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Abstract

Molodtsov pioneered the notion of soft set theory, presenting it as a mathematical tool for dealing with uncertainty. Numerous researchers have
subsequently developed models leveraging this theory to tackle challenges in decision-making and medical diagnosis. Soft set theory emerges as
a flexible framework adept at handling uncertain and imprecise information, a domain where classical set theory often struggles. Expanding on
the soft set concept, researchers have introduced the idea of a soft graph. This innovative concept allows for the creation of diverse representations
of graph-based relations by incorporating parameterisation. In this work, we present and investigate some of the features of the homomorphic
and restricted homomorphic products of soft graphs. This paper establishes the structural properties of these products, ensuring that they are
well-defined and maintain the essential characteristics of soft graphs. Additionally, we derive combinatorial identities related to the counts of
vertices and edges, as well as the degree sums, offering deeper insights into the composition and behaviour of these graph products.
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1. Introduction

Soft set theory [1] is a mathematical framework designed to
manage uncertainty and imprecision, which are often challeng-
ing for classical set theory. Unlike traditional approaches such
as probability theory and fuzzy set theory, soft set theory offers
the advantage of parameterisation, allowing it to better handle
vague and ambiguous information. Building on this foundation,
the concept of soft graphs emerged as an extension of soft set

∗Corresponding author: Tel.: +91-974-591-9303.
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theory. Soft graphs incorporate parameterization into graph the-
ory, enabling flexible and dynamic modelling of relationships
that can accommodate a wide range of applications. This inno-
vative approach allows for the creation of various adaptable rep-
resentations, making soft graphs a powerful tool for addressing
complex problems in diverse fields such as decision-making,
medical diagnosis, and beyond.

In 1999, Molodtsov [1] introduced the notion of soft set the-
ory. Molodtsov has successfully applied the principles of soft
set theory across various fields in Mathematics. In real-world
scenarios, soft set theory proves to be more advantageous than
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other established theories like probability theory or fuzzy set
theory, given the limitations inherent in the latter. For instance,
fuzzy set theory lacks the tools for parameterization. Renowned
authors such as Maji et al. [2, 3], Muhammed [4] and Saleh
et al. [5, 6] have applied soft set theory in diverse decision-
making scenarios. Building on the foundation of soft set theory,
researchers such as Thumbakara and George [7, 8] introduced
the concept of soft graphs. Soft graphs extend the traditional
graph model to incorporate uncertainty, enabling the represen-
tation and analysis of uncertain relationships between entities.
Later modifications by Akram and Nawas [9–12] introduced
variations such as fuzzy soft graphs, which further expanded
the applicability of soft graphs. Akram and Zafar [13, 14] stud-
ied soft trees and fuzzy soft trees. Advancements in the field
of soft graphs have been significant. Researchers like Thenge,
Jain, and Reddy [15–17] have contributed to the development of
soft graphs, particularly focusing on parameterization, which is
essential for practical applications. George, Thumbakara, and
Jose have further expanded the domain by introducing concepts
such as soft hypergraphs [18], soft digraphs [19, 20], and soft
disemigraphs [21], and thoroughly investigating their properties
and applications.

The study of soft graphs has also led to the exploration of
graph product operations. Product operations [22] allow the
combination of two graphs to create a new graph with specific
properties. Additionally, researchers like Baghernejad and Bor-
zooei [23] have demonstrated the utility of soft graphs and soft
multigraphs in managing complex systems such as urban traffic
flows. Further contributions to the field include the introduction
of novel concepts such as Eulerian and Hamiltonian soft graphs
[24, 25], graph isomorphism [26], and various product opera-
tions on soft graphs [27, 28] and soft digraphs [29–34]. Ad-
ditionally, researchers introduced soft semigraphs [35–39] and
soft directed hypergraphs [40], applying principles from soft
sets to these structures and defining operations and properties
associated with them.

The study of soft graphs represents a significant advance-
ment in graph theory, enabling the representation and analysis
of uncertain relationships in complex systems. The application
of soft set theory to graphs opens up new possibilities for solv-
ing practical problems in diverse fields. In this work, we intro-
duce and study some of the features of homomorphic product
and restricted homomorphic product of soft graphs.

2. Preliminaries

In this section, we lay the foundation for comprehending
soft sets and soft graphs. Also, we provide a brief overview of
topics including the part and degree associated with soft graphs.

Definition 2.1. Ref. [1] “Let ℜ be a set of parameters and U
be an initial universe set. Then a pair (ζ,ℜ) is called a soft set
(over U) if and only ζ is a mapping of ℜ into the power set of
U. That is, ζ : ℜ→ P(U).”

Definition 2.2. Ref. [9, 10] “Let ℜ be any nonempty set and
Θ∗ = (ϖ, τ) be a simple graph with vertex set ϖ and edge set

Figure 1: Graph Θ∗1 = (ϖ1, τ1).

τ. Let R represent any relationship between elements ofℜ and
ϖ. Define ζ from ℜ to P(ϖ) by ζ(ε) = {y ∈ ϖ : εRy}. Also,
define ψ from ℜ to P(τ) by ψ(ε) = {viv j ∈ τ : {vi, v j} ⊆ ζ(ε)} .
Then (ζ,ℜ) and (ψ,ℜ) are soft sets over ϖ and τ respectively.
If the 4-tuple Θ = (Θ∗, ζ, ψ,ℜ) meets the criteria listed below,
it is referred to be a soft graph.

1. Θ∗ = (ϖ, τ) is a simple graph,
2. ℜ , ϕ is the set of parameters,
3. (ζ,ℜ) is a soft set over ϖ,
4. (ψ,ℜ) is a soft set over τ,
5. (ζ(ε), ψ(ε)) is a subgraph of Θ∗ for all ε ∈ ℜ.

The soft graph Θ is also denoted by {H(ε) : ε ∈ ℜ} if
H(ε)=(ζ(ε), ψ(ε)). Then H(ε) is called the part or partof Θ
corresponding to the parameter ε in ℜ. Let t be any vertex of
the part H(ε) of Θ for some ε ∈ ℜ. Then the degree of the
vertex t in that part H(ε) is called part degree of the vertex t in
H(ε) and is denoted by deg v[H(ε)]. ”

3. Homomorphic product of soft graphs

In this section, we define and explore the homomorphic
product of soft graphs.

Definition 3.1. The homomorphic product of two soft graphs
Θ1 andΘ2, which is denoted byΘ1⋉Θ2 is defined asΘ1⋉Θ2 =

{H1(ε)⋉H2(τ) : (ε, τ) ∈ ℜ1×ℜ2}. Here H1(ε)⋉H2(τ) denotes
the homomorphic product of the parts H1(ε) of Θ1 and H2(τ) of
Θ2 which is defined as follows: H1(ε)⋉H2(τ) is a graph having
set of verticesϖ(H1(ε)⋉H2(τ)) = ζ1(ε)×ζ2(τ) and set of edges
τ(H1(ε) ⋉ H2(τ)), where there is a edge between the vertices
(t1, t′1) and (t2, t′2) in H1(ε) ⋉ H2(τ) if and only if

1. t1 = t2 or
2. t1 and t2 are adjacent in H1(ε) and t′1 and t′2 are not adja-

cent in H2(τ).

Example 1. Let Θ∗1 = (ϖ1, τ1) be the graph depicted in Figure
1.
Let ℜ1 = {v3, v6} ⊆ ϖ1 be a set of parameters. Define ζ1 from
ℜ1 to P(ϖ1) by ζ1(ε) = {u ∈ ϖ1 | d(u, ε) ≤ 1},∀ε ∈ ℜ1. That
is, ζ1(v3) = {v2, v3, v4} and ζ1(v6) = {v1, v5, v6}. Here (ζ1,ℜ1)
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Figure 2: Soft Graph Θ1 = {H1(v3),H1(v6)}.

Figure 3: Graph Θ∗2 = (ϖ2, τ2).

is a soft set over ϖ1. Also, define ψ1 from ℜ1 to P(τ1) by
ψ1(ε) = {viv j ∈ τ1 | {vi, v j} ⊆ ζ1(ε)}, ∀ε ∈ ℜ1. That is,
ψ1(v3) = {v2v3, v2v4, v3v4} and ψ1(v6) = {v1v6, v5v6}. Here,
(ψ1,ℜ1) is a soft set over τ1. Then H1(v3) = (ζ1(v3), ψ1(v3))
and H1(v6) = (ζ1(v6), ψ1(v6)) are subgraphs of Θ∗1. Therefore
Θ1 = {H1(v3),H1(v6)} is a soft graph of Θ∗1 and is depicted in
Figure 2.
Let Θ∗2 = (ϖ2, τ2) be the graph depicted in Figure 3.
Let ℜ2 = {u1} ⊆ ϖ2. Define ζ2 : ℜ2 → P(ϖ2) by ζ2(ε) =
{u ∈ ϖ2 | d(u, ε) ≤ 1},∀ε ∈ ℜ2. That is, ζ2(u1) = {u1, u4}. Here,
(ζ2,ℜ2) is a soft set over ϖ2. Also, define ψ2 : ℜ2 → P(τ2)
by ψ2(ε) = {viv j ∈ τ2 | {vi, v j} ⊆ ζ2(ε)},∀ε ∈ ℜ2. That is,
ψ2(u1) = {u1u4}. Here, (ψ2,ℜ2) is a soft set over τ2. Then,
H2(u1) = (ζ2(u1), ψ2(u1)) is a subgraph of Θ∗2. Therefore,
Θ2 = {H2(u1)} is a soft graph of Θ∗2 and is depicted in Fig-
ure 4.
Then Θ1 ⋉Θ2 = {H1(v3)⋉H2(u1),H1(v6)⋉H2(u1)} is depicted
in Figure 5.

Theorem 3.1. The homomorphic productΘ1⋉Θ2 is also a soft
graph of Θ∗1 ⋉ Θ∗2.

Proof. Θ1 ⋉ Θ2 is defined as Θ1 ⋉ Θ2 = {H1(ε) ⋉ H2(τ) :

Figure 4: Soft Graph Θ2 = {H2(u1)}.

Figure 5: Θ = Θ1 ⋉ Θ2 = {H1(v3) ⋉ H2(u1),H1(v6) ⋉ H2(u1)}.

(ε, τ) ∈ ℜ1 × ℜ2}. Here H1(ε) ⋉ H2(τ) denotes the homomor-
phic product of the parts H1(ε) of Θ1 and H2(τ) of Θ2 which
is defined as follows: H1(ε) ⋉ H2(τ) is a graph having set of
vertices ϖ(H1(ε) ⋉ H2(τ)) = ζ1(ε) × ζ2(τ) and set of edges
τ(H1(ε) ⋉ H2(τ)), where there is a edge between the vertices
(t1, t′1) and (t2, t′2) in H1(ε) ⋉ H2(τ) if and only if

1. t1 = t2 or
2. t1 and t2 are adjacent in H1(ε) and t′1 and t′2 are not adja-
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cent in H2(τ).

Θ∗1⋉Θ
∗
2 is a graph having set of verticesϖ(Θ∗1⋉Θ

∗
2) = ϖ1×ϖ2

and set of edges τ(Θ∗1⋉Θ
∗
2) where two vertices (t1, t′1) and (t2, t′2)

in Θ∗1 ⋉ Θ∗2 are adjacent if and only if

1. t1 = t2 or
2. t1 and t2 are adjacent in Θ∗1 and t′1 and t′2 are not adjacent

in Θ∗2.

Let ℜΘ1⋉Θ2 = ℜ1 × ℜ2. Define ζΘ1⋉Θ2 from ℜΘ1⋉Θ2 to
P[ϖ(Θ∗1 ⋉ Θ∗2)] by ζΘ1⋉Θ2 (ε, τ) = ζ1(ε) × ζ2(τ),∀(ε, τ) ∈ ℜ1 ×

ℜ2. Then (ζΘ1⋉Θ2 ,ℜΘ1⋉Θ2 ) is a soft set overϖ(Θ∗1⋉Θ
∗
2). Also,

define ψΘ1⋉Θ2 fromℜΘ1⋉Θ2 toP[τ(Θ∗1⋉Θ
∗
2)] by ψΘ1⋉Θ2 (ε, τ) =

{(u, v)(y, z) ∈ τ(Θ∗1⋉Θ
∗
2) | {(u, v), (y, z)} ∈ ζΘ1⋉Θ2 (ε, τ)},∀(ε, τ) ∈

ℜ1×ℜ2. Then (ψΘ1⋉Θ2 ,ℜΘ1⋉Θ2 ) is a soft set over τ(Θ∗1⋉Θ
∗
2). If

we represent (ζΘ1⋉Θ2 (ε, τ), ψΘ1⋉Θ2 (ε, τ)) by HΘ1⋉Θ2 (ε, τ), then
HΘ1⋉Θ2 (ε, τ) is a subgraph of Θ∗1 ⋉ Θ∗2,∀(ε, τ) ∈ ℜ1 × ℜ2,
since ζ1(ε) × ζ2(τ) ⊆ ϖ1 × ϖ2 and any edge in ψΘ1⋉Θ2 (ε, τ) is
also a edge in τ(Θ∗1 ⋉ Θ∗2). Then Θ1 ⋉ Θ2 can be represented
by the 4-tuple (Θ∗1 ⋉ Θ∗2, ζΘ1⋉Θ2 , ψΘ1⋉Θ2 ,ℜΘ1⋉Θ2 ) and also by
{HΘ1⋉Θ2 (ε, τ) : (ε, τ) ∈ ℜ1 × ℜ2} and Θ1 ⋉ Θ2 is a soft graph
of Θ∗1 ⋉ Θ∗2.

Theorem 3.2. The homomorphic product
Θ1 ⋉ Θ2 contains

∑
(εi,ε j)∈ℜ1×ℜ2

|ζ1(εi)||ζ2(ε j)|
vertices and

∑
(εi,ε j)∈ℜ1×ℜ2

(|ζ1(εi)|
(
|ζ2(ε j)|

2

)
+

|ψ1(εi)|
[
|ζ2(ε j)|(|ζ2(ε j)| − 1) − 2|ψ2(ε j)|

]
) edges.

Proof. By definition, Θ1 ⋉Θ2 = {H1(ε)⋉H2(τ) : (ε, τ) ∈ ℜ1×

ℜ2}. The parameter set of Θ1 ⋉ Θ2 is ℜ1 × ℜ2. Consider the
part H1(εi)⋉H2(ε j) of Θ1 ⋉Θ2 corresponding to the parameter
(εi, ε j) ∈ ℜ1 ×ℜ2. The vertex set of H1(εi)⋉ H2(ε j) is ζ1(εi)×
ζ2(ε j) which contains |ζ1(εi)||ζ2(ε j)| elements. This is the case
for all parts of Θ1 ⋉ Θ2. Therefore total count of vertices in
Θ1 ⋉ Θ2 is

∑
(εi,ε j)∈ℜ1×ℜ2

|ζ1(εi)||ζ2(ε j)|. We know, there is a
edge between the vertices (tp, tq) and (tm, tn) in H1(εi) ⋉ H2(ε j)
if and only if

1. tp = tm or
2. tp and tm are adjacent in H1(εi) and tq and tn are not adja-

cent in H2(ε j).

Each edge in H1(εi) ⋉ H2(ε j) is generated by one of two dis-
tinct conditions, and these conditions cannot occur simultane-
ously. To determine the total number of edges in H1(εi) ⋉
H2(ε j), we sum the number of edges produced by each con-
dition. Let t be any vertex in H1(εi). The part H2(ε j) con-
tains |ζ2(ε j)| vertices. We can select 2 different vertices t′

and t′′ from H2(ε j) in
(
|ζ2(ε j)|

2

)
different ways. Corresponding

to each choice we get a edge joining the vertices (t, t′) and
(t, t′′) in H1(εi) ⋉ H2(ε j). Like t, there are totally |ζ1(εi)| ver-
tices in H1(εi). Hence the first condition of adjacency gives
|ζ1(εi)|

(
|ζ2(ε j)|

2

)
edges in H1(εi)⋉ H2(ε j). We can choose two dif-

ferent vertices tp and tm in H1(εi) such that tp and tm are adja-
cent in H1(εi) in |ψ1(εi)| different ways. Similarly we can select
2 different vertices tq and tn in H2(ε j) in such a way that tq
and tn are not adjacent in H2(ε j) in

(
|ζ2(ε j)|(|ζ2(ε j)|−1)

2 − |ψ2(ε j)|
)

different ways. Let tp and tm be two vertices in H1(εi) such

that tp and tm are adjacent in H1(εi) and let tq and tn be
two vertices in H2(ε j) such that tq and tn are not adjacent in
H2(ε j). Thus we have 2 edges in H1(εi) ⋉ H2(ε j) in such a
way that one edge joins the vertices (tp, tq) and (tm, tn) and the
other joins (tp, tn) and (tm, tq). So, the second adjacency crite-
ria gives 2|ψ1(εi)|

(
|ζ2(ε j)|(|ζ2(ε j)|−1)

2 − |ψ2(ε j)|
)

edges in H1(εi) ⋉
H2(ε j). Hence the total count of edges in H1(εi) ⋉ H2(ε j) is
|ζ1(εi)|

(
|ζ2(ε j)|

2

)
+ 2|ψ1(εi)|

(
|ζ2(ε j)|(|ζ2(ε j)|−1)

2 − |ψ2(ε j)|
)
. This is the

case for all parts of Θ1 ⋉ Θ2. Therefore total count of edges in
Θ1 ⋉ Θ2 is ∑

(εi,ε j)∈ℜ1×ℜ2

(|ζ1(εi)|
(
|ζ2(ε j)|

2

)

+2|ψ1(εi)|[
|ζ2(ε j)|(|ζ2(ε j)| − 1)

2
− |ψ2(ε j)|]) =∑

(εi,ε j)∈ℜ1×ℜ2

(|ζ1(εi)|
(
|ζ2(ε j)|

2

)
+|ψ1(εi)|[|ζ2(ε j)|(|ζ2(ε j)| − 1) − 2|ψ2(ε j)|]).

Example 2. Consider the graphs given in Example 1. Here we
have, total count of vertices in Θ1 ⋉ Θ2 = 12 and∑

(εi,ε j)∈ℜ1×ℜ2

|ζ1(εi)||ζ2(ε j)| = (3.2) + (3.2) = 12.

That is, total count of vertices in Θ1 ⋉ Θ2 =∑
(εi,ε j)∈ℜ1×ℜ2

|ζ1(εi)||ζ2(ε j)|.

Also total count of edges in Θ1 ⋉ Θ2 = 6 and∑
(εi,ε j)∈ℜ1×ℜ2

(|ζ1(εi)|
(
|ζ2(ε j)|

2

)

+|ψ1(εi)|
[
|ζ2(ε j)|(|ζ2(ε j)| − 1) − 2|ψ2(ε j)|

]
) =

= (3.1 + 3.(2.1 − 2.1)) + (3.1 + 2.(2.1 − 2.1)) = 6.

That is, total count of edges in Θ1 ⋉ Θ2=∑
(εi,ε j)∈ℜ1×ℜ2

(|ζ1(εi)|
(
|ζ2(ε j)|

2

)
+|ψ1(εi)|[|ζ2(ε j)|(|ζ2(ε j)| − 1) − 2|ψ2(ε j)|]).

Theorem 3.3. Let Θ∗1 = (ϖ1, τ1) and Θ∗2 = (ϖ2, τ2) be two
graphs and Θ1 = (Θ∗1, ζ1, ψ1,ℜ1) and Θ2 = (Θ∗2, ζ2, ψ2,ℜ2) be
two soft graphs of Θ∗1 and Θ∗2 respectively. Then∑

(εi,ε j)∈ℜ1×ℜ2

∑
(u,v)∈ζΘ1⋉Θ2 (εi,ε j)

deg(u, v)[HΘ1⋉Θ2 (εi, ε j)] =

∑
(εi,ε j)∈ℜ1×ℜ2

(2|ζ1(εi)|
(
|ζ2(ε j)|

2

)
+ 2|ψ1(εi)|[|ζ2(ε j)|(|ζ2(ε j)| − 1)

−2|ψ2(ε j)|]).
4
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Proof. Consider any part HΘ1⋉Θ2 (εi, ε j) of Θ1 ⋉ Θ2 which is
given by H1(εi) ⋉ H2(ε j). By Theorem 3.2, we have number of
edges in H1(εi) ⋉ H2(ε j) is

|ζ1(εi)|
(
|ζ2(ε j)|

2

)
+ |ψ1(εi)|

[
|ζ2(ε j)|(|ζ2(ε j)| − 1) − 2|ψ2(ε j)|

]
Then, we get ∑

(u,v)∈ζΘ1⋉Θ2 (εi,ε j)

deg(u, v)[HΘ1⋉Θ2 (εi, ε j)] =

2|ζ1(εi)|
(
|ζ2(ε j)|

2

)
+ 2|ψ1(εi)|

[
|ζ2(ε j)|(|ζ2(ε j)| − 1) − 2|ψ2(ε j)|

]
.

This is the case for all parts HΘ1⋉Θ2 (εi, ε j) of Θ1 ⋉ Θ2. Hence,∑
(εi,ε j)∈ℜ1×ℜ2

∑
(u,v)∈ζΘ1⋉Θ2 (εi,ε j)

deg(u, v)[HΘ1⋉Θ2 (εi, ε j)] =

∑
(εi,ε j)∈ℜ1×ℜ2

(2|ζ1(εi)|
(
|ζ2(ε j)|

2

)
+ 2|ψ1(εi)|[|ζ2(ε j)|(|ζ2(ε j)| − 1)

−2|ψ2(ε j)|]).

Example 3. Consider the graphs given in Example 1. Here we
have, ∑

(εi,ε j)∈ℜ1×ℜ2

∑
(u,v)∈ζΘ1⋉Θ2 (εi,ε j)

deg(u, v)[HΘ1⋉Θ2 (εi, ε j)] =

(1 + 1 + 1 + 1 + 1 + 1) + (1 + 1 + 1 + 1 + 1 + 1) = 12

and ∑
(εi,ε j)∈ℜ1×ℜ2

(2|ζ1(εi)|
(
|ζ2(ε j)|

2

)
+ 2|ψ1(εi)|[|ζ2(ε j)|(|ζ2(ε j)| − 1)

−2|ψ2(ε j)|]).

= (2.3.1 + 2.3.(2.1 − 2.1)) + (2.3.1 + 2.2.(2.1 − 2.1)) = 12.

That is, ∑
(εi,ε j)∈ℜ1×ℜ2

∑
(u,v)∈ζΘ1⋉Θ2 (εi,ε j)

deg(u, v)[HΘ1⋉Θ2 (εi, ε j)] =

∑
(εi,ε j)∈ℜ1×ℜ2

(2|ζ1(εi)|
(
|ζ2(ε j)|

2

)
+ 2|ψ1(εi)|[|ζ2(ε j)|(|ζ2(ε j)| − 1)

−2|ψ2(ε j)|]).

Figure 6: Graph Θ∗ = (ϖ, τ).

4. Restricted homomorphic product of soft graphs

This section delves into the concept of the restricted homo-
morphic product of soft graphs.

Definition 4.1. Let Θ∗ = (ϖ, τ) be a graph and Θ1 =

(Θ∗, ζ1, ψ1,ℜ1) = {H1(ε) : ε ∈ ℜ1} and Θ2 =

(Θ∗, ζ2, ψ2,ℜ2) = {H2(ε) : ε ∈ ℜ2} be two soft graphs of Θ∗

such thatℜ1∩ℜ2 , ϕ. Then the restricted homomorphic prod-
uct of Θ1 and Θ2, which is denoted by Θ1 ⋇ Θ2 is defined as
Θ1 ⋇Θ2 = {H1(ε)⋉H2(ε) : ε ∈ ℜ1 ∩ℜ2}. Here H1(ε)⋉H2(ε)
denotes the homomorphic product of the parts H1(ε) of Θ1 and
H2(ε) of Θ2 which is defined as follows: H1(ε) ⋉ H2(ε) is a
graph having set of vertices ϖ(H1(ε) ⋉ H2(ε)) = ζ1(ε) × ζ2(ε)
and set of edges τ(H1(ε)⋉H2(ε)), where there is a edge between
the vertices (t1, t′1) and (t2, t′2) in H1(ε) ⋉ H2(ε) if and only if

1. t1 = t2 or
2. t1 and t2 are adjacent in H1(ε) and t′1 and t′2 are not adja-

cent in H2(ε).

Example 4. Let Θ∗ = (ϖ, τ) be the graph depicted in Figure 6.

Letℜ1 = {v3, v10} ⊆ ϖ be a set of parameters . Define ζ1 from
ℜ1 to P(ϖ) by ζ1(ε) = {u ∈ ϖ | d(u, ε) ≤ 2},∀ε ∈ ℜ1. That
is, ζ1(v3) = {v1, v2, v3, v4, v5} and ζ1(v10) = {v6, v7, v8, v9, v10}.
Here (ζ1,ℜ1) is a soft set over ϖ. Also, define ψ1 from ℜ1 to
P(τ) by ψ1(ε) = {viv j ∈ τ | {vi, v j} ⊆ ζ1(ε)}, ∀ε ∈ ℜ1. That is,
ψ1(v3) = {v1v3, v2v3, v3v4, v4v5} and ψ1(v10) = {v6v8, v6v9, v7v8,
v7v9, v8v9, v9v10}. Here, (ψ1,ℜ1) is a soft set over τ. Then
H1(v3) = (ζ1(v3), ψ1(v3)) and H1(v10) = (ζ1(v10), ψ1(v10)) are
subgraphs of Θ∗. Therefore Θ1 = {H1(v3),H1(v10)} is a soft
graph of Θ∗ and is depicted in Figure 7.
Consider another parameter set ℜ2 = {v3, v7} ⊆ ϖ. Define
ζ2 : ℜ2 → P(ϖ) by ζ2(ε) = {u ∈ ϖ | d(u, ε) ≤ 1},∀ε ∈ ℜ2.
That is, ζ2(v3) = {v1, v2, v3, v4} and ζ2(v7) = {v5, v7, v8, v9} .
Here, (ζ2,ℜ2) is a soft set overϖ. Also, define ψ2 : ℜ2 → P(τ)
by ψ2(ε) = {viv j ∈ τ | {vi, v j} ⊆ ζ2(ε)},∀ε ∈ ℜ2. That is,
ψ2(v3) = {v1v3, v2v3, v3v4} and ψ2(v7) = {v5v7, v7v8, v7v9}. Here,
(ψ2,ℜ2) is a soft set over τ. Then, H2(v3) = (ζ2(v3), ψ2(v3))
and H2(v7) = (ζ2(v7), ψ2(v7)) are subgraphs of Θ∗. Therefore,
Θ2 = {H2(v3),H2(v7)} is a soft graph of Θ∗ and is depicted in
Figure 8.
Then the restricted homomorphic product Θ1 ⋇ Θ2 is given

5
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Figure 7: Soft Graph Θ1 = {H1(v3),H1(v10)}.

Figure 8: Soft Graph Θ2 = {H2(v3),H2(v7)}.

byΘ = Θ1⋇Θ2 = {H1(v3)⋉H2(v3)} and is depicted in Figure 9.

Theorem 4.1. Let Θ∗ = (ϖ, τ) be a graph and Θ1 =

(Θ∗, ζ1, ψ1,ℜ1) = {H1(ε) : ε ∈ ℜ1} and Θ2 =

(Θ∗, ζ2, ψ2,ℜ2) = {H2(ε) : ε ∈ ℜ2} be two soft graphs of Θ∗

such thatℜ1∩ℜ2 , ϕ. ThenΘ1⋇Θ2 is a soft graph ofΘ∗⋉Θ∗.

Proof. Θ1 ⋇ Θ2 is defined as Θ1 ⋇ Θ2 = {H1(ε) ⋉ H2(ε) :
ε ∈ ℜ1 ∩ ℜ2}. Here H1(ε) ⋉ H2(ε) denotes the homomor-
phic product of the parts H1(ε) of Θ1 and H2(ε) of Θ2 which
is defined as follows: H1(ε) ⋉ H2(ε) is a graph having set of
vertices ϖ(H1(ε) ⋉ H2(ε)) = ζ1(ε) × ζ2(ε) and set of edges
τ(H1(ε) ⋉ H2(ε)), where there is a edge between the vertices
(t1, t′1) and (t2, t′2) in H1(ε) ⋉ H2(ε) if and only if

1. t1 = t2 or
2. t1 and t2 are adjacent in H1(ε) and t′1 and t′2 are not adja-

cent in H2(ε).

Θ∗ ⋉Θ∗ is a graph having set of vertices ϖ(Θ∗ ⋉Θ∗) = ϖ ×ϖ
and set of edges τ(Θ∗ ⋉ Θ∗), where there is a edge between the
two vertices (t1, t′1) and (t2, t′2) in Θ∗ ⋉ Θ∗ if and only if

Figure 9: Θ = Θ1 ⋇ Θ2 = {H1(v3) ⋉ H2(v3)}.

1. t1 = t2 or
2. t1 and t2 are adjacent in Θ∗ and t′1 and t′2 are not adjacent

in Θ∗.

Let ℜΘ1⋇Θ2 = ℜ1 ∩ ℜ2 be the set of parameters. Define
ζΘ1⋇Θ2 fromℜΘ1⋇Θ2 to P[ϖ(Θ∗ ⋉Θ∗)] by ζΘ1⋇Θ2 (ε) = ζ1(ε) ×
ζ2(ε),∀ε ∈ ℜ1 ∩ ℜ2. Then (ζΘ1⋇Θ2 ,ℜΘ1⋇Θ2 ) is a soft set over
ϖ(Θ∗⋉Θ∗). Also, define ψΘ1⋇Θ2 fromℜΘ1⋇Θ2 toP[τ(Θ∗⋉Θ∗)]
by ψΘ1⋇Θ2 (ε) = {(u, v)(y, z) ∈ τ(Θ∗ ⋉ Θ∗) | {(u, v), (y, z)} ∈
ζΘ1⋇Θ2 (ε)},∀ε ∈ ℜ1 ∩ ℜ2. Then (ψΘ1⋇Θ2 ,ℜΘ1⋇Θ2 ) is a soft
set over τ(Θ∗ ⋉ Θ∗). Also if we denote (ζΘ1⋇Θ2 (ε), ψΘ1⋇Θ2 (ε))
by HΘ1⋇Θ2 (ε), then HΘ1⋇Θ2 (ε) is a subgraph of Θ∗ ⋉ Θ∗,∀ε ∈
ℜ1∩ℜ2, since ζ1(ε)×ζ2(ε) ⊆ ϖ×ϖ and any edge in ψΘ1⋇Θ2 (ε)
is also a edge in τ(Θ∗ ⋉ Θ∗). Then Θ1 ⋇ Θ2 can be represented
by the 4-tuple (Θ∗ ⋉ Θ∗, ζΘ1⋇Θ2 , ψΘ1⋇Θ2 ,ℜΘ1⋇Θ2 ) and also by
{HΘ1⋇Θ2 (ε) : ε ∈ ℜ1 ∩ ℜ2} and Θ1 ⋇ Θ2 is a soft graph of
Θ∗ ⋉ Θ∗.

Theorem 4.2. The restricted homomorphic product
Θ1 ⋇ Θ2 contains

∑
ε∈ℜ1∩ℜ2

|ζ1(ε)||ζ2(ε)| vertices and∑
ε∈ℜ1∩ℜ2

(|ζ1(ε)|
(
|ζ2(ε)|

2

)
+ |ψ1(ε)|[|ζ2(ε)|(|ζ2(ε)| − 1) − 2|ψ2(ε)|])

edges.

Proof. By definition,Θ1⋇Θ2 = {H1(ε)⋉H2(ε) : ε ∈ ℜ1∩ℜ2}.
The parameter set of Θ1 ⋇ Θ2 is ℜ1 ∩ ℜ2. Consider the part
H1(ε) ⋉ H2(ε) of Θ1 ⋇ Θ2 corresponding to the parameter ε ∈
ℜ1∩ℜ2. The vertex set of H1(ε)⋉H2(ε) is ζ1(ε)× ζ2(ε) which
contains |ζ1(ε)||ζ2(ε)| elements. This is the case for all parts
of Θ1 ⋇ Θ2. Therefore total count of vertices in Θ1 ⋇ Θ2 is∑
ε∈ℜ1∩ℜ2

|ζ1(ε)||ζ2(ε)|. Also, there is a edge between the two
vertices (tp, tq) and (tm, tn) in H1(ε) ⋉ H2(ε) if and only if

1. tp = tm or

6
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2. tp and tm are adjacent in H1(ε) and tq and tn are not adja-
cent in H2(ε).

Each edge in H1(ε) ⋉ H2(ε) is generated by one of two distinct
conditions, and these conditions cannot occur simultaneously.
To determine the total number of edges in H1(ε) ⋉ H2(ε), we
sum the number of edges produced by each condition. Let t be
any vertex in H1(ε). The part H2(ε) contains |ζ2(ε)| vertices.
We can select 2 different vertices t′ and t′′ from H2(ε) in

(
|ζ2(ε)|

2

)
different ways. Corresponding to each choice we get a edge
joining the vertices (t, t′) and (t, t′′) in H1(ε) ⋉ H2(ε). Like t,
there are |ζ1(ε)| vertices in H1(ε). So, the first adjacency crite-
ria gives |ζ1(ε)|

(
|ζ2(ε)|

2

)
edges in H1(ε) ⋉ H2(ε). We can choose

two different vertices tp and tm in H1(ε) such that tp and tm are
adjacent in H1(ε) in |ψ1(ε)| different ways. Similarly we can se-
lect 2 different vertices tq and tn in H2(ε) such that tq and tn are
not adjacent in H2(ε) in

(
|ζ2(ε)|(|ζ2(ε)|−1)

2 − |ψ2(ε)|
)

different ways.
Let tp and tm be two vertices in H1(ε) such that tp and tm are
adjacent in H1(ε) and let tq and tn be two vertices in H2(ε) such
that tq and tn are not adjacent in H2(ε). Thus we get 2 edges
in H1(ε) ⋉ H2(ε) in such a way that one edge joins the vertices
(tp, tq) and (tm, tn) and the other joins (tp, tn) and (tm, tq). So, the
second adjacency criteria gives 2|ψ1(ε)|

(
|ζ2(ε)|(|ζ2(ε)|−1)

2 − |ψ2(ε)|
)

edges in H1(ε) ⋉ H2(ε). Hence the total count of edges in
H1(ε)⋉H2(ε) is |ζ1(ε)|

(
|ζ2(ε)|

2

)
+ 2|ψ1(ε)|

(
|ζ2(ε)|(|ζ2(ε)|−1)

2 − |ψ2(ε)|
)
.

This is the case for all parts of Θ1 ⋇ Θ2. Therefore total count
of edges in Θ1 ⋇ Θ2 is∑
ε∈ℜ1∩ℜ2

(
|ζ1(ε)|

(
|ζ2(ε)|

2

)
+ 2|ψ1(ε)|

[
|ζ2(ε)|(|ζ2(ε)| − 1)

2
− |ψ2(ε)|

])

=
∑

ε∈ℜ1∩ℜ2

(
|ζ1(ε)|

(
|ζ2(ε)|

2

)
+ |ψ1(ε)|

[
|ζ2(ε)|(|ζ2(ε)| − 1) − 2|ψ2(ε)|

])
.

Example 5. Consider the graph given in Example 4. Here we
have, total count of vertices in Θ1 ⋇ Θ2 = 20 and∑

ε∈ℜ1∩ℜ2

|ζ1(ε)||ζ2(ε)| = 5.4 = 20.

That is, total count of vertices in Θ1 ⋇ Θ2 =∑
ε∈ℜ1∩ℜ2

|ζ1(ε)||ζ2(ε)|.

Also total count of edges in Θ1 ⋇ Θ2 = 54 and∑
ε∈ℜ1∩ℜ2

(|ζ1(ε)|
(
|ζ2(ε)|

2

)
+ |ψ1(ε)|[|ζ2(ε)|(|ζ2(ε)| − 1)

−2|ψ2(ε)|]) =

= 5.6 + 4.(4.3 − 2.3) = 54.

That is, total count of edges in Θ1 ⋇ Θ2=∑
ε∈ℜ1∩ℜ2

(|ζ1(ε)|
(
|ζ2(ε)|

2

)
+ |ψ1(ε)|[|ζ2(ε)|(|ζ2(ε)| − 1)

−2|ψ2(ε)|]).

Theorem 4.3. Let Θ∗ = (ϖ, τ) be a graph and Θ1 =

(Θ∗, ζ1, ψ1,ℜ1) and Θ2 = (Θ∗, ζ2, ψ2,ℜ2) be two soft graphs
of Θ∗ such thatℜ1 ∩ℜ2 , ϕ. Then∑

ε∈ℜ1∩ℜ2

∑
(u,v)∈ζΘ1⋇Θ2 (ε)

deg(u, v)[HΘ1⋇Θ2 (ε)] =

∑
ε∈ℜ1∩ℜ2

(
2|ζ1(ε)|

(
|ζ2(ε)|

2

)
+ 2|ψ1(ε)|

[
|ζ2(ε)|(|ζ2(ε)| − 1) − 2|ψ2(ε)|

])
.

Proof. Consider any part HΘ1⋇Θ2 (ε) of Θ1 ⋇Θ2 which is given
by H1(ε) ⋉ H2(ε). By Theorem 4.2, we have number of edges
in H1(ε) ⋉ H2(ε) is

|ζ1(ε)|
(
|ζ2(ε)|

2

)
+ |ψ1(ε)|

[
|ζ2(ε)|(|ζ2(ε)| − 1) − 2|ψ2(ε)|

]
Hence, ∑

(u,v)∈ζΘ1⋇Θ2 (ε)

deg(u, v)[HΘ1⋇Θ2 (ε)] =

2|ζ1(ε)|
(
|ζ2(ε)|

2

)
+ 2|ψ1(ε)|

[
|ζ2(ε)|(|ζ2(ε)| − 1) − 2|ψ2(ε)|

]
.

This is the case for all parts HΘ1⋇Θ2 (ε) of Θ1 ⋇ Θ2. Hence,∑
ε∈ℜ1∩ℜ2

∑
(u,v)∈ζΘ1⋇Θ2 (ε)

deg(u, v)[HΘ1⋇Θ2 (ε)] =

∑
ε∈ℜ1∩ℜ2

(
2|ζ1(ε)|

(
|ζ2(ε)|

2

)
+ 2|ψ1(ε)|

[
|ζ2(ε)|(|ζ2(ε)| − 1) − 2|ψ2(ε)|

])
.

Example 6. Consider the graphs given in Example 4. Here we
have, ∑

ε∈ℜ1∩ℜ2

∑
(u,v)∈ζΘ1⋇Θ2 (ε)

deg(u, v)[HΘ1⋇Θ2 (ε)] =

5+5+9+7+5+5+5+9+7+5+3+3+3+3+3+5+5+9+7+5 = 108

and∑
ε∈ℜ1∩ℜ2

(
2|ζ1(ε)|

(
|ζ2(ε)|

2

)
+ 2|ψ1(ε)|

[
|ζ2(ε)|(|ζ2(ε)| − 1) − 2|ψ2(ε)|

])
.

= 2.5.6 + 2.4.(4.3 − 2.3) = 108.

That is, ∑
(εi,ε j)∈ℜ1×ℜ2

∑
(u,v)∈ζΘ1⋇Θ2 (ε)

deg(u, v)[HΘ1⋇Θ2 (ε)] =

∑
ε∈ℜ1∩ℜ2

(
2|ζ1(ε)|

(
|ζ2(ε)|

2

)
+ 2|ψ1(ε)|

[
|ζ2(ε)|(|ζ2(ε)| − 1) − 2|ψ2(ε)|

])
.

7
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5. Conclusion

Soft graphs emerged from the integration of soft sets into
graph theory, offering a novel approach to representing complex
relationships. Through parameterization, soft graphs can gener-
ate multiple representations of such relationships, contributing
to their versatility. The field of soft graph theory is witnessing
rapid progress due to the effective utilization of parameteriza-
tion techniques. We introduced and explored the features of ho-
momorphic and restricted homomorphic products in this study.

Data availability

We do not have any research data outside the submitted
manuscript file.

References

[1] D. Molodtsov, “Soft set theory-first results”, Computers & Mathematics
with Applications 37 (1999) 19. https://doi.org/10.1016/S0898-1221(99)
00056-5.

[2] P. K. Maji & A. R. Roy, “A fuzzy soft set theoretic approach to decision-
making problems”, Journal of Computational and Applied Mathematics
203 (2007) 412. https://doi.org/10.1016/j.cam.2006.04.008.

[3] P. K. Maji, A. R. Roy & R. Biswas, “An application of soft sets in a
decision making problem”, Computers and Mathematics with Application
44 (2002) 1077. https://doi.org/10.1016/S0898-1221(02)00216-X.

[4] S. S. Mohammed, “On fuzzy soft set-valued maps with application”,
Journal of the Nigerian Society of Physical Sciences 2 (2020) 26. https:
//doi.org/10.46481/jnsps.2020.48.

[5] S. Saleh, T. M. Al-Shami, L. R. Flaih, M. Arar & R. Abu-Gdairi, “Ri-
Separation axioms via supra soft topological spaces”, J. Math. Compt.
Sci. 32 (2024) 263. http://dx.doi.org/10.22436/jmcs.032.03.07.

[6] S. Saleh, L. R. Flaih & K. F. Jasim, “Some applications of soft δ-closed
sets in soft closure space”, Communications in Mathematics and
Applications 14 (2023) 481. https://www.researchgate.net/publication/
373629819 Some applications of soft -closed sets in soft closure
spaces.

[7] R. K. Thumbakara & B. George, “Soft graphs”, Gen. Math. Notes
21 (2014) 75. http://emis.icm.edu.pl/journals/GMN/yahoo site admin/
assets/docs/6 GMN-4802-V21N2.16902935.pdf.

[8] R. K. Thumbakara, B. George & J. Jose, “Subdivision graph, power and
line graph of a soft graph”, Communications in Mathematics and Appli-
cations 13 (2022) 75. https://doi.org/10.26713/cma.v13i1.1669.

[9] M. Akram & S. Nawaz, “Operations on soft graphs”, Fuzzy Inf. Eng. 7
(2015) 423. https://doi.org/10.1016/j.fiae.2015.11.003.

[10] M. Akram & S. Nawaz, “Certain types of soft graphs”, U. P. B. Sci.
Bull., Series A 78 (2016) 67. https://www.scientificbulletin.upb.ro/rev
docs arhiva/fullcc2 842873.pdf.

[11] M. Akram & S. Nawaz, “On fuzzy soft graphs”, Italian Journal of
Pure and Applied Mathematics 34 (2015) 463. https://ijpam.uniud.it/
online issue/201534/44-AkramNawaz.pdf.

[12] M. Akram & S. Nawaz, “Fuzzy soft graphs with applications”, Journal of
Intelligent and Fuzzy Systems 30 (2016) 3619. https://doi.org/10.3233/
IFS-162107.

[13] M. Akram & F. Zafar, “On soft trees”, Buletinul Acad. Stiinte a Republi-
cia Moldova. Mathematica 2 (2015) 82. https://www.math.md/files/basm/
y2015-n2/y2015-n2-(pp82-95).pdf.

[14] M. Akram & F. Zafar, “Fuzzy soft trees”, Southeast Asian Bulletin
of Mathematics 40 (2016) 151. http://www.seams-bull-math.ynu.edu.cn/
downloadfile.jsp?filemenu= 201602&filename=01 40(2).pdf.

[15] J. D. Thenge, B. S. Reddy & R. S. Jain, “Connected soft graph”, New
Mathematics and Natural Computation 16 (2020) 305. https://doi.org/10.
1142/S1793005720500180.

[16] J. D. Thenge, B. S. Reddy & R. S. Jain, “Contribution to soft graph and
soft tree”, New Mathematics and Natural Computation 15 (2019) 129.
https://doi.org/10.1142/S179300571950008X.

[17] J. D. Thenge, B. S. Reddy & R. S. Jain, “Adjacency and incidence matrix
of a soft graph”, Communications in Mathematics and Applications 11
(2020) 23. https://doi.org/10.26713/cma.v11i1.1281.

[18] B. George, J. Jose & R. K. Thumbakara, “An introduction to soft hy-
pergraphs”, Journal of Prime Research in Mathematics 18 (2022) 43.
https://jprm.sms.edu.pk/an-introduction-to-soft-hypergraphs/.

[19] J. Jose, B. George & R. K. Thumbakara, “Soft directed graphs, their
vertex degrees, associated matrices and some product operations”, New
Mathematics and Natural Computation 19 (2023) 651. https://doi.org/10.
1142/S179300572350028X.

[20] J. Jose, B. George & R. K. Thumbakara, “Soft directed graphs, some of
their operations & properties”, New Mathematics and Natural Computa-
tion 20 (2024) 129. https://doi.org/10.1142/S1793005724500091.

[21] B. George, R. K. Thumbakara & J. Jose, “Soft disemigraphs, degrees
and digraphs associated and their AND & OR operations”, New Mathe-
matics and Natural Computation 20 (2024) 835. https://doi.org/10.1142/
S1793005723500448.

[22] R. Hammack, W. Imrich & S. Klavzar, Handbook of product graphs, CRC
Press, U.S.A, 2011. https://doi.org/10.1201/b10959.

[23] M. Baghernejad & R. A. Borzooei, “Results on soft graphs and soft multi-
graphs with application in controlling urban traffic flows”, Soft Comput-
ing 27 (2023) 11155. https://doi.org/10.1007/s00500-023-08650-7.

[24] J. Jose, B. George & R. K. Thumbakara, “Eulerian and Unicursal soft
graphs”, Mapana Journal of Sciences 22 (2023) 99. https://journals.
christuniversity.in/index.php/mapana/article/view/4144.

[25] R. K. Thumbakara, J. Jose & B. George, “Hamiltonian soft graphs”,
Ganita 72 (2022) 145. https://bharataganitaparisad.com/wp-content/
uploads/2022/11/721-ch15.pdf.

[26] R. K. Thumbakara, J. Jose & B. George, “On soft graph isomorphism”,
New Mathematics and Natural Computation, (2023) (Published Online).
https://doi.org/10.1142/S1793005725500073.

[27] B. George, J. Jose & R. K. Thumbakara, “Tensor products and strong
products of soft graphs”, Discrete Mathematics, Algorithms and Applica-
tions 15 (2023) 1. https://doi.org/10.1142/S1793830922501713.

[28] B. George, J. Jose & R. K. Thumbakara, “Co-normal products and mod-
ular products of soft graphs”, Discrete Mathematics, Algorithms and Ap-
plications 16 (2024) 1. https://doi.org/10.1142/S179383092350012X.

[29] B. George, J. Jose & R. K. Thumbakara, “Modular product of soft di-
rected graphs”, TWMS Journal of Applied and Engineering Mathemat-
ics 14 (2024) 966. https://jaem.isikun.edu.tr/web/images/articles/vol.14.
no.3/07.pdf.

[30] J. Jose, B. George & R. K. Thumbakara, “Homomorphic product of soft
directed graphs”, TWMS Journal of Applied and Engineering Mathemat-
ics 14 (2024) 1405. https://jaem.isikun.edu.tr/web/images/articles/vol.14.
no.4/07.pdf.

[31] J. Jose, B. George & R. K. Thumbakara, “Rooted product and re-
stricted rooted product of soft directed graphs”, New Mathemat-
ics and Natural Computation 20 (2024) 345. https://doi.org/10.1142/
S1793005724500194.

[32] J. Jose, B. George & R. K. Thumbakara, “Disjunctive product of soft di-
rected graphs”, New Mathematics and Natural Computation, (2023) (Pub-
lished Online). https://doi.org/10.1142/S1793005725500139.

[33] J. Jose, B. George & R. K. Thumbakara, “Corona product of soft directed
graphs”, New Mathematics and Natural Computation, (2023) (Published
Online). https://doi.org/10.1142/S179300572550022X.

[34] J. Jose, B. George, R. K. Thumbakara & Sijo P. George“Understanding
normal and restricted normal products in soft directed graphs”, Journal of
the Nigerian Society of Physical Sciences 6 (2024) 2156. https://doi.org/
10.46481/jnsps.2024.2156.

[35] B. George, J. Jose & R. K. Thumbakara, “Connectedness in soft sem-
igraphs”, New Mathematics and Natural Computation 20 (2024) 157.
https://doi.org/10.1142/S1793005724500108.

[36] B. George, R. K. Thumbakara & J. Jose, “Soft semigraphs and some of
their operations”, New Mathematics and Natural Computation 19 (2023)
369. https://doi.org/10.1142/S1793005723500126.

[37] B. George, R. K. Thumbakara & J. Jose, “Soft semigraphs and different
types of degrees, graphs and matrices associated with them”, Thai Journal
of Mathematics 21 (2023) 863. https://thaijmath2.in.cmu.ac.th/index.php/
thaijmath/article/view/1551.

8

https://doi.org/10.1016/S0898-1221(99)00056-5
https://doi.org/10.1016/S0898-1221(99)00056-5
https://doi.org/10.1016/j.cam.2006.04.008
https://doi.org/10.1016/S0898-1221(02)00216-X
https://doi.org/10.46481/jnsps.2020.48
https://doi.org/10.46481/jnsps.2020.48
http://dx.doi.org/10.22436/jmcs.032.03.07
https://www.researchgate.net/publication/373629819_Some_applications_of_soft_-closed_sets_in_soft_closure_spaces
https://www.researchgate.net/publication/373629819_Some_applications_of_soft_-closed_sets_in_soft_closure_spaces
https://www.researchgate.net/publication/373629819_Some_applications_of_soft_-closed_sets_in_soft_closure_spaces
http://emis.icm.edu.pl/journals/GMN/yahoo_site_admin/assets/docs/6_GMN-4802-V21N2.16902935.pdf
http://emis.icm.edu.pl/journals/GMN/yahoo_site_admin/assets/docs/6_GMN-4802-V21N2.16902935.pdf
https://doi.org/10.26713/cma.v13i1.1669
https://doi.org/10.1016/j.fiae.2015.11.003
https://www.scientificbulletin.upb.ro/rev_docs_arhiva/fullcc2_842873.pdf
https://www.scientificbulletin.upb.ro/rev_docs_arhiva/fullcc2_842873.pdf
https://ijpam.uniud.it/online_issue/201534/44-AkramNawaz.pdf
https://ijpam.uniud.it/online_issue/201534/44-AkramNawaz.pdf
https://doi.org/10.3233/IFS-162107
https://doi.org/10.3233/IFS-162107
https://www.math.md/files/basm/y2015-n2/y2015-n2-(pp82-95).pdf
https://www.math.md/files/basm/y2015-n2/y2015-n2-(pp82-95).pdf
http://www.seams-bull-math.ynu.edu.cn/downloadfile.jsp?filemenu=_201602&filename=01_40(2).pdf
http://www.seams-bull-math.ynu.edu.cn/downloadfile.jsp?filemenu=_201602&filename=01_40(2).pdf
https://doi.org/10.1142/S1793005720500180
https://doi.org/10.1142/S1793005720500180
https://doi.org/10.1142/S179300571950008X
https://doi.org/10.26713/cma.v11i1.1281
https://jprm.sms.edu.pk/an-introduction-to-soft-hypergraphs/
https://doi.org/10.1142/S179300572350028X
https://doi.org/10.1142/S179300572350028X
https://doi.org/10.1142/S1793005724500091
https://doi.org/10.1142/S1793005723500448
https://doi.org/10.1142/S1793005723500448
https://doi.org/10.1201/b10959
https://doi.org/10.1007/s00500-023-08650-7
https://journals.christuniversity.in/index.php/mapana/article/view/4144
https://journals.christuniversity.in/index.php/mapana/article/view/4144
https://bharataganitaparisad.com/wp-content/uploads/2022/11/721-ch15.pdf
https://bharataganitaparisad.com/wp-content/uploads/2022/11/721-ch15.pdf
https://doi.org/10.1142/S1793005725500073
https://doi.org/10.1142/S1793830922501713
https://doi.org/10.1142/S179383092350012X
https://jaem.isikun.edu.tr/web/images/articles/vol.14.no.3/07.pdf
https://jaem.isikun.edu.tr/web/images/articles/vol.14.no.3/07.pdf
https://jaem.isikun.edu.tr/web/images/articles/vol.14.no.4/07.pdf
https://jaem.isikun.edu.tr/web/images/articles/vol.14.no.4/07.pdf
https://doi.org/10.1142/S1793005724500194
https://doi.org/10.1142/S1793005724500194
https://doi.org/10.1142/S1793005725500139
https://doi.org/10.1142/S179300572550022X
https://doi.org/10.46481/jnsps.2024.2156
https://doi.org/10.46481/jnsps.2024.2156
https://doi.org/10.1142/S1793005724500108
https://doi.org/10.1142/S1793005723500126
https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/1551
https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/1551


Jose et al. / J. Nig. Soc. Phys. Sci. 7 (2025) 2391 9

[38] B. George, J. Jose & R. K. Thumbakara, “Investigating the traits of soft
semigraph-associated degrees”, New Mathematics and Natural Computa-
tion, 20 (2024) 647. http://dx.doi.org/10.1142/S1793005724500352.

[39] B. George, J. Jose & R. K. Thumbakara, “Cartesian product
and composition of soft semigraphs”, New Mathematics and Natu-
ral Computation, 2023 (Published Online). http://dx.doi.org/10.1142/
S1793005725500036.

[40] B. George, R. K. Thumbakara & J. Jose, “Soft directed hy-
pergraphs and their AND & OR operations”, Mathemat-
ical Forum 30 (2022) 1. https://mathematical-forum.org/
soft-directed-hypergraphs-and-their-and-or-operations/.

9

http://dx.doi.org/10.1142/S1793005724500352
http://dx.doi.org/10.1142/S1793005725500036
http://dx.doi.org/10.1142/S1793005725500036
https://mathematical-forum.org/soft-directed-hypergraphs-and-their-and-or-operations/
https://mathematical-forum.org/soft-directed-hypergraphs-and-their-and-or-operations/

