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Abstract

The complex dynamic properties of ECG signals and the challenge of multi-category classification make automated diagnosis of arrhythmias
difficult. In this paper, we propose a new model for the multiclassification task of arrhythmia, which combines Hankel Dynamic Modal Decom-
position (HDMD) and Long Short-Term Memory Network (LSTM). HDMD is used to construct the Hankel matrix, the optimal delay parameter
is selected based on 90% of the energy of the singular values, and dynamic modal features extracted from it are used as the input sequences of
LSTM. The LSTM model is optimisation is performed by minimising the cross-entropy loss function, setting the maximum number of iterations
to 60 and using an early stopping strategy to avoid overfitting. The model was validated on the MIT-BIH arrhythmia database, which contains
109,402 beats and is classified into five categories according to the AAMI criteria: normal beats (N), ventricular premature beats (V), fusion beats
(F), atrial premature beats (S) and unclassifiable (Q). By comparing with the direct use of LSTM, the experimental results showed that the HDMD-
LSTM model showed different degrees of improvement in all five classifications, especially in the classification of atrial premature beats (S) and
ventricular premature beats (V), and the overall classification accuracy improved to 0.85. Future work can focus on two aspects: first, to solve
the category imbalance problem, by over sampling or undersampling techniques to improve the classification ability of a few categories; second,
exploring the embedding of DMD into the network structure of LSTM to further optimise the feature extraction and classification performance.
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1. Introduction

Arrhythmia is a common cardiovascular disease [1], which
manifests itself as an abnormal frequency or rhythm of the
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Ali )

heartbeat, which may be related to abnormal agitation of the
sinus node or abnormal conduction channels, and can lead to
sudden death or heart failure in severe cases [2]. With the ris-
ing incidence of cardiovascular diseases, early detection and
accurate classification of arrhythmias have become crucial [3].

Electrocardiogram (ECG), as a commonly used cardiac
monitoring tool, can effectively record the electrical activity
of the heart and help identify arrhythmias. However, due to
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their variety and complexity, it is difficult to accurately identify
them by traditional methods; therefore, automated and intelli-
gent classification methods are important for improving diag-
nostic accuracy and early intervention. ECG plays a key role
in arrhythmia detection and diagnosis. As a non-invasive and
convenient tool, ECG records the electrical activity of the heart
in real time and identifies normal and abnormal rhythms by
analysing waveform features. For example, atrial premature
beats are characterised by an early P-wave, while ventricular
premature beats are characterised by a wide QRS wave. With
prolonged monitoring techniques such as Holter, ECG can also
capture episodic arrhythmias, dramatically improving diagnos-
tic accuracy. Its widespread use not only supports early detec-
tion of arrhythmias and personalised treatment, but also pro-
vides rich data for algorithmic research.

The MIT-BIH Arrhythmia Database, a standard dataset for
arrhythmia classification studies, was created by MIT in collab-
oration with Beth Israel Hospital and contains 48 patients’ long-
duration Holter-monitored ECGs. records. The database covers
a wide range of arrhythmias, such as normal sinus rhythm, atrial
premature beats, and ventricular premature beats, and provides
detailed annotation information, making it an important bench-
mark for the development of ECG signal processing and au-
tomated diagnostic systems. The two-lead ECG signals in the
database effectively capture the electrical activity of the heart,
especially the clear R-wave signals, and facilitate the monitor-
ing of common arrhythmias.The AAMI’s five classification cri-
teria (N, S, V, F, and Q) simplify the categorisation of arrhyth-
mias and allow for a more consistent and objective algorithmic
assessment.

Dynamic Modal Decomposition (DMD) is a technique that
extracts the main modes in a dynamic system by matrix de-
composition, which is able to identify the frequency, ampli-
tude and other features of the system [4]. However, the limi-
tations of DMD in the multiclassification arrhythmia task are
also more obvious, mainly in its inability to adequately cap-
ture the nonlinearity and complexity of the data. To overcome
this problem, this study introduces a long short-term memory
network (LSTM) in combination with DMD, which enhances
the identification of complex arrhythmia patterns by exploit-
ing the long-term dependence modelling capability of LSTM.
DMD extracts the key dynamic modes through Hankel matrix
[5], while LSTM further processes these modes by selectively
focusing on long-term dependence temporal features [6]. Such
a combination not only improves the classification accuracy but
also overcomes the shortcomings of DMD in handling multi-
category tasks.

In addition, the physical interpretability of DMD enables it
to reveal dynamic changes in ECG signals and provide clear
pathological implications, which is not the case with many
black-box deep learning models. This property allows this
study not only to pursue high classification accuracy but also
to support clinicians in understanding and diagnosing complex
cardiac rhythm problems. In the five classification tasks of ar-
rhythmia, the combined approach of DMD and LSTM effec-
tively captures the subtle changes in the ECG signal and sig-
nificantly improves the classification performance compared to

either method alone, while maintaining the interpretability of
the dynamic modalities.

In this study, we improve the ECG classification perfor-
mance by combining DMD and LSTM models. Firstly, we ex-
tracted dynamic features from the ECG signal using DMD and
retained the dominant modality of 90% of the singular value
decomposition energy by optimising the delay parameter of the
Hankel matrix. Subsequently, these features are fed into an
LSTM model using an adaptive learning rate optimiser, Adam,
to automatically adjust the learning rate to ensure stability and
fast convergence of the training process. This combined ap-
proach enhances the DMD’s ability to recognise complex ar-
rhythmia patterns and effectively improves classification per-
formance.

The main contributions of this study are:

• applies a combination of HDMD and LSTM to a five-
classification arrhythmia task; specifically, DMD focuses
on extracting spatial dynamic patterns in ECG signals,
while LSTM captures important temporal correlations in
the signals through its ability to model in the temporal di-
mension. This combination not only enhances the modal
analysis of arrhythmia features, but also improves the un-
derstanding of the temporal evolution of the signal.

• the delay parameter of the Hankel matrix was optimised
to improve the efficiency and stability of feature extrac-
tion by retaining the dominant mode with 90% singular
value decomposition energy.

• the training stability and classification performance of the
model is enhanced by using the adaptive learning rate op-
timiser Adam and optimising the sequence length and the
number of hidden layer units of the LSTM. During the
training process with a maximum iteration number of 60,
the performance of the model tends to be stable in the
validation set at 36 epochs.

• the validity of the proposed model was verified by eval-
uating it on the MIT-BIH arrhythmia database and com-
paring it with the direct use of LSTM.

The paper is organised as follows: section 2 reviews the tra-
ditional methods for arrhythmia classification and the current
status of DMD and LSTM applications. Section 3 describes
in detail the combined HDMD and LSTM approach, the op-
timisation process of the Hankel matrix, and the key param-
eter settings of the LSTM. A partial discussion in section 4
demonstrates the classification performance of the model on the
dataset and provides a detailed analysis of the results. Finally,
section 5 and section 6 summarises and discusses the research
results, pointing out the advantages of the model and future re-
search directions.

2. Related work

Arrhythmia classification is a key task in the analysis
of ECG signals, and early studies relied on feature engi-
neering methods using techniques such as Fourier transform
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and wavelet transform to extract time, frequency and time-
frequency domain features from ECG signals, such as R-wave
peaks, heart rate variability (HRV), P-wave and QRS wave-
forms, followed by the use of machine learning, such as sup-
port vector machines (SVMs), decision trees, and K-nearest
neighbours (KNN) algorithms for classification [7–13]. How-
ever, the manual feature extraction process is complex and data-
dependent, and cannot cope with diverse and complex arrhyth-
mia patterns.

With the development of deep learning, automated meth-
ods based on neural networks have gradually been applied to
arrhythmia classification [14]. Convolutional neural network
(CNN) performs well in ECG signal classification by automat-
ically learning local features, but it is prone to lose timing-
dependent information in the processing of non-smooth signals
over long time scales [15–17]. In contrast, recurrent neural net-
works (RNNs) and their improved form, LSTMs, are better able
to capture long-term dependent information in time-series data,
and thus are more suitable for arrhythmia classification [18–
21]. Despite the excellent performance of deep learning models
in feature extraction and classification, the complex dynamic
nature of arrhythmia is still not fully resolved, and it is a re-
search challenge to effectively capture and extract the dynamic
patterns in the signal.

HDMD combines DMD and Hankel matrix to capture
multi-scale dynamic features by constructing Hankel matrix
embedded in time series data [22]. DMD originated from hy-
drodynamic analysis and focuses on extracting dynamic modal
information from time series data, and has been widely used in
signal processing and time series analysis [23]. HDMD, by in-
troducing delay embedding, has enhances the ability of DMD
to capture nonlinear features, which is particularly suitable for
the analysis of non-stationary ECG signals. Ingabire et al. [5]
successfully applied DMD in biomedical signal analysis to ex-
tract key dynamic modes [5]. Although HDMD has relatively
few applications in arrhythmia classification, its powerful tem-
poral decomposition capability offers potential for ECG signal
classification.

LSTM, as an improvement of RNN, solves the problem of
gradient vanishing in long time-series data by introducing for-
getting gate, input gate and output gate, which is well suited
to deal with the long-term dependence characteristics in ECG
signals. Chung et al. [24] proposed an arrhythmia classifica-
tion method based on LSTM, and used LSTM to classify ECG
signals directly with good results [24, 25]. Hou et al. [18] com-
bined the LSTM with an autoencoder to further improve the
performance of arrhythmia classification [18]. Although LSTM
performs well in arrhythmia classification, it still relies on the
quality of input features. Therefore, inputting HDMD-extracted
dynamic modalities into LSTM can help improve classification
accuracy and optimise overall model performance.

Existing techniques still exhibit certain limitations:

1. While many deep learning-based models excel in clas-
sification accuracy, their ‘black-box’ nature makes them
less interpretable, making it difficult to provide clinicians
with intuitive explanations of pathology.

2. The common category imbalance problem in arrhythmia
classification tasks remains intractable, with rare abnor-
mal rhythm categories often lacking sufficient samples
for training, thus affecting the generalisation ability of
the model.

3. ECG signals are usually affected by noise, baseline drift
and other disturbances, and it remains a challenge to ac-
curately extract effective features in a noisy environment.

Therefore, to address the shortcomings of DMD in mul-
ticlassification of arrhythmias, we propose a new model. By
combining the physical interpretability of DMD and the time-
series modelling capability of LSTM, we effectively address the
challenges in ECG multiclassification. Hankel DMD extracts
dynamic modalities in ECG signals to enhance the model’s in-
terpretability and help clinicians understand the dynamics of
arrhythmias, and improves the identification of rare categories
by preserving 90% of the singular value energy.LSTM, on the
other hand, focuses on time sequence modelling, which deals
with long-term dependence and complex temporal features to
effectively deal with noise and baseline drift. This improves the
classification performance and robustness of the model.

3. Materials and methods

Figure 1 illustrates the general flow of the study. Firstly, the
definition of the research objectives serves as a starting point to
clarify the objectives of multiclassification of arrhythmias.

Then, the flowchart shifts to the data preparation stage,
which involves extracting data from the MIH-BIT arrhythmia
database and performing preprocessing such as beat segmenta-
tion, filtering, normalisation, and dataset partitioning. Subse-
quently, construction of Hankel matrix is the key step and this
phase involves selecting appropriate delay parameters and per-
forming singular value decomposition to optimise the model.
DMD follows and is applied to the Hankel matrix to extract
dynamic features. The extracted features are then fed into the
LSTM model for training and classification. Finally, the classi-
fication performance is analysed and model tuning is performed
through a model evaluation and optimisation phase to ensure
the best results. The final part of the flowchart summarises the
result analysis, outlining the main findings and conclusions of
the study.

3.1. ECG dataset
The MIH-BIT arrhythmia database used in this paper con-

tains multiple types of arrhythmia ECG data [26], a total
of 48 ambulatory ECG recordings of approximately half an
hour’s duration from 47 patients (records 201 and 202 are from
the same patient), sampled at a frequency of 360 Hz. The
database was created by the Massachusetts Institute of Tech-
nology (MIT) and Beth Israel Hospital between 1975 and 1979
and covers over 4000 Holter records, 60% inpatient and 40%
outpatient. The database contains 15 beat types, totalling ap-
proximately 109,402 beats, of which approximately 70% are
normal beats and 30% are abnormal beats (e.g., atrial premature
beats, ventricular premature beats, atrial fibrillation, etc.). For
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Figure 1. A general overview diagram of the method.

detailed information, see Table 1. Each ECG record contains 2
leads, with 45 records using the corrected Limb II lead as the
first lead and the remaining records using the V5 lead, and 40
records using the corrected V1 lead as the second lead and the
remaining records using the V2, V4, or V5 lead. Each record
consisted of a header file, a data file, and an annotation file, with
the annotation file being provided by at least two ECG special-

ists, and included the QRS main wave position, lead informa-
tion, ECG signal storage format, sampling frequency, beat type,
rhythm, arrhythmia position, and patient information.

3.2. Data preprocessing
First, beat segmentation was performed to extract the heart

beat cycle. Using annotation files from the MIT-BIH arrhyth-
4
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Table 1. Heart beat information in the MIT-BIH arrhythmia database
Class Beat type Abbreviation Total
N Normal beat NOR 75011

Left bundle branch block beat LBBB 8072
Right bundle branch block beat RBBB 7255

Atrial escape beat AE 14
Nodal (Junctional) escape beat NE 206

V Premature ventricular contraction PVC 7129
Ventricular escape beat VE 106

F Fusion of ventricular and normal beat FVN 802
S Atrial premature beat AP 2540

Aberrated atrial premature beat aAP 148
Nodal (Junctional) premature beat NP 82
Supraventricular premature beat SP 2

Q Paced beat P 7025
Fusion of paced and normal beat FPN 981

Unclassified beat U 29
Total 109402

Figure 2. R wave position marker.

mia database, we segmented the raw ECG signals into individ-
ual heart beats based on the location of QRS wave clusters. The
main goal of this step is to divide long ECG signals into seg-
ments of heart beats with the same duration for further analysis
of each heart beat. In this study, this was done first by extract-
ing the recordings of the R-point location in the annotation file,
and then selecting 175 sampling points from each side of the R-
point, for a total of 351 sampling points, which is sufficient to
cover the range of the P-QRS-T wave. Figure 2. demonstrates
the ECG signal segmentation for the first six R-waves. In Fig-
ure 2, the position of each R-wave is marked with a red dot to
clearly highlight the exact position of the R-wave.

After data segmentation, ECG segments usually contain
high-frequency noise and power-frequency disturbances (e.g.,
50 Hz industrial frequency noise). In order to eliminate these
noises and improve the signal quality, we perform a two-step
filtering process on the signal: notch filtering and median filter-
ing.

1. Notch filtering: removal of power disturbances is fol-
lowed by low-pass filtering to remove high-frequency
noise. Trap filtering is mainly used to remove interfer-
ence signals at specific frequencies, here Infinite Impulse

Response (IIR) filter is used [27].
xn = yn − a1xn−1 − a2xn−2, (1)

where yn is the input ECG signal, xn is the filtered ECG
signal, and a1 and a2 are the coefficients of the filter,
which are determined according to the centre frequency
and bandwidth of the notch filter.

2. Median filtering [28]: by taking the median value of the
data within the filtering window instead of the value of
the current data point, the noise in the signal can be ef-
fectively removed, taking into account the effect of de-
noising while retaining a clearer signal. There is a signal
xn to be filtered, set the length of the window as L, the
filtered signal is x̂n. For the i-th data point, select a win-
dow of length L containing the i-th data point, sort the
L data points in the window from smallest to largest, and
then take the middle value as the filtering result of the i-th
data point:

x̂i = M
(
xi− L−1

2
, xi− L−1

2 +1, . . . , xi+ L−1
2

)
, (2)

where M denotes the median-taking operation. i ∈
( L−1

2 ,N−
L−1

2 ) and N is the data length. When the window
L = 1, the median filter degenerates to the case where no
filtering is performed, i.e., x̂n = xn.

In the process of ECG signal acquisition, the accuracy of
ECG signal acquisition is not affected by the potential size and
position of the sensor, however, due to the relationship between
the distance between the reference point and the R-wave in dif-
ferent ECG cycles of the same person, i.e., the distance between
them varies with the change of the heart rate, for this reason, it
is necessary to normalise the ECG cycle to eliminate the ampli-
tude difference between different patients, so that the reference
point can effectively represent the relative position within a cy-
cle. relative position within a cycle. The normalisation process
for each ECG sample x is shown by the following equation:

X∗ =
x − xmin

xmax − xmin
. (3)
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Figure 3. ECG signal processing example: original, filtered, and nor-
malized signal.

Table 2. Dataset 1 (DS1) and dataset 2 (DS2) from the MIT-BIH arrhythmia
database. Heartbeat type and class abbreviations are defined in Table 1.
Class Beat type DS1 Total DS2 Total
N NOR 38101 45862 36410 44196

LBBB 3948 4124
RBBB 3783 3472

AE 14 0
NE 16 190

V PVC 3682 3787 3220 3221
VE 105 1

F FVN 415 415 387 387
S AP 806 938 1734 1834

aAP 98 50
NP 32 50
SP 2 0

Q P 0 8 0 6
FPN 0 0

U 8 6
Total 51010 49644

In Eq. (3), xmin denotes the minimum value of ECG sample
amplitude and xmax denotes the maximum value of ECG sam-
ple amplitude. All normalised ECG samples have a common
feature that all their amplitudes are greater than 0 and less than
1. Figure 3 shows the three steps of ECG signal processing.
The first subfigure shows the original ECG signal; the second
subfigure shows the filtered signal with noise and interference
removed; and the third subfigure presents the normalised signal
with all amplitudes united to the [0, 1] range. These process-
ing steps improve the quality and consistency of the signal and
prepare it for further analysis.

ECG beats were categorised according to the AAMI (Asso-
ciation for the Advancement of Medical Instrumentation) stan-
dards.The original markers in the MIT-BIH database contain
15 ECG beat types. In order to be more relevant to practical
clinical applications and basic patient assessment, we reclas-
sified these beats into five main categories: normal beats (N),
supraventricular ectopic beats (S), ventricular ectopic beats (V),
fusion beats (F), and ventricular ectopic beats (V). , fusion beats
(Fusion beats, F), and unclassified beats (Unclassified beats, Q).
This classification simplifies the classification task of the model

and complies with common standards in the medical field. In
this paper, the standard dataset division method defined in the
study of de Chazal et al. [29] was used to divide the records in
the MIT-BIH arrhythmia database into a training set DS1 and a
test set DS2. The specific divisions are as follows:

The training set DS1 contains the following records: 101,
106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201,
203, 205, 207, 208, 209, 215, 220, 223, 230

The test set DS2 contains the following records: 100, 103,
105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214,
219, 221, 222, 228, 231, 232, 233, 234. 102, 104, 107, 217 not
included in DS1 and DS2.

Table 2 shows the distribution of the various beat types in
the MIT-BIH arrhythmia database, with data from DS1 and
DS2, and lists the number of beats of each beat type in both
datasets, as well as the total number of beats in each of the five
categories, with the number of training samples being 51,010,
and the number of test samples being 49,644.

3.3. Hankel dynamic mode decomposition

3.3.1. Construct Hankel matrix
ECG signal data for individual beats were extracted from

the MIH-BIT arrhythmia database. Each beat signal consists
of N = 2 leads, and after preprocessing, each lead contains
T = 351 sampling points. The ECG data collected from N
leads at time t, is denoted as xt ∈ RN , t = 1, · · · ,T and the
whole dataset is represented as:

XT =

(
x1,1 · · · x1,351
x2,1 · · · x2,351

)
= [x1, . . . , xt, . . . , xT ] (4)

Next, a Hankel matrix H was constructed to expand the dimen-
sionality of the data to solve the rank mismatch problem (i.e.,
2 << 351). Given a delayed embedding length M, we can con-
struct H from X by a Hankelization operation. For each row
of XT , i.e., the ECG signal data on each lead of the patient, the
corresponding Hankel matrix is constructed as follows:

Hn
1 =


xn,1 xn,2 · · · xn,T−M+1
xn,2 xn,3 · · · xn,T−M+2
...

...
. . .

...
xn,M xn,M+1 · · · xn,T


T

M×(T−M+1)

(5)

Hn
2 =


xn,2 xn,3 · · · xn,T−M+2
xn,3 xn,4 · · · xn,T−M+3
...

...
. . .

...
xn,M+1 xn,M+2 · · · xn,T+1


T

M×(T−M+1)

(6)

We can get Hn
2 = AH Hn

1 , and rearrange the Hankel matrices on
each lead to get a new matrix:

H1 = (H1
1 ,H

2
1)T ∈ R2M×(T−M+1), (7)

H2 = (H1
2 ,H

2
2)T ∈ R2M×(T−M+1). (8)

In this way, H1 and H2 are used as inputs to the DMD, so
that the DMD modal extraction problem becomes a search for

6
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eigenvalues and eigenvectors with respect to AH in the follow-
ing equation [30].

H2 = AH H1. (9)

The construction of the Hankel matrix aims at capturing the dy-
namic features of the time series data and transforming them
into a high-dimensional matrix. After completing the construc-
tion of the Hankel matrix, we apply the DMD for analysis.The
main objective of the DMD is to find a low-rank representation
in order to reconstruct the time series approximately by a linear
combination of dynamic modes.

Algorithm 1: Hankel DMD

• Apply Singular Value Decomposition (SVD):
H1 = UΣV∗

• Calculate an alternative representation of AH:
AH = H2VΣ−1U∗

• Compute ÃH:
ÃH = U∗r AHUr, ÃH = U∗r AHVrΣ

−1
r

• Compute the relative energy Ri:

Ri =

∑ri
j=1 σ j∑MN
j=1 σ j

(i=1,2,. . .,max)

• Extract dynamic modes:

• Solve for eigenvalues and eigenvectors:
ÃHW = WΛ

• Calculate dynamic modes:
ΦH = H2VΣ−1W

• Reconstruct the signal, Compute Ĥ:
Ĥ =

∑r
k=1 ϕkeωk tbk

• Define a dictionary M to store all modes extracted
by HDMD

• Loop through each ECG sample:

• for i in range(ECG sample size) do

• Extract the sample signal and process it

• Construct the Hankel matrix and perform
DMD decomposition

• Store the extracted modes in dictionary M:
M[i] = extracted modes

• end for

• Output: Set of dynamic features {ΦH , Ĥ} and mode
dictionary M

• End

Figure 4. HDMD-LSTM ECG Arrhythmias multi-classification model
framework.

3.4. LSTM network architecture

LSTM network is a neural network specially designed to
process temporal data. In this paper, the dynamic modalities
extracted by HDMD are input as features into the LSTM net-
work for arrhythmia classification.The basic structure of LSTM
includes input gates, forgetting gates, and output gates, which
deal with long-time dependencies by controlling the flow of in-
formation, and the structure of the model is shown in Figure 4.

7
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Input representation:
for each input signal fragment, we extract k dynamic modes

{ϕ1, ϕ2, · · · , ϕk} by HDMD, and let each mode ϕi be a vector:

ϕi = {ϕi,1, ϕi,2, . . . , ϕi,n}, (10)

where n is the length of the modality, i.e., the number of el-
ements contained in that modality. These extracted dynamic
modes ϕi will be used as inputs to the LSTM. For the LSTM, the
input is a sequence that receives a complete vector of modalities
ϕt = ϕi at each time step t. Therefore, the LSTM will sequen-
tially receive ϕ1, ϕ2, · · · , ϕk as input sequences at time step t =
1, 2, · · · , k. The shape of the input data is ‘(batch size, k, n)’,
where k is the sequence length and n is the input dimension.

Forget Gate:
The forget gate determines how much previous information

is discarded. The formula is:

ft = σ(W f · [ht−1, ϕt] + b f ), (11)

where ft is the output of the forgetting gate, taking values be-
tween [0,1], which indicates how much of the previous state
is forgotten. W f and b f are weight matrices and bias terms,
ht−1 is the hidden state of the previous moment, ϕt is the modal
state of the current input, and σ is the sigmoid activation func-
tion, which is used to control the amount of information flow
through, and whose output value is between [0,1].

Input Gate:
the input gate determines the importance of the current in-

formation and calculates the new information that is currently
to be added to the cell state. The formula is as follows:

it = σ(Wi · [ht−1, ϕt] + bi). (12)

Candidate cell status update:

C̃t = tanh(WC · [ht−1, ϕt] + bC), (13)

where tanh is used for state updating as it has a range of output
values of [-1,1] which better expresses state changes.

Cell state update:
The LSTM cell updates the past state and new input infor-

mation. The update formula is as follows:

Ct = ft ∗Ct−1 + it ∗ C̃t, (14)

where Ct is the cell state at the current moment, which is used
to store information for long-term memory, and Ct−1 is the cell
state at the previous moment.

Output Gate:
The output gate determines what hidden state is output at

the current moment. The formula is:

ot = σ(Wo · [ht−1, ϕt] + bo). (15)

Hidden state update:
The output of the LSTM, i.e., the final hidden state ht incor-

porates information about the cell state:

ht = ot ∗ tanh(Ct), (16)

where ht is the output of the current timestep, passed to the next
timestep and used for the output of the current timestep.

During training, the parameters of the LSTM are optimised
by minimising the cross-entropy loss function:

L = −
N∑

i=1

yi log(ŷi), (17)

where yi is the true label, ŷi is the probability predicted by the
model, and N is the total number of samples.

During the optimisation process, we choose the Adam opti-
misation algorithm to update the model parameters.The Adam
optimiser combines the advantages of momentum and RM-
SProp optimisation, and is able to adaptively adjust the learning
rate of each parameter to speed up convergence and improve
model performance. The learning rate is set to 0.001. During
the training process, we set the maximum number of iterations
(epochs) to 60, and adopt an early stopping strategy to termi-
nate the training when the loss of the validation set is no longer
decreasing in 5 consecutive iterations to avoid overfitting. The
batch size is set to 32, a smaller batch size allows the model
to update the parameters more frequently, which improves the
convergence speed of the model and also increases the regular-
isation effect of the model to some extent. The way the dataset
is divided has been described in detail in the preprocessing sec-
tion, and model training and evaluation are performed based on
these divisions during the training phase.

3.5. Evaluation metrics
In order to verify that HDMD is more accurate and effec-

tive than general DMD modal extraction, the extracted modal
data and reconstructed data are classified by combining LSTM.
After pre-processing such as filtering, DMD and HDMD are
performed for modal extraction and reconstructed data,compare
Reconstruction Mean Squared Error (MSE) [31]:

MSE =
1
N

N∑
n=1

∥Xn − X̂n∥, (18)

where ∥ · ∥ denotes Euclidean norm.
After model training is complete, we need to evaluate the

performance of the LSTM model to ensure that it can accurately
classify arrhythmias. In order to comprehensively assess the
classification performance of the model, we used a 5-category
confusion matrix, where we used five categories for the multi-
classification task of arrhythmia and simplified them by numer-
ical coding into the form of labelling from 1 to 5, with the fol-
lowing mapping relationships: 1 denotes category N (normal
beats), 2 denotes category V (premature ventricular beats), 3
denotes category S (premature atrial beats), 4 denotes category
F (fused beats), and 5 denotes category Q (unclassifiable). As
shown in Table 3, the rows of the confusion matrix represent
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Table 3. Confusion matrix for multi classification.

True label Predicted Label
Class N V S F Q

N M11 M12 M13 M14 M15
V M21 M22 M23 M24 M25
S M31 M32 M33 M34 M35
F M41 M42 M43 M44 M45
Q M51 M52 M53 M54 M55

the actual categories and the columns represent the categories
predicted by the model. We use the following shorthand to rep-
resent the elements in the confusion matrix:

In the matrix, M11 denotes the number of samples whose
true category is N (normal beats) and are correctly classified
as N. M12 denotes the number of samples whose true category
is N (normal beats) but are incorrectly classified as V (prema-
ture ventricular beats). By analogy, each Mi j(i, j = 1, 2, · · · , 5)
in the confusion matrix denotes the number of samples whose
true category is i, but which are classified as j. Four common
evaluation metrics are used in this paper: Accuracy (A), Preci-
sion (P), Recall (R) and F1-score (F1). The specific formulae
for each category are as follows:

A =
∑5

i=1 Mii∑5
i=1

∑5
j=1 Mi j

× 100%, (19)

Pi =
Mii∑5

j=1 M ji
× 100%, (20)

Ri =
Mii∑5

j=1 Mi j
× 100%, (21)

F1i =
2 × (Pi × Ri)

Pi + Ri
. (22)

When dealing with datasets with unbalanced categories,
weighted evaluation metrics provide a fairer representation of
model performance. Weighted Precision and Weighted Recall
provide a comprehensive performance assessment by weight-
ing the precision and recall for each category. The Weighted
F1 Score combines the weighted results of Precision and Recall
to provide a comprehensive picture of the model’s performance
for all categories. These weighting metrics help ensure that the
predictive effectiveness of a few categories is not overlooked,
thus providing a fairer assessment of performance. The specific
formula is as follows,where Ni denotes the number of samples
per category:

P =
∑5

i=1(Ni × Pi)∑5
i=1 Ni

, (23)

R =
∑5

i=1(Ni × Ri)∑5
i=1 Ni

, (24)

F1 =

∑5
i=1(Ni × F1i)∑5

i=1 Ni
. (25)

Figure 5. 90% Singular Value Ratio vs. Delay Parameter.

4. Experiment results

4.1. Experimental setup

The experiments in this paper use ECG signal data from the
MIH-BIT arrhythmia database for a total of 48 patients. All ex-
periments are performed in Python environment, data process-
ing is performed using WFDB library for ECG signal reading
and processing, and BioSPPy library for R-wave peak detec-
tion.LSTM model implementation and training are performed
using TensorFlow/Keras libraries, and dataset partitioning and
performance evaluation are done by scikit-learn library. The ex-
periments were conducted on Windows 11 Pro 64-bit operating
system with configurations including an Intel Core i7-10750H
processor (2.60 GHz, 6 cores and 12 threads), 16 GB of RAM
and 512 GB of SSD storage. The software environment in-
cludes Python 3.8, WFDB 3.1.0, BioSPPy 0.5.0, TensorFlow
2.9.0 and scikit-learn 1.1.0.

4.2. Delay parameter selection

In selecting the delay parameters for the Hankel matrix, we
set up an iterative process to determine the optimal delay pa-
rameter M. The maximum delay parameter is set to max and
iterated over the range from 1 to max. For an ECG signal with
a data size of (2, 351), the corresponding Hankel matrix has a
size of (2M, 352−M). To reduce the computational complexity,
we chose the range of M to ensure that 2M < (352 − M)/2.

At each iteration, we perform a singular value decomposi-
tion (SVD) of the Hankel matrix and record the delay parameter
M when the singular value energy reaches 90%.Ultimately, the
experimental results show that the delay parameter M is cho-
sen to be 33, at which point the singular value energy of the
Hankel matrix reaches 90% retention. This choice ensures that
the main dynamic information can be fully retained during the
dynamic mode extraction process, while possible noise and re-
dundant information are filtered out. As Figure 5 illustrates the
variation curve of the number ri when the singular value ratio
reaches 90% for different delay parameters.

With this delay parameter, we extracted 28 dynamic modes.
This shows that while maintaining 90% of the singular value
energy, we obtained 28 major modes, with the distribution of

9
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Figure 6. Singular value scatter plot.

Figure 7. Comparison of original signal and reconstructed signal.

singular values shown in Figure 6. These modes effectively
reflect the key dynamic features in the ECG signals, which
helps in the subsequent analysis and classification tasks. With
this approach, we are able to balance computational complex-
ity with information retention, ensuring that the model avoids
over-complexity while capturing the major modes in the data.
At the 28th singular value a 90% course ratio is achieved, so
that the extracted modal vectors are 28, providing a more com-
prehensive capture of the data trends.

These modes can better capture the dynamic features in the
signal. To verify the effectiveness of the extracted modes, we
reconstructed the original signal and compared it with the actual
signal. Figure 7 demonstrates the effect of hankel DMD on the
reconstructed signal on heart beat length of 351 data. It can be
observed that the reconstructed signal is highly consistent with
the original signal in terms of overall trend and shape, which
verifies the effectiveness of the adopted signal processing and
HDMD reconstruction methods. Especially in the main feature
region of heartbeat, the reconstructed signal successfully cap-
tures the key dynamic changes of the original signal, indicating
that the selected delay parameters and modal numbers can accu-
rately recover the main information of the signal. Meanwhile,
this reconstruction effectively reduces the noise and redundant
information, making the main features of the signal clearer. It is
further shown that Hankel DMD is able to extract more modes
and achieve high-precision reproduction of complex signals.

Figure 8. Confusion Matrix Heat Map for 2 Models.

4.3. Analysis of classification results
In order to validate the effectiveness of HDMD in ECG

signal classification, two experimental protocols were designed
and applied to the MIT-BIH arrhythmia five classification task
in this study. First, the preprocessed ECG data were directly
classified using a standard LSTM model. Then, in the second
scheme, dynamic modal features of ECG signals are extracted
using the HDMD method and these features are used as inputs
to the LSTM for the same classification task. By comparing the
performance of these two methods in terms of accuracy, preci-
sion, recall and F1 score, this study evaluates the role of HDMD
in improving the classification performance of ECG signals and
verifies its effectiveness in extracting dynamic features.

To evaluate the performance of different models in the ar-
rhythmia classification task, the heatmap of the confusion ma-
trix of HDMD + LSTM and directly using LSTM were plotted
separately, as shown in Figure 8. When comparing the con-
fusion matrices of HDMD + LSTM and LSTM alone mod-
els, the improvement in overall classification performance of
HDMD + LSTM can be clearly seen. Firstly, the HDMD +
LSTM model performs particularly well in the classification
of S and F classes. In the classification of class S, HDMD
+ LSTM correctly classified 278 samples, while LSTM only
classified 183, showing a significant advantage of HDMD +
LSTM for this arrhythmia.The performance gap is also present
in class F, where HDMD + LSTM correctly identified 1,247
samples, while LSTM only identified 954. HDMD + LSTM
has significantly reduced misclassification on these two cate-
gories significantly reduces misclassification and improves the
overall classification performance. Although the performance
of the two models is relatively close in the classification of
the N category, HDMD+LSTM has fewer misclassifications
(3,396) than the LSTM model (4,276), showing a slight im-
provement in its accuracy when dealing with normal heart
beats. In summary, the HDMD+LSTM model significantly im-
proves the recognition of certain complex heartbeat categories
(e.g., S and F categories) in the multi-classification task, in-
dicating that the HDMD combined with LSTM approach can
capture dynamic features more effectively and improve classi-
fication performance.

In order to visualise the results, the accuracy A, precision P,
recall R, and F1 score of the five types of arrhythmias, namely,
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Table 4. Classification results for different models.
Class Model A P R F1

N LSTM 0.70 0.94 0.70 0.80
HDMD+LSTM 0.86 0.96 0.86 0.91

V LSTM 0.64 0.22 0.64 0.33
HDMD+LSTM 0.78 0.42 0.78 0.55

F LSTM 0.58 0.05 0.58 0.10
HDMD+LSTM 0.72 0.20 0.72 0.32

S LSTM 0.52 0.31 0.52 0.38
HDMD+LSTM 0.68 0.45 0.68 0.54

Q LSTM 0.33 0.22 0.33 0.27
HDMD+LSTM 0.50 0.60 0.50 0.55

N, V, F, S, and Q, were calculated according to the confusion
matrices in Figures 8, respectively, as shown in Table 4:

In terms of these four metrics, the HDMD+LSTM model
outperforms the LSTM model alone in overall performance,
as shown in Table 4, especially in classifying more complex
categories. In categories V and S, the HDMD+LSTM model
shows significant improvement in accuracy and F1 score, in-
dicating that the model is more accurate and less misclassi-
fied on these categories. And in class F, although the preci-
sion rate of HDMD+LSTM decreases, the recall rate is higher,
indicating that it captures more samples in class F. Overall,
HDMD+LSTM performs better in dealing with the more com-
plex arrhythmia categories.

In addition, in Figure 9, two important metrics during model
training are demonstrated: Figure 9 (a) shows the variation of
training and testing losses with the number of training rounds.
It can be seen that the training loss gradually decreases through-
out the training process, while the testing loss shows the same
decreasing trend at the beginning of training, but stabilises after
reaching a certain number of training rounds. According to the
early stopping mechanism, training stops when the validation
loss does not decrease any more in 5 consecutive epochs. The
results show that the model’s validation set performance sta-
bilises at the 36th epoch, and the validation loss no longer de-
creases significantly, which indicates that this number of epochs
effectively ensures sufficient learning of model features and
avoids overfitting. Figure 9 (b), on the other hand, demon-
strates the variation of training and testing accuracy. Accord-
ing to this figure, the overall accuracy of the model reaches
0.851, reflecting excellent classification performance on all cat-
egories. The curves of both training and testing accuracy show
that the classification performance of the model remains stable
on both training and testing data, further validating the good
performance of the model.

5. Discussion

Although the overall accuracy of the model is 81.5%, its
greatest strength is its enhanced interpretability for modal ex-
traction. Unlike other ‘black box’ models based on deep learn-
ing, the mathematical foundation of the Hankel DMD provides
greater explanatory clarity. This is particularly important in the

medical field, where doctors not only need to rely on the ac-
curacy of the model, but also need to understand the basis of
the model’s decisions. With the dynamic modalities extracted
by Hankel DMD, physicians can more intuitively identify the
key factors affecting arrhythmia classification, thus enhancing
the confidence of the clinical application. Although the overall
classification accuracy did not reach the highest level expected,
the significant performance in specific categories (e.g., normal
beats) further validates the potential of the method for practical
application.

Compared with other studies, the method proposed in this
study demonstrated significant advantages in several aspects.
For example, Fu et al. [32] achieved an accuracy of 62.94%
in the 6-classification task of arrhythmia, which is significantly
lower than the model proposed in this study. Hu et al. [33]
achieved an accuracy of 76.58% in the 3-classification task,
which fails to exceed the 81.5% accuracy obtained in the 5-
classification task in this paper despite the lower difficulty of
the task. The study by Guo et al. [34] achieved an accuracy
of 75.33% in the 5-classification task, while the model in this
paper demonstrated better classification performance. in which
the accuracy was 75.33%, while the model in this paper showed
better classification performance. In terms of F1 scores, the
highest F1 score in this study reaches 0.91, which is a clear ad-
vantage over other multicategorisation studies. Gan et al. [35]
study has an F1 score of 63.49 in the six-categorisation task,
while Chen et al. [36] five-categorisation F1 score is 77.84,
which is lower than the best F1 score in this paper. In addition,
Essa et al. [37] and Pokaprakarn et al. [30] had F1 scores of
71.06 and 75.5 in the multi-classification task, respectively, nei-
ther of which exceeded the performance of the HDMD+LSTM
method proposed in this paper. Although the F1 score of Xie et
al. [38] is 88, which is close to the model in this paper, it still
does not reach the highest score of 0.91. On the other hand,
Zhu et al. [39] obtained an F1 score of 90.2 in the simpler bi-
nary classification task, however, due to the relative simplicity
of the binary classification task, it cannot be directly compared
with the five-classification results in this paper. Even so, the
method proposed in this paper was able to maintain a high level
of classification performance and F1 scores in the more com-
plex five-classification task, reflecting its strong ability in com-
plex arrhythmia classification tasks. In addition, Ran et al. [40]
had an F1 score of 84.2 for a 6-classification study, whereas
He et al. [41] had an F1 score of 84 for a 5-classification task,
neither of which exceeded the maximum F1 score of 0.91, al-
though they were close to the method in this paper.

In summary, the Hankel DMD combined with the LSTM
model proposed in this paper demonstrates excellent perfor-
mance in the five classification task of the MIT-BIH arrhyth-
mia database, especially when dealing with complex arrhyth-
mia types. Compared with other studies, this method not only
excels in classification accuracy, but also provides higher in-
terpretability and classification efficiency through modal ex-
traction with Hankel DMD. In addition, the model combining
HDMD and LSTM effectively reduces the input dimension of
LSTM, decreases the computational complexity, and acceler-
ates the convergence speed of the model. This combined strat-

11



Liang et al. / J. Nig. Soc. Phys. Sci. 7 (2025) 2411 12

Figure 9. Loss and accuracy changes during model training.

egy achieved an average accuracy of 0.815 in the experiments,
demonstrating the significant advantages and application poten-
tial of this method in arrhythmia multiclassification tasks.

6. Conclusion

In this paper, we propose an innovative model that com-
bines HDMD and LSTM specifically for the task of multi-
classification of cardiac arrhythmias and has been validated
against the MIT-BIH arrhythmia database. The key innovation
of the model is the use of 28 dynamic modal features extracted
by HDMD as inputs to LSTM, which significantly improves the
ability of LSTM to capture dynamic features of complex ECG
signals. The experimental results show that HDMD-LSTM per-
forms best in the classification of normal beats (N), with an F1
score of 0.91, an accuracy of 0.96, and an overall classifica-
tion accuracy of 0.851. This approach effectively copes with
the complexity in the classification of ECG signals, and pro-
vides a new perspective for the automated diagnosis of cardiac
arrhythmias. Despite the excellent performance of HDMD-
LSTM, it is still necessary to further explore how to solve the
category imbalance problem and optimise the combination of
DMD and LSTM to improve the feature extraction and clas-
sification performance. Overall, HDMD-LSTM provides new
ideas and methods for the automated diagnosis of cardiac ar-
rhythmias, demonstrating significant application potential and
clinical value.
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