. Among these techniques, SMOTE-TOMEK
emerges as the most effective approach for improving the per-
formance of machine learning models on imbalanced CVD
datasets, achieving best fits, and effectively handling issues
of underfitting and overfitting. It achieved the highest perfor-
mance with accuracy, precision, recall, and F1 scores of 92%
and an ROC-AUC of 96% when applied to Random Forest and
LightGBM models. It also demonstrated the most balanced fit
of the dataset, the best handling of overfitting and underfitting
issues, and improved generalisation when combined with mod-
els like Random Forest, Gradient Boosting, and XGBoost. Fu-
ture research could explore advanced data imbalance correc-
tion techniques, feature selection techniques, deep learning ap-
proaches, and ensemble methods to further enhance predictive
performance in this domain.

Data availability

The link to the dataset used in this study is provided
below: https://github.com/ambraph/RESEARCH2/blob/main/
cvddataset.csv.
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