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Abstract

Considering the new wavelet-based Galerkin finite element technique constructed with Iweobodo-Mamadu-Njoseh wavelet (IMNW) as the basis
function in seeking the numerical solution of time-fractional advection-diffusion equations (TFADE), the TFADE must be simplified to enhance
an application of a numerical technique. Thus in this research work, we considered an implementation of the time and space discretization of
the TFADE with the use of IMNW basis function. In order to successfully achieve our result, our methodology inculcated the Caputo fractional
derivatives, time fractional advection-diffusion equations (TFADE), Wavelet, IMNW, and Galerkin finite element method. After a successful
implementation of the time discretization, an implicit form of TFADE was obtained, followed by the implementation of the space discretization
which generated the variational formulation of the equation for easy implementation of the scheme. The illustrated numerical solution from using
the new technique provided a resulting numerical evidence which aligns with the exact solution.

DOI:10.46481/jnsps.2025.2405

Keywords: Caputo fractional derivatives, Time-fractional advection-diffusion equations (TFADE), Iweobodo-Mamadu-Njoseh wavelet
(IMNW), Time discretization, Space discretization

Article History :
Received: 01 October 2024
Received in revised form: 06 November 2024
Accepted for publication: 29 March 2025
Available online: 07 May 2025

© 2025 The Author(s). Published by the Nigerian Society of Physical Sciences under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this

work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Communicated by: Pankaj Thakur

1. Introduction

Kumar and Pandit [1] described a differential equation as an
equation involving derivatives or differentials of one or more
dependent variables with respect to one or more independent
variables. Its foundation. Differential equations are very sig-
nificant in wide varieties of real life situations today, according
to Iweobodo et al. [2], many problems involving chemical re-
actions, wave propagation, heat flow, stock market predictions,
etc; are modeled with differential equations.

∗Corresponding author Tel. No.: +234-803-194-6778.
Email address: iweobodo.daniel@dou.edu.ng (D. C. Iweobodo)

Fractional differential equation are differential equations
possessing fractional or arbitrary order. Gupta and Saha [3]
stated that fractional derivatives are important because they pro-
vide relevant tools used for describing the memory and hered-
itary properties of different processes and materials. Its use in
science and engineering has caused it to become more popular
and visible today.

Many fractional differential equations are not easy to solve
with analytic methods, therefore researchers consider some nu-
merical techniques. Eg Issa et al. [4], Basim et al. [5]. In the
same vein, Shiralashetti et al. [6] stated that the impossibility
to obtain the exact solutions of some differential equations has
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necessitated either discretization of differential equations lead-
ing to numerical solutions, or their qualitative study which is
concerned with the deduction of important properties of the so-
lutions without actually solving them.

The wavelet-based method of solutions to time fractional
differential equations is among the recently developed methods,
and a few researchers have applied it in seeking approximate
solutions to time fractional differential equations.

Studies have shown that some wavelets emanated from or-
thogonal polynomials, hence, Iweobodo et al. [7] developed
a new wavelet from Mamadu-Njoseh polynomial (MNP), and
this new wavelet has been peacefully applied in seeking nu-
merical solutions of one dimensional differential equations. Al-
though, Iweobodo et al. [8] iterated some steps in applying the
new wavelet in solving time fractional differential equations,
however, the technique has not been directly applied in solv-
ing any fractional derivative. Hence in this research work, a
time and space discretizaion process of the Caputo fractional
advection-diffusion equation with respect to IMNW will be
considered for the ease of providing its numerical solution.

2. Materials and methods

2.1. Caputo fractional calculus
Different types of fractional differential equations and their

descriptions exist in literature, namely Riemann-Liouville, Ca-
puto, Riesz, and Grunwald-Letnikov (Fadugba) [9]. However,
our interest in this work is on the Caputo fractional differential
equations.

The Caputo fractional derivative was defined by Podlubny
[10] as:

0Dα
t f (t) =

1
Γ(n − α)

∫ t

0

f n(τ)
(t − τ)α−n+t dτ n − 1 < α ⩽ n, n ∈ N. (1)

In Ref. [3] some properties of the Caputo fractional derivatives
were stated as:

0Dα
t tβ =

Γ(1 + β)
Γ(1 + β − α)

tβ−α, 0 < α < β + 1, β > −1. (2)

and

JαDα f (t) =

f (t) −
n−1∑
k=0

f k(0+)
tk

k!
, n − 1 < α ⩽ n, n ∈ N. (3)

Also, DαC = 0, where C is a constant.
Still in Ref. [3], it is believed that the Caputo fractional

derivative must satisfy the following linearity condition

Dα(γ f (t) + δg(t)) = γDα f (t) + δDαg(t),

with γ and δ as constants. Also, the following Leibnitz’s rule
holds

Dα(g(t) f (t)) =
n−1∑
k=0

gk(t)Dα−k f (t), (4)

where f (t) is a continuous function in [0, t], and g(t) is a con-
tinuous differentiable function (for sufficient order) in [0, t] and
and cDα

t denotes the Caputo time-fractional differential equa-
tion defined as follows:

cDα
t u(ζ, t) =

1
Γ(1 − α)

∫ t

0
(t − Λ)α

∂u(ζ,Λ)
∂Λ

dΛ, t ⩾ 0, (5)

where Γ(.) is the Euler Gamma function defined as:

Γ(α + 1) =
∫ ∞

0
sα exp−s ds. (6)

2.2. Time fractional advection-diffusion equations
These are fractional derivatives which arise as a result of

putting together the fractional diffusion equations and the frac-
tional advection equations.
The fractional diffusion equation is usually of the form:

∂αW
∂t
= k

∂2W
∂ζ2 ,

also, the fractional advection equation is usually of the form

∂αW
∂t
= v

∂W
∂ζ

.

A combination of the two equations above gives:

∂αW
∂t
= k

∂2W
∂ζ2 + v

∂W
∂t

(7)

Where W is the dependent variable, t and ζ are the independent
variable, α is the fractional order, k is the diffusion coefficient,
and v is the advection coefficient. Equation (7) above is called
the time fractional advection-diffusion equation.

2.3. Wavelet
This is a collection of functions formulated from the di-

lation and translation of one single-function called ”mother
wavelet”. When the dilation parameter a and the translation pa-
rameter b change continuously, the wavelet is represented math-
ematically as:

ψa,b(ζ) = |a|−
1
2ψ

(
ζ − b

a

)
,∀a, b ∈ ℜ, a ̸= 0. (8)

When the two parameters a and b are discrete with a = a−k
0 and

b = nb0a−k
0 , a0 > 1, b0 > 0, then the wavelet is represented as

ψk,n(ζ) = |a|−
1
2ψ

(
ak

0ζ − nb0

)
,∀a, b ∈ ℜ, a ̸= 0, (9)

where ψk,n(ζ) forms a wavelet basis for L2(ℜ). To be particular,
when a0 = 2 and b0 = 1, then ψk,n(ζ) forms an orthonormal
basis.

ψ j,k(ζ) = 2
j
2ψ(2 jζ − k). (10)

Saeed and Rehman [11] iterated that the set ψ j,k(ζ) generates an
orthogonal basis of L2(ℜ), meaning that;

< ψ j,k(ζ), ψl,m(ζ) >= δ jlδkm. (11)
2
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2.4. Iweobodo-Mamadu-Njoseh Wavelet (IMNW)
In Ref. [7] a new wavelet was developed from MNP, this

orthonormal wavelet which was described by Rayal et al [12]
as Mamadu-Mjoseh wavelet, was further described by the de-
velopers in Ref. [8] as IMNW. In a more recent time, Rayal et
al. [13] has considered the use this wavelet with approximation
approach and collocation nodes in obtaining the solutions of a
fractional pollution model. This wavelet is defined as:

γn,m(x) =2
k
2

(
MN

)
m

(2k x − 2n + 1),
n − 1
2k−1 ⩽ x ⩽

n
2k−1

0, Otherwise
(12)

where

(MN)m =

√
2
π

MNm, (13)

where m = 0, 1, · · · ,M − 1, n = 1, 2, · · · , 2k−1, k is any posi-
tive integer, and MNm are the Mamadu-Njoseh polynomials of
degree m. See Mamadu and Njoseh [14].

2.5. Galerkin finite element method
Incorporating the Galerkin technique with the finite element

method has eradicated the constraint of finding a variational for-
mulation for many mathematical problems (Moshen) [15].

The Galerkin method is a type of weighted residual tech-
nique. It is usually known with the finite element method
(FEM) due to its exhibition of the weight function and trial so-
lution, these factors assist in making its implementation easy to
achieve. It represents the assumed solution u∗(ζ) (which sat-
isfies the differential equation under consideration) as the sum
of a number of assumed trial functions possessing coefficients
which are yet to be known.

u∗(ζ) =
n∑

i=1

ciΨi(ζ) = c1Ψ1(ζ) + c2Ψ2(ζ) + · · · + cnΨn(ζ), (14)

where ci denote unknown coefficients and Ψi(ζ) are the trial
functions.

The assumed solution equation (14) above is substituted
into the original equation to obtain the residual equation as:

R(ζ) = D(u∗(ζ), ζ). (15)

The unknown coefficients are obtained by multiplying the
trial function with the residual equation, then performing the
inner product operation on the result (obtaining the weak for-
mulation) and setting it to zero. This will amount to:∫ b

a
Φi(ζ)R(ζ)dζ = 0, i = 0, 1, · · · , n. (16)

We then substitute back the obtained coefficients into the refor-
mulated equation bearing the trial function and its derivatives
to obtain the approximate solution.

3. Discretization of the Caputo TFADE with IMNW

3.1. Preliminaries

The Caputo time-fractional advection diffusion equation (1)
can be converted into the Riemann-Louville fractional deriva-
tives in the form

R
0 Dα

t [u − u0](x, t) − uxx(x, t) + ux(x, t) = g(x, t). (17)

By definition, we know that:

R
0 Dα

t (u0) =
d
dt

1
Γ(1 − α)

∫ t

0
(t − s)−αu0ds

=
u0

Γ(1 − α)
d
dt

(
1

1 − α
t1−α

)
=

u0

Γ(1 − α)
t−α.

Hence,

R
0 Dα

t u(x, t) =
1
Γ(−α)

∫ t

0
(t − s)−α−1u(s)ds. (18)

. Assuming that [0,T ] is a partition such that 0 < t0 < t1 < · · · <
tn = T . Applying nt j = j, for j = 1, 2, · · · , n, then equation (17)
can be approximated in time step as:

R
0 Dα

t u(x, t j) =
1
Γ(−α)

∫ t j

0
(t j − s)α+1u(s)ds,

Assuming that t j = t jw + s, we have:

R
0 Dα

t u(x, t j) =
t−αj

Γ(−α)

∫ 1

0

u(t j − t jw) − u(0)
wα+1) dw

=
t−αj

Γ(−α)

∫ 1

0
F(w)w−α−1dw.

(19)

Here, F(w) = u(t j − t jw) = u(0).
By the quadrature formula as captured in Cialet [16], we replace
the integral sign with summation for t j =

n
j , so that for every j,

we have:

R
0 Dα

t u(x, t j) =
1
Γ(−α)

 j∑
r=0

αr ju(t j − tr) +G j(g)

 ,
here, ||G j(g)||⩽ kα−2

j sup0⩽t⩽T ||u
′′(t j − tr)||. Therefore,

R
0 Dα

t u(x, t j) =
∆t−αj

Γ(2 − α)

j∑
r=0

(−α)(1 − α) j−ααr ju(t j − tr)

+
t−αj

Γ(−α)
G j(g)

= ∆t−α
j∑

r=0

(−α)(1 − α) j−ααr j

Γ(2 − α)
u(t j − tr) +

t−αj

Γ(−α)
G j(g)

= ∆t−α
j∑

r=0

wr ju(t j − tr) +
t−αj

Γ(−α)
G j(g).

3
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Here, Γ(2 − α)wr j = (−α + α2) jD−ααr j, and wr j and αr j satisfy
(Ref. [16] and Mamadu et al [17]) with definition:

wr j =

1
Γ(2 − α)


1, r = 0

− 2r1−α + (r − 1)1−α + (r + 1)1−α, r = 1, 2, · · · , j − 1

− (r − 1)r−α + (r − 1)1−α − r1−α, r = j
(20)

αr j =

1
Γ(2 − α)


− 1, r = 0

− 2r1−α − (r − 1)1−α − (r + 1)1−α, r = 1, 2, · · · , j

(r − 1)r−α − (r − 1)1−α + r1−α, r = j

3.2. Time Discretization

Studying the finite difference method (Chen et al) [18] at
the point t = t j we will obtain:

R
0 Dα

t [u(x, t) − u0(x, t)] |t=t j= auxx(x, t j)−vux(x, t j)+g(x, t j).
(21)

But,
R
0 Dα

t [u(x, t) − u0(x, t)]t=t j =

∆t−α
j∑

r=0

wr j

[
u(t j − tr) − u(0)

]
+

t−αj

Γ(−α)
G j(g).

(22)

Therefore,

∆t−α
j∑

r=0

wr j

[
u(t j − tr) − u(0)

]
+

t−αj

Γ(−α)
G j(g) = auxx(x, t j) − vux(x, t j) + g(x, t j).

Denoting u j = u(x, t j) gives:

∆t−α
j∑

r=0

wr j

[
u j−r − u(0)

]
= auxx(x, t j) − vux(x, t j) +G(x, t j),

Let r = 0, we obtain:

∆t−α
(
w0 ju j − w0 ju0

)
+ ∆t−α

j∑
r=1

wr ju j−r+

∆t−α
j∑

r=0

wr ju0 = auxx(x, t j) − vux(x, t j) +G(x, t j),

⇒ ∆t−α(u j − u0)w0 j + ∆t−α
j∑

r=1

wr ju j−r+

∆t−α
j∑

r=0

wr ju0 = auxx(x, t j) − vux(x, t j) + g(x, t j),

From Ref. [8], we saw that:

j∑
r=0

wr j =
−α(1 − α) j−α

(2 − α)

(
−1
α

)
= j−αhα,

and
hα =

1
Γ(1 − α)

.

Therefore, the implicit formula for equation (17) is:

∆t−α(u j − u0)w0 j + ∆t−α
j∑

r=1

wr ju j−r + ∆t−α j−αhαu0

= auxx(x, t j) − vux(x, t j) + g(x, t j).

(23)

3.2.1. Discretization in Time with IMNW-based Galerkin Tech-
nique

Let the approximate solution of (1) be defined as:

u j(x, t j) =
2k−1∑
n=1

j=M−1∑
r=0

cn,rγn,r, (24)

where cn,r are the coefficients of the new wavelets, and γn,r is a
basis function of the new wavelet.

Applying equation (24) on (23), we have:

∆t−αw0, j

2k−1∑
n=1

j∑
r=0

cn,rγn,r+

∆t−α
2k−1∑
n=1

j−1∑
r=0

wr j(cn,rγn,r − u0) + ∆t−αw0, ju0

= a

2k−1∑
n=1

j∑
r=0

cn,rγn,r


xx

− v

2k−1∑
n=1

j∑
r=0

cn,rγn,r


x

+ g(x, t).

(25)

Equation (25) is rewritten to achieve a residual equation R(x, t),
from there, we can easily solve for the unknown coefficients
cn,r using mathematics software with the parameters α, a, v, wr, j

given. Then the approximate solution is obtained by substitut-
ing back the obtained cn,r together with the given parameters
into equation (24).

3.3. Space Discretization of TFADE with IMNW

Let Vv be a linear piecewise finite element space, and [0,T ]
be the space partitioning of [a, b] defined as:

0 = x0 < x1 < x2 < · · · xn = T.

Assuming that:
Vv = {S v(x) : S v(x) is continuous and linear in [0,T ]}.
We obtain the variational formulation of the fractional
Advection-Diffusion equation (1) by computing u(t) ∈ H1

0(a, b)
such that:〈

R
0 Dα

t [u(x, t) − U0], S (x)
〉
= ⟨Uxx, S (x)⟩ − ⟨Ux, S (x)⟩

+ ⟨g(x, t), S (x)⟩ , S (x) ∈ H1
0 .

(26)

4
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Because we are considering the finite element technique, we
want to compute Uv(t) ∈ Vv, ∋.〈

R
0 Dα

t [u(x, t) − U0],Q
〉
=

〈
∂2u
∂x2 ,Q

〉
−

〈
∂u
∂x
,Q

〉
+

⟨g(x, t),Q⟩ , Q ∈ Vv.

(27)

Let Bv = −∆h : Vv → Vv satisfies

(BvUv) =
〈
∂2u
∂x2 ,Q

〉
−

〈
∂u
∂x
,Q

〉
, Q ∈ Vv. (28)

Assuming Gv : G → Vv defines an L2 operator as:

⟨Gvs,Q⟩ = ⟨s,Q⟩ , ∀Q ∈ Vv, s ∈ L2.

Thus, we can rewrite equation (26) as:〈
R
0 Dα

t [u(x, t) − U0], S (x)
〉
= BvUv +Gvg, t > 0. (29)

But,

R
0 Dα

t [u(x, t) =
1

Γ(1 − α)

∫ t

0

u(s − x)
(t − s)α

ds, α ∈ (0, 1). (30)

Therefore, using the quadrature formula on (29), we get:

∆t−α
j∑

r=0

wr j

〈
u(t j − tr) − U0,Q

〉
=

〈
∂2u j

∂x2 ,Q
〉
−

〈
∂u j

∂x
,Q

〉
+

〈
g j,Q

〉
, j = 0(1)n, ∀Q ∈ Vv,

(31)

where

wr j =

1
Γ(2 − α)


1, r = 0

− 2r1−α + (r − 1)1−α + (r + 1)1−α, r = 1, 2, · · · , j − 1

− (r − 1)r−α + (r − 1)1−α − r1−α, r = j

Let,

U j ≡ Uv = u(x, t) =
2k−1∑
n=1

j=M−1∑
r=0

cn,rγn,r

be the approximate solution of Uv(t j), with γn,r being the basis
function in the finite space Vv and cn,r being the coefficient of
the new wavelet, n = 1, r = 0(1)M − 1. Therefore we have〈
∆t−α

j∑
r=0

wr j[u(t j − tr) − U0],Q
〉
=

〈
∂2u j

∂x2 ,Q
〉

−

〈
∂u j

∂x
,Q

〉
+

〈
g j,Q

〉
, j = 0(1)n, ∀Q ∈ Vv.

(32)

Since U j = u(t j) =
∑2k−1

n=1
∑ j=M−1

r=0 cn,rγn,r, therefore, it becomes:

⟨∆t−αw0, j

2k−1∑
n=1

j∑
r=0

cn,rγn,r

+ ∆t−α
2k−1∑
n=1

j−1∑
r=0

wr j(cn,rγn,r − u0) + ∆t−αw0, ju0,Q⟩

=

〈
a

2k−1∑
n=1

j∑
r=0

cn,rγn,r


xx

,Q
〉
−

〈
β

2k−1∑
n=1

j∑
r=0

cn,rγn,r


x

,Q
〉
+

〈
g j,Q

〉
≡

∫
cn,rγn,rQdx

j = 0(1)n, ∀Q ∈ Vv. (33)

4. Numerical Illustration

Consider the Caputo TFADE (Doley et al ) [19],

cDα
t u(x, t) = a

∂2u(x, t)
∂x2 − v

∂u(x, t)
∂x

+ f (x, t)

x ∈ [0, 1], t ⩾ 0, 0 < α < 1,
(34)

with the initial condition u(x, 0) = x − x2, and boundary condi-
tions u(0, t) = u(1, t) = 0. Where:

f (x, t) =
(2x − 2x2)t2−α

Γ(3 − α)
+ v(1 − 2x)(t2 + 1) + 2(t2 + 1).

The exact equation is u(x, t) = (x − x2)(t2 + 1).
Solution
Let

u(x, t) =
2k−1∑
n=1

j=M−1∑
r=0

cn,rγn,r.

Assuming k = 1, and j = 2

γ1,0 =
2
√
π

(
x − x2

)
γ1,1 =

2
√
π

(2x − 1)
(
x − x2

)
γ1,2 =

2
√
π

(
20x2

3
−

20x
3
+ 1)(x − x2).

⇒

u(x, t) = c1,0
2
√
π

(x − x2) + c1,1
2
√
π

(2x − 1)(x − x2)

+ c1,2
2
√
π

(
20x2

3
−

20x
3
+ 1)(x − x2)

u′(x, t) = c1,0
2
√
π

(−2x) + c1,1
2
√
π

(−6x2 + 6x − 1)

+ c1,2
2
√
π

(
−80x3

3
+

120x2

3
− 46x)

u′′(x, t) = c1,0
2
√
π

(−2) + c1,1
2
√
π

(−12x + 6)

+ c1,2
2
√
π

(
−240x2

3
+

240x
3
− 46).

cDα
t u(x, t) = ∆t−αw0, j

2k−1∑
n=1

j∑
r=0

cn,rγn,r

+ ∆t−α
2k−1∑
n=1

j−1∑
r=0

wr j(cn,rγn,r − u0) + ∆t−αw0, ju0.

5
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Substituting into the original equation, we have:

∆t−αw0, j[c1,0
2
√
π

(x − x2) + c1,1
2
√
π

(2x − 1)(x − x2)

+ c1,2
2
√
π

(
20x2

3
−

20x
3
+ 1)(x − x2)]

+ ∆t−α
j∑

r=0

wr j[c1,0
2
√
π

(x − x2) + c1,1
2
√
π

(2x − 1)(x − x2)

+ c1,2
2
√
π

(
20x2

3
−

20x
3
+ 1)(x − x2) − u(0)] + ∆t−αw0, ju0

= a[c1,0
2
√
π

(−2) + c1,1
2
√
π

(−12x + 6) + c1,2
2
√
π

(
−240x2

3

+
240x

3
− 46)] − v[c1,0

2
√
π

(−2x) + c1,1
2
√
π

(−6x2 + 6x − 1)

+ c1,2
2
√
π

(
−80x3

3
+

120x2

3
− 46x)] + f (x, t).

Our residual equation is therefore given as:

R(x, t) = ∆t−αw0, j

[
c1,0

2
√
π

(x − x2)

+ c1,1
2
√
π

(2x − 1)(x − x2)

+c1,2
2
√
π

(
20x2

3
−

20x
3
+ 1)(x − x2)

]

+ ∆t−α
j∑

r=0

wr j

[
c1,0

2
√
π

(x − x2)

+ c1,1
2
√
π

(2x − 1)(x − x2)

+c1,2
2
√
π

(
20x2

3
−

20x
3
+ 1)(x − x2) − u(0)

]
+ ∆t−αw0, ju0 − a

[
c1,0

2
√
π

(−2)

+ c1,1
2
√
π

(−12x + 6)

+c1,2
2
√
π

(
−240x2

3
+

240x
3
− 46)

]
+ v

[
c1,0

2
√
π

(−2x) + c1,1
2
√
π

(−6x2 + 6x − 1)

+c1,2
2
√
π

(
−80x3

3
+

120x2

3
− 46x)

]
− f (x, t),

discretizing in space produces a system of equations,∫ 1

0
γ1,0(x)R(x)dx = 0,∫ 1

0
γ1,1(x)R(x)dx = 0,∫ 1

0
γ1,2(x)R(x)dx = 0,m = 0, 1, 2, · · · ,

(35)

which is represented as:∫ 1

0

2
√
π

[∆t−αw0, j[c1,0
2
√
π

(x − x2)

+ c1,1
2
√
π

(2x − 1)(x − x2) + c1,2
2
√
π

(
20x2

3

−
20x
3
+ 1)(x − x2)] + ∆t−α

j∑
r=0

wr j[c1,0
2
√
π

(x − x2)

+ c1,1
2
√
π

(2x − 1)(x − x2)

+ c1,2
2
√
π

(
20x2

3
−

20x
3
+ 1)(x − x2) − u(0)]∆t−αw0, ju0

− a[c1,0
2
√
π

(−2) + c1,1
2
√
π

(−12x + 6)

+ c1,2
2
√
π

(
−240x2

3
+

240x
3
− 46)] + v[c1,0

2
√
π

(−2x)

+ c1,1
2
√
π

(−6x2 + 6x − 1) + c1,2
2
√
π

(
−80x3

3
120x2

3

− 46x)] − f (x, t)]dx = 0,∫ 1

0

2
√
π

(2x − 1)[∆t−αw0, j[c1,0
2
√
π

(x − x2)

+ c1,1
2
√
π

(2x − 1)(x − x2) + c1,2
2
√
π

(
20x2

3

−
20x
3
+ 1)(x − x2)] + ∆t−α

j∑
r=0

wr j[c1,0
2
√
π

(x − x2)

+ c1,1
2
√
π

(2x − 1)(x − x2)

+ c1,2
2
√
π

(
20x2

3
−

20x
3
+ 1)(x − x2) − u(0)]∆t−αw0, ju0

− a[c1,0
2
√
π

(−2) + c1,1
2
√
π

(−12x + 6)

+ c1,2
2
√
π

(
−240x2

3
+

240x
3
− 46)] + v[c1,0

2
√
π

(−2x)

+ c1,1
2
√
π

(−6x2 + 6x − 1) + c1,2
2
√
π

(
−80x3

3
120x2

3

− 46x)] − f (x, t)]dx = 0,∫ 1

0

2
√
π

(
20x2

3
−

20x
3
+ 1)[∆t−αw0, j[c1,0

2
√
π

(x − x2)

+ c1,1
2
√
π

(2x − 1)(x − x2) + c1,2
2
√
π

(
20x2

3

−
20x
3
+ 1)(x − x2)] + ∆t−α

j∑
r=0

wr j[c1,0
2
√
π

(x − x2)

+ c1,1
2
√
π

(2x − 1)(x − x2)

+ c1,2
2
√
π

(
20x2

3
−

20x
3
+ 1)(x − x2) − u(0)]∆t−αw0, ju0

6
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− a[c1,0
2
√
π

(−2) + c1,1
2
√
π

(−12x + 6)

+ c1,2
2
√
π

(
−240x2

3
+

240x
3
− 46)] + v[c1,0

2
√
π

(−2x)

+ c1,1
2
√
π

(−6x2 + 6x − 1) + c1,2
2
√
π

(
−80x3

3
120x2

3

− 46x)] − f (x, t)]dx = 0.

Solving the equations with Maple 18 software for j = 2, t = 0.5,
∆t = 1.
At α = 0.5,

W0,2 = 0.752252778,
W1,2 = −0.44065949,
W2,2 = −0.843516341

we obtain the coefficients c1,0 = 1.107922464, c1,1 =

0.0002885768462, and c1,2 = −0.004797036447 which are
substituted into the assumed solution to get the approximate so-
lution as

1.102643738(
2
√
π

)x(1 − x)+

0.0008873787527(
2
√
π

)(2x − 1)x(1 − x)−

0.0006114146302
3

(
2
√
π

(20x2 − 20x + 3)x(1 − x).

At α = 0.75

W0,2 = 0.882610121,
W1,2 = −0.715614006,
W2,2 = −0.691799233

, solving with Maple 18 gives the coefficients
c1,0 = 1.098277505, c1,1 = −0.001637407048, and c1,2 =

0.001130632789
which are substituted into the assumed solution to get the ap-
proximate solution as

1.098277505(
2
√
π

)x(1 − x)−

0.001637407048(
2
√
π

)(2x − 1)x(1 − x)+

0.001130632789
3

(
2
√
π

(20x2 − 20x + 3)x(1 − x).

5. Conclusion

Being mindful of the importance of the numerical approach
to many mathematical problems today, and the difficulty in ap-
proaching fractional derivatives analytically, we have success-
fully applied the IMNW as a basis function in discretizing the
Caputo time fractional Advection-diffusion equations both in
time and space. An implicit form of the equation has been ob-
tained, making it easy for the application of numerical methods.

Data availability

We do not have any research data outside the submitted
manuscript file.
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