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Abstract

In this work, a model for the coinfection of malaria and zika virus disease is studied. The model incorporates various control measures against
the spread of malaria and zika virus disease such as vaccination, treatment and biological control of mosquitoes using sterile insect technique.
The existence and uniqueness of solutions to the model were first shown. Thereafter, the model is shown to be well-posed epidemiologically by
showing that all solutions to the system are positive and bounded. Then, the solution of the model is obtained using the homotopy perturbation
method which is a semi-analytical method. The solutions obtained are shown to be comparable with those obtained from Runge-Kutta method of
order 4. Furthermore, the performance of the controls in comparison to each other when applied seperately and when combined were shown. The
results showed that combining the three controls performed better than the rest. Hence, efforts should be made to incorporate controls that affect
both humans and the vectors for effective control of malaria, zika virus disease and their coinfection.
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1. Introduction

The study of nonlinear differential problems has been of
great importance in all areas of physical sciences and engi-
neering [1]. Obtaining solutions to these nonlinear problems
is important computationally but complicated and tedious us-
ing analytical or numerical approaches [2]. Several methods
have been developed to find the exact, approximate, and nu-
merical solution of nonlinear differential problems [3]. Many
problems of applied sciences in real life rely mostly on numeri-
cal methods to obtain an approximate solution of the problems.

∗Corresponding author Tel. No: +2347065328417.

Email address: duru.emmanuel@mouau.edu.ng (E. C. Duru )

These numerical methods have been developed to handle prob-
lems such as differential equations, partial differential equa-
tions, boundary value problems, integral equations, nonlinear
equations, etc. Some of the numerical methods include Ado-
mian Decomposition Method (ADM), Homotopy Pertubation
Method (HPM), Homotopy Analysis Method (HAM), Variation
Iteration Method (VIM), Taylor series method, etc. [4–6].

Ref. [7] used homotopy perturbation method, adomian de-
composition method and homotopy analysis method to solve
the Generalized Zakharov Equations and compare the results
obtained from each solution showing their similarities and dif-
fereneces. Ref. [8] compared the suitability of Adomian
decomposition method and homotopy perturbation method in
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solving some nonlinear differential equations. Their work
showed that both performed very well and in the problems con-
sidered, the results obtained were similar. Ref. [9] combined
homotopy perturbation method and Laplace transformation to
solve some linear and nonlinear singular initial value problems
of Lane-Emden type equations. They used several examples to
show the accuracy of the methods. Ref. [10] employed homo-
topy perturbation method to find the approximate solutions of
a Dengue fever model and also compared the results with the
numerical simulation results obtained. Some of the works re-
viewed in literatures showed that the choice of an approximate
method to use depends on the nature of the nonlinear problem
involved. Therefore, we will adopt the HPM to solve the model
given in Ref. [11] because of its advantage over some of the
other traditional methods. Also, it will be more friendly to
handle the complex nature of the model being analyzed in this
work.

2. Mathematical model

The mathematical model for the coinfection has twenty-
two (22) compartments consisting of the human and mosquito
populations. The human population has sixteen (16) compart-
ments which are Susceptible humans S h, Vaccinated humans
for malaria S hv, Unvaccinated humans for malaria S hu, Ex-
posed humans to malaria Ehm, Exposed humans to zika Ehz,
coinfected humans with both diseases Emz, Infectious humans
with malaria Ihm, symptomatic infectious humans with zika
IhzS , asymptomatic infectious humans with zika IhzA, coinfec-
tious humans with both diseases Imz, Infectious humans under-
going treatment for malaria IhmT , Infectious humans undergoing
treatment for zika IhzT , coinfectious humans undergoing treat-
ment for both diseases ImzT , Infectious humans not undergoing
treatment for malaria IhmU , coinfectious humans not undergo-
ing treatment for both disease ImzU and Recovered humans Rh.
While the mosquito population has six (6) compartments which
are Susceptible Anopheles mosquitoes S mv, Exposed Anophe-
les mosquitoes Emv, Infectious Anopheles Mosquitoes Imv, Sus-
ceptible Aedes mosquitoes S zv, Exposed Aedes mosquitoes Ezv

and Infectious Aedes mosquitoes Izv. The transmission dynam-
ics of the system as well as the assumptions leading to the
model formulation has been explained in details by Ref. [11].
Also, the description of parameters, review of related and sig-
nificant literatures which serves as foundations for proposing
the model, basic quantitative and qualitative analyses were also
sufficiently provided in Ref. [11]. Hence, the focus in this work
is to obtain a semi-analytical solution of the system and per-
form further simulations to gain more insight into the dynamics
of the control measures proposed. Thus, the model for the sys-
tem according to Ref. [11] is given to be;

dS h

dt
= Λh + θRh − (ρ1 + ρ2 + τ1)S h

dS hu

dt
= ρ1S h − α1β1ImvS hu − α2η1IzvS hu − τ1S hu

dS hv

dt
= ρ2S h − α1β2φImvS hv − α2η1IzvS hv − τ1S hv

Figure 1. Susceptible humans.

dEhm

dt
= α1β1ImvS hu + α1β2φImvS hv + ϕ1IhmU + ϕ2IhmzU

− α2η1IzvEhm − (δ1 + τ1)Ehm

dEhz

dt
= α2η1Izv(S hu + S hv) − α1β1ImvEhz − ((χ1 + χ2)δ2 + τ1)Ehz

dEhmz

dt
= α1β1ImvEhz + α2η1IzvEhm − (δ3 + τ1)Ehmz

dIhm

dt
= δ1Ehm − α2η1IzvIhm − (τ1 + τ2 + ε1 + ε2)Ihm

dIhmT

dt
= ε1Ihm − (γ1 + τ1 + τ2)IhmT

dIhmU

dt
= ε2Ihm − (ϕ1 + τ1 + τ2)IhmU

dIhzS

dt
= δ2χ1Ehz − α1β1ImvIhzS − (τ1 + τ3 + ψ + ω1)IhzS

dIhzA

dt
= δ2χ2Ehz − α1β1ImvIhzA − (τ1 + τ3 + ω3)IhzA

dIhzT

dt
= ψIhzS − (τ1 + τ3 + ω2)IhzT

dIhmz

dt
= α1β1Imv(IhzS + IhzA) + α2η1IzvIhm + δ3Ehmz (1)

− (τ1 + τ4 + σ1 + σ2)Ihmz

dIhmzT

dt
= σ1Ihmz − (τ1 + τ4 + γ2)IhmzT

dIhmzU

dt
= σ2Ihmz − (τ1 + τ4 + ϕ2)IhmzU

dRh

dt
= γ1IhmT + γ2IhmzT + ω1IhzS + ω2IhzT + ω3IhzA − (τ1 + θ)Rh

dS mv

dt
= Λmv − α1(β3Ihm + β4IhmT + β5IhmU + β6Ihmz + β7IhmzT

+ β8IhmzU )S mv − (κ1 MS IT + µm)S mv

dEmv

dt
= α1(β3Ihm + β4IhmT + β5IhmU + β6Ihmz + β7IhmzT + β8IhmzU )S mv

− (ν1 + µm)Emv

dImv

dt
= ν1Emv − µmImv

dS zv

dt
= Λzv − α2(η2IhzS + η3IhzA + η4IhzT + η5Ihmz + η6IhmzT

+ η7IhmzU )S zv − (κ2ZS IT + µz)S zv
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Figure 2. Unvaccinated humans.

dEzv

dt
= α2(η2IhzS + η3IhzA + η4IhzT + η5Ihmz + η6IhmzT + η7IhmzU )S zv

− (ν2 + µz)Ezv

dIzv

dt
= ν2Ezv − µzIzv,

where S h(0) = S 0
h, S hu(0) = S 0

hu, S hv(0) = S 0
hv, Ehm(0) =

E0
hm, Ehz(0) = E0

hz, Emz(0) = E0
mz, Ihm(0) = I0

hm, Imz(0) =
I0
mz, IhmT (0) = I0

hmT , IhmU(0) = I0
hmU , IhzS (0) = I0

hzS , IhzA(0) =
I0
hzA, IhzT (0) = I0

hzT , ImzT (0) = I0
mzT , ImzU(0) = I0

mzU ,Rh(0) =
R0

h, S mv(0) = S 0
mv, Emv(0) = E0

mv, Imv(0) = I0
mv, S zv(0) = S 0

zv,

Ezv(0) = E0
zv and Izv(0) = I0

zv are the initial conditions of the
system with the total human and mosquito populations given
by

Nh = S h + S hu + S hv + Ehm + Ehz + Emz + Ihm + IhmT + IhmU

+ IhzS + IhzA + IhzT + Imz + ImzT + ImzU + Rh

Nmv = S mv + Emv + Imv

Nzv = S zv + Ezv + Izv.

3. Existence and uniqueness of solutions

To show the existence and uniqueness of the solutions to our
models, we employ the Banach fixed point theorem which is a
special kind of the Lipschitz continuity. Hence, we first state
both conceepts before adopting them.

Theorem 3.1 Banach fixed point theorem. Let Ω be a complete
metric space and let f : Ω → Ω be a contraction, that is, ∃
c ∈ (0, 1) such that for all z1, z2 ∈ Ω, then

d( f (z1), f (z2)) ≤ cd(z1, z2). (2)

Then, f has a unique fixed point in Ω. That is, there exists a
unique z∗ ∈ Ω such that

f (z∗) = z∗. (3)

Figure 3. Vaccinated humans.

Figure 4. Infectious humans with malaria.

Figure 5. Symptomatic humans with zika.

Lemma 3.1 Lipschitz Continuity. A function f (t, z) is said to be
Lipschitz continuous in z if there exist a constant K ≥ 0 such
that

| f (t, z1) − f (t, z2)|≤ K|z1 − z2|. (4)
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Figure 6. Asymptomatic humans with zika.

Figure 7. Coinfectious humans.

Figure 8. Recovered humans.

Here, K is called a Lipschitz constant and f is said to be K-
Lipschitz ∀z1, z2 ∈ Ω.

One of the properties of Lipschitz functions is that every
Lipschitz function is absolutely continuous and therefore is dif-
ferentiable almost everywhere. Also, a function that is differen-

Figure 9. Infectious Anopheles mosquitoes.

Figure 10. Infectious Aedes mosquitoes.

tiable everywhere is Lipschitz continuous if the first derivative
is bounded. The existence and uniqueness can be established
by either showing that each differential equations in the system
is Lipschitz continuous and that the Lipschitz constant satisfy
the Banach conditions for existence and uniqueness. In some
works, existence and uniqueness was established by showing
that the differential equations are continuously differentiable
everywhere in R [12].

The co-infection model, (1) can be expressed as

Z′(t) = f (Z(t)), Z(t0) = Z0, (5)

where Z(t) = (S h, S hu, S hv, Ehm, Ehz, Ehmz, Ihm, IhmT , IhmU , IhzS ,
IhzA, IhzT , Ihmz, IhmzT , IhmzU ,Rh, S mv, Emv, Imv, S zv, Ezv, Izv)
Let ||.|| be the maximum norm in Ω ∈ R22 taking to be the
banach domain for continuous functions where

||Z(t)||=
∑
||Z||∞.

Let ||S h||≤ k1, ||S hu||≤ k2, ||S hv||≤ k3, ||Ehm||≤ k4, ||Ehz||≤

k5, ||Ehmz||≤ k6, ||Ihm||≤ k7, ||IhmT ||≤ k8, ||IhmU ||≤ k9, ||IhzS ||≤

k10, ||IhzA||≤ k11, ||IhzT ||≤ k12, ||Ihmz||≤ k13, ||IhmzT ||≤ k14, ||IhmzU ||≤

k15, ||Rh||≤ k16, ||S mv||≤ k17, ||Emv||≤ k18, ||Imv||≤ k19, ||S zv||≤

k20, ||Ezv||≤ k21, ||Izv||≤ k22, ||MS IT ||≤ k23, ||ZS IT ||≤ k24 and 0 <

4
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mi < 1 for (i = 1, 2, 3, ..., 22).
From equation (1) and as was demonstrated in Ref. [13], we
will have that for any S h1 and S h2 ∈ Ω, then

|| f (t, S h1) − f (t, S h2)||= ||(Λh + θRh − (ρ1 + ρ2 + τ1)S h1) − (Λh + θRh

− (ρ1 + ρ2 + τ1)S h2)||= ||(ρ1 + ρ2 + τ1)(S h1 − S h2)||

≤ (ρ1 + ρ2 + τ1)||S h1 − S h2||≤ m1||S h1 − S h2||.

The Lipschitz continuity in S h is established with m1 as the
Lipschitz constant. Similarly, we can establish the Lipschitz
continuity in some of the other state variables as follows;

|| f (t, S hu1) − f (t, S hu2)||= ||(ρ1S h − (α1β1Imv + α2η1Izv + τ1)S hu1)

− (ρ1S h − (α1β1Imv + α2η1Izv + τ1)S hu2)||

= ||(α1β1Imv + α2η1Izv + τ1)(S hu1 − S hu2)||

≤ (α1β1||Imv||+α2η1||Izv||+τ1)||S hu1 − S hu2||

≤ (α1β1k19 + α2η1k22 + τ1)||S hu1 − S hu2||≤ m2||S hu1 − S hu2||,

|| f (t, S hv1) − f (t, S hv2)||= ||(ρ2S h − (α1β2ΦImv + α2η1Izv + τ1)S hv1)

− (ρ2S h − (α1β2ΦImv + α2η1Izv + τ1)S hv2)||

= ||(α1β2ΦImv + α2η1Izv + τ1)(S hv1 − S hv2)||

≤ (α1β2Φ||Imv||+α2η1||Izv||+τ1)||S hv1 − S hv2||

≤ (α1β2Φk19 + α2η1k22 + τ1)||S hv1 − S hv2||≤ m3||S hv1 − S hv2||,

|| f (t, Ehm1) − f (t, Ehm2)||= ||(α1β1ImvS hu + α1β2ΦImvS hv + ϕ1IhmU

+ ϕ2ImzU − α2η1IzvEhm1 − (δ1 + τ1)Ehm1) − (α1β1ImvS hu

+ α1β2ΦImvS hv + ϕ1IhmU + ϕ2IhmzU − α2η1IzvEhm2

− (δ1 + τ1)Ehm2)||= ||(α2η1Izv + δ1 + τ1)(Ehm1 − Ehm2)||

≤ (α2η1||Izv||+δ1 + τ1)||Ehm1 − Ehm2||

≤ (α2η1k22 + δ1 + τ1)||Ehm1 − Ehm2||≤ m4||Ehm1 − Ehm2||,

|| f (t, Ehz1) − f (t, Ehz2)||= ||(α2η1Izv(S hu + S hv) − α1β1ImvEhz1

− ((χ1 + χ2)δ2 + τ1)Ehz1) − (α2η1Izv(S hu + S hv)

− α1β1ImvEhz2 − ((χ1 + χ2)δ2 + τ1)Ehz2)||= ||(α1β1Imv

+ (χ1 + χ2)δ2 + τ1)(Ehz1 − Ehz2)||≤ (α1β1k19

+ (χ1 + χ2)δ2 + τ1)||Ehz1 − Ehz2||≤ m5||Ehz1 − Ehz2||,

|| f (t, Ehmz1) − f (t, Ehmz2)||= ||(α1β1ImvEhz + α2η1IzvEhm

− (δ3 + τ1)Ehmz1) − (α1β1ImvEhz + α2η1IzvEhm

− (δ3 + τ1)Ehmz2)||= ||(δ3 + τ1)(Ehmz1 − Ehmz2)|||

≤ (δ3 + τ1)||Ehmz1 − Ehmz2||≤ m6||Ehz1 − Ehz2||.

Following the same procedure, other Lipschitz conditions can
be established as

|| f (t, Ihm1) − f (t, Ihm2)|| ≤ m7||Ihm1 − Ihm2||

|| f (t, IhmT1) − f (t, IhmT2)|| ≤ m8||IhmT1 − IhmT2||

|| f (t, IhmU1) − f (t, IhmU2)|| ≤ m9||IhmU1 − IhmU2||

|| f (t, IhzS 1) − f (t, IhzS 2)|| ≤ m10||IhzS 1 − IhzS 2||,

|| f (t, IhzA1) − f (t, IhzA1)|| ≤ m11||IhzA1 − IhzA2||

|| f (t, IhzT1) − f (t, IhzT2)|| ≤ m12||IhzT1 − IhzT2||

|| f (t, Ihmz1) − f (t, Ihmz2)|| ≤ m13||(Ihmz1 − Ihmz2)||

|| f (t, IhmzT1) − f (t, IhmzT2)|| ≤ m14||IhmT1 − IhmT2||

|| f (t, IhmzU1) − f (t, IhmzU2)|| ≤ m15||IhmU1 − IhmU2||

|| f (t,Rh1) − f (t,Rh2)|| ≤ m16||Rh1 − Rh2||

|| f (t, S mv1) − f (t, S mv2)|| ≤ m17||S mv1 − S mv2||

|| f (t, Emv1) − f (t, Emv2)|| ≤ m18||Emv1 − Emv2||

|| f (t, Imv1) − f (t, Imv2)|| ≤ m19||Imv1 − Imv2||

|| f (t, S zv1) − f (t, S zv2)|| ≤ m20||S zv1 − S zv2||

|| f (t, Ezv1) − f (t, Ezv2)|| ≤ m21||Ezv1 − Ezv2||

|| f (t, Izv1) − f (t, Izv2)|| ≤ m22||Izv1 − Izv2||,

where m1 = ρ1 + ρ2 + τ1, m2 = α1β1k19 + α2η1k22 + τ1,
m3 = α1β2Φk19 + α2η1k22 + τ1, m4 = α2η1k22 + δ1 + τ1,
m5 = α1β1k19 + (χ1 + χ2)δ2 + τ1, m6 = δ3 + τ1,
m7 = α2η1k19 + τ1 + τ2 + ϵ1 + ϵ2, m8 = γ1 + τ1 + τ2,
m9 = ϕ1 + τ1 + τ2, m10 = α1β1k19 + τ1 + τ3 + ψ + ω1,
m11 = α1β1k19 + τ1 + τ3 + ω3, m12 = τ1 + τ3 + ω2,
m13 = τ1+τ4+σ1+σ2, m14 = γ2+τ1+τ4, m15 = ϕ2+τ1+τ2,
m16 = τ1 + θ, m18 = ν1 + µm, m19 = µm, m21 = ν2 + µz

m17 = α1(β3k7+β4k8+β5k9+β6k13+β7k14+β8k15)+κ1k23+µm,
m20 = α2(η2k10+η3k11+η4k12+η5k13+η6k14+η7k15)+κ2k24+µz,
m22 = µz are the Lipschitz constants.
Thus, the Lipschitz continuity in the state variables have been
established with the m

′

i s, i = 1, 2, 3, ..., 22 as the Lipschitz
constants.
To establish that Banach fixed point theorem is satisfied, we
need to show that the m

′

i s, i = 1, 2, 3, ..., 22 satisfy 0 < mi < 1.
m1,m6,m8,m9,m12,m13,m14,m15,m16,m18,m19,m21, and m22 <
1 since the terms appearing there represents fractional outflow
from each compartment which must be less than one. The other
m
′

i s contain some k
′

s which are the bounds of the infectious
classes. To see the nature of these k

′

s, we show that these
infectious classes are bounded. For example,

dIzv

dt
= ν2Ezv − µzIzv =⇒

dIzv

dt
+ µzIzv = ν2Ezv

Integrating the resulting differential equation by use of integrat-
ing factor method gives the result

Izv(t) =
[
ν2

∫
(Ezveµzt)dt + c

]
e−µzt. (6)

Since Ezv is a function of time, t and the solution usually in-
volves exponential terms, the result of (6) will always contain
an exponential term. Hence, as t → ∞, Izv → 0. Hence,
||Izt ||≤ k22 = 0 as t → ∞.
Similarly,

Imv(t) =
[
ν1

∫
(Emveµmt)dt + c

]
e−µmt, (7)

and Imv → 0 as t → ∞. All the infectious classes tend to zero
as t → ∞. This shows that each of the infectious classes are
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Figure 11. Infectious humans with malaria.

Figure 12. Symptomatic infectious humans with zika.

bounded likewise as Imv and Izv. Hence, we can represent them
as ||Ihm||≤ k7 = 0, ||IhmT ||≤ k8 = 0, ||IhmU ||≤ k9 = 0, ||IhzS ||≤ k10 =

0, ||IhzA||≤ k11 = 0, ||IhzT ||≤ k12 = 0, ||Ihmz||≤ k13 = 0, ||IhmzT ||≤

k14 = 0, ||IhmzU ||≤ k15 = 0, ||Imv||≤ k19 = 0, ||Izv||≤ k22 = 0.
Substituting these values into the m

′

i s gives
m2 = τ1 < 1, m3 = τ1 < 1, m4 = δ1 + τ1 < 1, m5 = (χ1 +

χ2)δ2+τ1 < 1, m7 = τ1+τ2+ϵ1+ϵ2 < 1, m10 = τ1+τ3+ψ+ω1 <
1,m11 = τ1 + τ3 + ω3 < 1, m17 = µm < 1, m20 = µz < 1.
Hence, all the m

′

i s have satisfied the condition that 0 < mi < 1
and by Banach fixed point theorem, the solutions to the system
(1) exist and is unique.

3.1. Positivity of solutions and invariant region

Theorem 3.2. Let the initial data set for the model be
S 0

h, S
0
hu, S

0
hv, E

0
hm, E

0
hz, E

0
mz, I

0
hm, I

0
mz, I

0
hmT , I

0
hmU , I

0
hzS , I

0
hzA, I

0
hzT , I

0
mzT ,

I0
mzU ,R

0
h, S

0
mv, E

0
mv, I

0
mv, S

0
zv, E

0
zv which are all nonnegative at

t = 0. Then, the solution S h(t), S hu(t), S hv(t), Ehm(t), Ehz(t),
Emz(t), Ihm(t), Imz(t), IhmT (t), IhmU(t), IhzS (t), IhzA(t), IhzT (t), ImzT (t),
ImzU(t),Rh(t), S mv(t), Emv(t), Imv(t), S zv(t), Ezv(t), Izv(t) of the
system (1) given initial conditions, will remain positive for all
t > 0.

Figure 13. Asymptomatic infectious humans with zika.

Figure 14. Infectious Anopheles mosquitoes.

Figure 15. Infectious Aedes mosquitoes.

Proof. From (1), we have the following

dS h

dt
≥ −(ρ1 + ρ2 + τ1)S h.

dS hu

dt
≥ −(α1β1Imv + α2η1Izv + τ1)S hu.

6



Duru et al. / J. Nig. Soc. Phys. Sci. 7 (2025) 2436 7

dS hv

dt
≥ −(α1β1φImv + α2η1Izv + τ1)S hv. (8)

...
dIzv

dt
≥ −µzIzv.

Integrating the system (8) gives

S h(t) ≥ S 0
he−

∫
(ρ1+ρ2+τ1)dt > 0,

S hu(t) ≥ S 0
hue−

∫
(α1β1 Imv+α2η1 Izv+τ1)dt > 0,

S hv(t) ≥ S 0
hve
−

∫
(α1β1φImv+α2η1 Izv+τ1)dt > 0,

...

Izv(t) ≥ I0
zve
−

∫
µzdt > 0.

Thus, the solution to the system remains positive ∀t > 0.
Furthermore, the total human and mosquito populations sat-

isfy the differential equations

dNh

dt
= Λh − τ1Nh − τ2(Ihm + IhmT + IhmU )

− τ3(IhzS + IhzA + IhzT ) − τ4(Imz + ImzT + ImzU )

≤ Λh − τ1Nh.

dNmv

dt
= Λmv − µmImv. (9)

dNzv

dt
= Λzv − µzIzv,

respectively. Integrating (9) and solving as t → ∞ gives;

0 ≤ Nhm ≤
Λh

τ1
, 0 ≤ Nmv ≤

Λmv

µm
and 0 ≤ Nzv ≤

Λzv

µz
respec-

tively. Hence, all the solutions of the system are positive and
bounded in the region Ω = Ω1 × Ω2 × Ω3 and proves that the
region, Ω is positively invariant with respect to the flow gen-
erated by (9). Thus, the coinfection model (1) is biologically
well-posed and defined since all the state variables remain non-
negative for all t > 0 [14]. The basic mathematical analysis of
the system (1) such as obtaining the coinfection-free equilib-
rium, coinfection reproduction number, stability and sensitivity
analyses have been fully discussed in the previous work, see
[11].

4. Homotopy perturbation method

The homotopy perturbation method (HPM) was introduced
by Jihuan HE in 1998 according to Ref. [15]. HPM is a com-
bination of the traditional perturbation method and homotopy
and is based on finding the approximate solution of a nonlin-
ear differential equation as an infinite series in the independent
variable, say t. The method has been widely used in mathe-
matical modelling of infectious diseases in finding approximate
solutions to the associated models [15–17]. In applying HPM,
consider s nonlinear differential equation of the form;

A(u) − f (t) = 0, t ∈ Ω, (10)

with boundary conditions

B
(
u,
∂u
∂n

)
= 0,

where A is the general nonlinear differential operator, B is the
boundary operator, f (t) is a known analytical function and Ω is
the domain. The differential operator can be split into two part;
the linear part, L and the nonlinear part, N such that Equation
(10) can be rewritten as

L(u) + N(u) − f (t) = 0, t ∈ Ω. (11)

A homotopy, v(t, p) : Ω × [0, 1]→ R constructed by homotopy
technique satisfies

H(v, p) = (1 − p)[L(v) − L(u0)] + p[A(v) − f (t)] = 0, (12)

where p ∈ [0, 1] is the embedding parameter and u0 is an initial
approximate solution satisfying the boundary conditions. The
homotopy equation can be rewritten as

H(v, p) = L(v) − (1 − p)L(u0) + p[N(v) − f (t)] = 0. (13)

From (13), we have that using the boundary points of p ∈ [0, 1],
then

H(v, 0) = L(u) − L(u0) = 0

H(v, 1) = A(v) − f (t).

The solution to (13) can be represented as a Maclaurin’s series
in p as

v = v0 + pv1 + p2v2 + p3v3 + ..., (14)

such that as p → 1, we get the approximate analytical solu-
tion to the system (1). The traditional homotopy perturbation
method will be used to obtain the approximate solutions of the
co-infection model.

To obtain the approximate solution for our co-infection
model by HPM, we make use of two-term approximation for
each class and write the solution to (1) in the form;

S h(t) = S 0
h + pS 1

h + p2S 2
h, S hu(t) = S 0

hu + pS 1
hu + p2S 2

hu,

S hv(t) = S 0
hv + pS 1

hv + p2S 2
hv Ehm(t) = E0

hm + pE1
hm + p2E2

hm,

Ehz(t) = E0
hz + pE1

hz + p2E2
hz, Ehmz(t) = E0

hmz + pE1
hmz + p2E2

hmz,

Ihm(t) = I0
hm + pI1

hm + p2I2
hm, IhmT (t) = I0

hmT + pI1
hmT + p2I2

hmT ,

IhmU (t) = I0
hmU + pI1

hmU + p2I2
hmU , IhzS (t) = I0

hzS + pI1
hzS + p2I2

hzS ,

IhzA(t) = I0
hzA + pI1

hzA + p2I2
hzA, IhzT (t) = I0

hzT + pI1
hzT + p2I2

hzT ,

Ihmz(t) = I0
hmz + pI1

hmz + p2I2
hmz, IhmzT (t) = I0

hmzT + pI1
hmzT + p2I2

hmzT ,

IhmzU (t) = I0
hmzU + pI1

hmzU + p2I2
hmzU , Rh(t) = R0

h + pR1
h + p2R2

h,

S mv(t) = S 0
mv + pS 1

mv + p2S 2
mv, Emv(t) = E0

mv + pE1
mv + p2E2

mv,

Imv(t) = I0
mv + pI1

mv + p2I2
mv, S zv(t) = S 0

zv + pS 1
zv + p2S 2

zv,

Ezv(t) = E0
zv + pE1

zv + p2ES 2
zv, Izv(t) = I0

zv + pI1
zv + p2I2

zv.

and construct the homotopy for the system (1) as follows

dS h

dt
= p(Λh + θRh − (ρ1 + ρ2 + τ1)S h)

dS hu

dt
= p(ρ1S h − (α1β1Imv + α2η1Izv + τ1)S hu)

dS hv

dt
= p(ρ2S h − (α1β2ImvΦ + α2η1Izv + τ1)S hv)

dEhm

dt
= p(α1β1ImvS hu + α1β2ImvΦS hv + ϕ1IhmU + ϕ2ImzU

7
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− α2η1IzvEhm − (δ1 + τ1)Ehm)
dEhz

dt
= p(α2η1Izv(S hu + S hv) − α1β1ImvEhz − ((χ1 + χ2)δ2 + τ1)Ehz)

dEhmz

dt
= p(α1β1ImvEhz + α2η1IzvEhm − (δ3 + τ1)Ehmz)

dIhm

dt
= p(δ1Ehm − α2η1IzvIhm − (τ1 + τ2 + ϵ1 + ϵ2)Ihm)

dIhmT

dt
= p(ϵ1Ihm − (γ1 + τ1 + τ2)IhmT )

dIhmU

dt
= p(ϵ2Ihm − (ϕ1 + τ1 + τ2)IhmU )

dIhzS

dt
= p(δ2χ1Ehz − α1β1ImvIhzS − (τ1 + τ3 + ψ + ω1)IhzS )

dIhzA

dt
= p(δ2χ2Ehz − α1β1ImvIhzA − (τ1 + τ3 + ω3)IhzA)

dIhzT

dt
= p(ψIhzS − (τ1 + τ3 + ω2)IhzT ) (15)

dIhmz

dt
= p(α1β1Imv(IhzS + IhzA) + α2η1IzvIhm + δ3Ehmz

− (τ1 + τ4 + σ1 + σ2)Ihmz).
dIhmzT

dt
= p(σ1Ihmz − (τ1 + τ4 + γ2)IhmzT )

dIhmzU

dt
= p(σ2Ihmz − (τ1 + τ4 + ϕ2)IhmzU )

dRh

dt
= p(γ1IhmT + γ2ImzT + ω1IhzS + ω2IhzT + ω3IhzA − (τ1 + θ)Rh)

dS mv

dt
= p(Λmv − α1(β3Ihm + β4IhmT + β5IhmU + β6Ihmz + β7IhmzT

+ β8IhmzU ) − (κ1 MS IT + µm)S mv)
dEmv

dt
= p(α1(β3Ihm + β4IhmT + β5IhmU + β6Ihmz + β7IhmzT

+ β8IhmzU )S mv − (ν1 + µm)Emv)
dImv

dt
= p(ν1Emv − µmImv)

dS zv

dt
= p(Λzv − α2(η2IhzS + η3IhzA + η4IhzT + η5Ihmz + η6IhmzT

+ η7IhmzU ) − (κ2ZS IT + µz)S zv)
dEzv

dt
= p(λzS zv − (ν2 + µz)Ezv)

dIzv

dt
= p(ν2Ezv − µzIzv),

where the coefficients p, p1 and p2 are to be determined. If
we substitute the two terms approximate solutions of (1) into
(15), neglecting terms that will yield powers more than order
2, since we are using two-term approximation, we will have
the following by taking a1 = ρ1 + ρ2 + τ1, B1 = δ1 + τ1, B2 =

τ1 + τ2 + ϵ1 + ϵ2, B3 = γ1 + τ1 + τ2, B4 = ϕ1 + τ1 + τ2, B5 =

δ3 + τ1, B6 = τ1 + θ, B7 = ν1 + µm,D1 = (χ1 + χ2)δ2 + τ1,D2 =

τ1 + τ3 + ψ + ω1,D3 = τ1 + τ3 + ω3,D4 = τ1 + τ3 + ω2,D5 =

τ1+τ4+σ1+σ2,D6 = τ1+τ4+γ2,D7 = τ1+τ4+ϕ2,D8 = ν2+µz;

dS 0
h

dt
+ p

dS 1
h

dt
+ p2 dS 2

h

dt
= p(Λh + θR0

h − a1S 0
h) + p2(θR1

h − a1S 1
h)

dS 0
hu

dt
+ p

dS 1
hu

dt
+ p2 dS 2

hu

dt
= p(ρ1S 0

h − α1β1I0
mvS

0
hu − α2η1I0

zvS
0
hu

− τ1S 0
hu) + p2(ρ1S 1

h − α1β1I0
mvS

1
hu − α1β1I1

mvS
0
hu

− α2η1I0
zvS

1
hu − α2η1I1

zvS
0
hu − τ1S 1

hu)

dS 0
hv

dt
+ p

dS 1
hv

dt
+ p2 dS 2

hv

dt
= p(ρ1S 0

h − α1β2ΦI0
mvS

0
hv − α2η1I0

zvS
0
hv

− τ1S 0
hv) + p2(ρ1S 1

h − α1β2ΦI0
mvS

1
hv − α1β2ΦI1

mvS
0
hu

− α2η1I0
zvS

1
hv − α2η1I1

zvS
0
hv − τ1S 1

hv)

dE0
hm

dt
+ p

dE1
hm

dt
+ p2 dE2

hm

dt
= p(α1β1I0

mvS
0
hu + α1β2ΦI0

mvS
0
hv + ϕ1I0

hmU

+ ϕ2I0
hmzU − α2η1I0

zvE0
hm − B1E0

hm) + p2(α1β1I0
mvS

1
hu

+ α1β1I1
mvS

0
hu + α1β2ΦI0

mvS
1
hv + α1β2ΦI1

mvS
0
hv + ϕ1I1

hmU

+ ϕ2I1
hmzU − α2η1I0

zvE1
hm − α2η1I1

zvE0
hm − B1E1

hm)

dE0
hz

dt
+ p

dE1
hz

dt
+ p2

dE2
hz

dt
= p(α2η1I0

zvS
0
hu + α2η1I0

zvS
0
hv − (α1β1I0

mv

+ D1)E0
hz) + p2(α2η1I0

zvS
1
hu + α2η1I1

zvS
0
hu + α2η1I0

zvS
1
hv

+ α2η1I1
zvS

0
hv − α1β1I0

mvE1
hz − α1β1I1

mvE0
hz − D1E1

hz).

dE0
hmz

dt
+ p

dE1
hmz

dt
+ p2

dE2
hmz

dt
= p(α1β1I0

mvE0
hz + α2η1I0

zvE0
hm

− B5E0
hmz) + p2(α1β1I0

mvE1
hz + α1β1I1

mvE0
hz + α2η1I0

zvE1
hm

+ α2η1I1
zvE0

hm − B5E1
hmz)

dI0
hm

dt
+ p

dI1
hm

dt
+ p2 dI2

hm

dt
= p(δ1E0

hm − (α2η1I0
zv + B2)I0

hm)

+ p2(δ1E1
hm − α2η1I0

zvI1
hm − α2η1I1

zvI0
hm − B2I1

hm)

dI0
hmT

dt
+ p

dI1
hmT

dt
+ p2 dI2

hmT

dt
= p(ϵ1I0

hm − B3I0
hmT ) + p2(ϵ1I1

hm − B3I1
hmT )

dI0
hmU

dt
+ p

dI1
hmU

dt
+ p2 dI2

hmU

dt
= p(ϵ2I0

hm − B4I0
hmU ) + p2(ϵ1I1

hm − B4I1
hmU )

dI0
hzS

dt
+ p

dI1
hzS

dt
+ p2

dI2
hzS

dt
= p(δ2χ1E0

hz − D2I0
hzS − α1β1I0

mvI0
hzS )

+ p2(δ2χ1E1
hz − D2I1

hzS − α1β1I0
mvI1

hzS − α1β1I1
mvI0

hzS )

dI0
hzA

dt
+ p

dI1
hzA

dt
+ p2

dI2
hzA

dt
= p(δ2χ2E0

hz − D3I0
hzA − α1β1I0

mvI0
hzA)

+ p2(δ2χ2E1
hz − D3I1

hzA − α1β1I0
mvI1

hzA − α1β1I1
mvI0

hzA)

dI0
hzT

dt
+ p

dI1
hzT

dt
+ p2

dI2
hzT

dt
= p(ψI0

hzS − D4I0
hzT ) + p2(ψI1

hzS − D4I1
hzT )

dI0
hmz

dt
+ p

dI1
hmz

dt
+ p2

dI2
hmz

dt
= p(α1β1I0

mvI0
hzS + α1β1I0

mvI0
hzA

+ α2η1I0
zvI0

hm + δ3E0
hmz − D5I0

hmz) + p2(α1β1I0
mvI1

hzS + α1β1I1
mvI0

hzS

+ α1β1I0
mvI1

hzA + α1β1I1
mvI0

hzA + α1β1I0
mvI1

hzA + α1β1I1
mvI0

hzA

+ δ3E1
hmz − D5I1

hmz)

dI0
hmzT

dt
+ p

dI1
hmzT

dt
+ p2

dI2
hmzT

dt
= p(σ1I0

hmz − D6I0
hmzT )

+ p2(σ1I1
hmz − D6I1

hmzT )

dI0
hmzU

dt
+ p

dI1
hmzU

dt
+ p2

dI2
hmzU

dt
= p(σ2I0

hmz − D7I0
hmzU )

+ p2(σ2I1
hmz − D7I1

hmzU )

dR0
h

dt
+ p

dR1
h

dt
+ p2 dR2

h

dt
= p(γ1I0

hmT + γ2I0
hmzT + ω1I0

hzS + ω2I0
hzT

+ ω3I0
hzA − B6R0

h) + p2(γ1I1
hmT + γ2I1

hmzT + ω1I1
hzS + ω2I1

hzT

+ ω3I1
hzA − B6R1

h)

dS 0
mv

dt
+ p

dS 1
mv

dt
+ p2 dS 2

mv

dt
= p(Λmv − α1β3I0

hmS 0
mv − α1β4I0

hmT S 0
mv

− α1β5I0
hmUS 0

mv − α1β6I0
hmzS

0
mv − α1β7I0

hmzT S 0
mv − α1β8I0

hmzUS 0
mv

− (κ1 MS IT + µm)S 0
mv) − p2(α1β3I0

hmS 1
mv + α1β3I1

hmS 0
mv

8
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+ α1β4I0
hmT S 1

mv + α1β4I1
hmT S 0

mv + α1β5I0
hmUS 1

mv + α1β5I1
hmUS 0

mv

+ α1β6I0
hmzS

1
mv + α1β6I1

hmzS
0
mv + α1β7I0

hmzT S 1
mv + α1β7I1

hmzT S 0
mv

+ α1β8I0
hmzUS 1

mv + α1β8I1
hmzUS 0

mv − (κ1 MS IT + µm)S 1
mv)

dE0
mv

dt
+ p

dE1
mv

dt
+ p2 dE2

mv

dt
= p(α1β3I0

hmS 0
mv + α1β4I0

hmT S 0
mv

+ α1β5I0
hmUS 0

mv + α1β6I0
hmzS

0
mv + α1β7I0

hmzT S 0
mv

+ α1β8I0
hmzUS 0

mv − B7E0
mv) + p2(α1β3I0

hmS 1
mv + α1β3I1

hmS 0
mv.

+ α1β4I0
hmT S 1

mv + α1β4I1
hmT S 0

mv + α1β5I0
hmUS 1

mv

+ α1β5I1
hmUS 0

mv + α1β6I0
hmzS

1
mv + α1β6I1

hmzS
0
mv

+ α1β7I0
hmzT S 1

mv + α1β7I1
hmzT S 0

mv + α1β8I0
hmzUS 1

mv

+ α1β8I1
hmzUS 0

mv − B7E1
mv)

dI0
mv

dt
+ p

dI1
mv

dt
+ p2 dI2

mv

dt
= p(ν1E0

mv − µmI0
mv) + p2(ν1E1

mv − µmI1
mv)

dS 0
zv

dt
+ p

dS 1
zv

dt
+ p2 dS 2

zv

dt
= p(Λzv − α2η2I0

hzS S 0
zv − α2η3I0

hzAS 0
zv

− α2η4I0
hzT S 0

zv − α2η5I0
hmzS

0
zv − α2η6I0

hmzT S 0
zv − α2η7I0

hmzUS 0
zv

− (κ2ZS IT + µz)S 0
zv) − p2(α2η2I0

hzS S 1
zv + α2η2I1

hzS S 0
zv

+ α2η3I0
hzAS 1

zv + α2η3I1
hzAS 0

zv + α2η4I0
hzT S 1

zv + α2η4I1
hzT S 0

zv

+ α2η5I1
hmzS

0
zv + α2η5I0

hmzS
1
zv + α2η6I0

hmzT S 1
zv + α2η6I1

hmzT S 0
zv

+ α2η7I0
hmzUS 1

zv + α2η7I1
hmzUS 0

zv − (κ2ZS IT + µz)S 1
zv)

dE0
zv

dt
+ p

dE1
zv

dt
+ p2 dE2

zv

dt
= p(α2η2I0

hzS S 0
zv + α2η3I0

hzAS 0
mv

+ α2β4I0
hzT S 0

zv + α2η5I0
hmzS

0
zv + α2η6I0

hmzT S 0
zv + α2η7I0

hmzUS 0
zv

− D8E0
zv) + p2(α2η2I0

hzS S 1
zv + α2η2I1

hzS S 0
zv + α2η3I0

hzAS 1
zv

+ α2η3I1
hzAS 0

zv + α2η4I0
hzT S 1

zv + α2η4I1
hzT S 0

zv + α2η5I0
hmzS

1
zv

+ α2η5I1
hmzS

0
zv + α2η6I0

hmzT S 1
zv + α2η6I1

hmzT S 0
zv + α2η7I0

hmzUS 1
zv

+ α2η7I1
hmzUS 0

zv − D8E1
zv)

dI0
zv

dt
+ p

dI1
zv

dt
+ p2 dI2

zv

dt
= p(ν2E0

zv − µzI0
zv) + p2(ν2E1

zv − µzI1
zv).

By comparing coefficients on the right-hand side (RHS) and
left-hand side (LHS), we have that for p0

dS 0
h

dt
= 0,

dS 0
hu

dt
= 0,

dS 0
hv

dt
= 0,

dE0
hm

dt
= 0,

dE0
hz

dt
= 0,

dE0
hmz

dt
= 0,

dI0
hm

dt
= 0,

dI0
hmT

dt
= 0,

dI0
hmU

dt
= 0,

dI0
hzS

dt
= 0,

dI0
hzA

dt
= 0,

dI0
hzT

dt
= 0,

dI0
hmz

dt
= 0,

dI0
hmzT

dt
= 0,

dI0
hmzU

dt
= 0,

dR0
h

dt
= 0,

dS 0
mv

dt
= 0,

dE0
mv

dt
= 0,

dI0
mv

dt
= 0,

dS 0
zv

dt
= 0,

dE0
zv

dt
= 0,

dI0
zv

dt
= 0.

Solving the resulting equations for p0 by direct integration
gives

S h(0) = S 0
h, S hu(0) = S 0

hu, S hv(0) = S 0
hv, Ehm(0) = E0

hm

Ehz(0) = E0
hz, Ehmz(0) = E0

hmz, Ihm(0) = I0
hm =, IhmT (0) = I0

hmT ,

IhmU (0) = I0
hmU , IhzS (0) = I0

hzS , IhzA(0) = I0
hzA, IhzT (0) = I0

hzT ,

Ihmz(0) = I0
hmz, IhmzT (0) = I0

hmzT , IhmzU (0) = I0
hmzU , Rh(0) = R0

h,

S mv(0) = S 0
mv, Emv(0) = E0

mv, Imv(0) = I0
mv, S zv(0) = S 0

zv,

Ezv(0) = E0
zv, Izv(0) = I0

zv.

For p1, we have

dS 1
h

dt
= Λh + θR0

h − a1S 0
h,

dS 1
hu

dt
= ρ1S 0

h − α1β1I0
mvS

0
hu − α2η1I0

zvS
0
hu − τ1S 0

hu,

dS 1
hv

dt
= ρ2S 0

h − α1β2ΦI0
mvS

0
hv − α2η1I0

zvS
0
hv − τ1S 0

hv,

dE1
hm

dt
= α1β1I0

mvS
0
hu + α1β2ΦI0

mvS
0
hv + ϕ1I0

hmU + ϕ2I0
hmzU ,

− α2η1I0
zvE0

hm − B1E0
hm,

dE1
hz

dt
= α2η1I0

zvS
0
hu + α2η1I0

zvS
0
hv − α1β1I0

mvE0
hz − D1E0

hz,

dE1
hmz

dt
= α1β1I0

mvE0
hz + α2η1I0

zvE0
hm − B5E0

hmz,

dI1
hm

dt
= δ1E0

hm − (α2η1I0
zv + B2)I0

hm,
dI1

hmT

dt
= ϵ1I0

hm − B3I0
hmT ,

dI1
hmU

dt
= ϵ2I0

hm − B4I0
hmT ,

dI1
hzS

dt
= δ2χ1E0

hz − D2I0
hzS − α1β1I0

mvI0
hzS ,

dI1
hzA

dt
= δ2χ2E0

hz − D3I0
hzA − α1β1I0

mvI0
hzA,

dI1
hzT

dt
= ψI0

hzS − D4I0
hzT ,

dI1
hmz

dt
= α1β1I0

mvI0
hzS + α1β1I0

mvI0
hzA + α2η1I0

zvI0
hm + δ3E0

hmz,

− D5I0
hmz

dI1
hmzT

dt
= σ1I0

hmz − D6I0
hmzT ,

dI1
hmzU

dt
= σ2I0

hmz − D7I0
hmzU ,

dR1
h

dt
= γ1I0

hmT + γ2I0
hmzT + ω1I0

hzS + ω2I0
hzT + ω3I0

hzA − (τ1 + θ)R0
h,

dS 1
mv

dt
= Λmv − α1β3I0

hmS 0
mv − α1β4I0

hmT S 0
mv − α1β5I0

hmUS 0
mv,

+ α1β6I0
hmzS

0
mv + α1β7I0

hmzT S 0
mv + α1β8I0

hmzUS 0
mv

− (κ1 MS IT + µm)S 0
mv,

dE1
mv

dt
= α1β3I0

hmS 0
mv + α1β4I0

hmT S 0
mv + α1β5I0

hmUS 0
mv,

+ α1β6I0
hmzS

0
mv + α1β7I0

hmzT S 0
mv + α1β8I0

hmzUS 0
mv − (ν1 + µm)E0

mv,

dI1
mv

dt
= ν1E0

mv − µmI0
mv,

dS 1
zv

dt
= Λzv − α2η2I0

hzS S 0
zv − α2η3I0

hzAS 0
zv − α2η4I0

hzT S 0
zv,

− α2η5I0
hmzS

0
zv − α2η6I0

hmzT S 0
zv − α2η7I0

hmzUS 0
zv

− (κ2ZS IT + µz)S 0
zv,

dE1
zv

dt
= α2η2I0

hzS S 0
zv + α2η3I0

hzAS 0
mv + α2β4I0

hzT S 0
zv,

+ α2η5I0
hmzS

0
zv + α2η6I0

hmzT S 0
zv + α2η7I0

hmzUS 0
zv − (ν2 + µz)E0

zv,

dI1
zv

dt
= ν2E0

zv − µzI0
zv.

For p2, we have

dS 2
h

dt
= θR1

h − a1S 1
h,

dS 2
hu

dt
= ρ1S 1

h − α1β1I0
mvS

1
hu − α1β1I1

mvS
0
hu − α2η1I0

zvS
1
hu

− α2η1I1
zvS

0
hu − τ1S 1

hu,

dS 2
hv

dt
= ρ2S 1

h − α1β2ΦI0
mvS

1
hv − α1β2ΦI1

mvS
0
hu − α2η1I0

zvS
1
hv

9
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− α2η1I1
zvS

0
hv − τ1S 1

hv,

dE2
hm

dt
= α1β1I0

mvS
1
hu + α1β1I1

mvS
0
hu + α1β2ΦI0

mvS
1
hv + α1β2ΦI1

mvS
0
hv

+ ϕ1I1
hmU + ϕ2I1

hmzU − α2η1I0
zvE1

hm − α2η1I1
zvE0

hm − D1E1
hm,

dE2
hz

dt
= α2η1I0

zvS
1
hu + α2η1I1

zvS
0
hu + α2η1I0

zvS
1
hv + α2η1I1

zvS
0
hv

− α1β1I0
mvE1

hz − α1β1I1
mvE0

hz − D1E1
hz,

dE2
hmz

dt
= α1β1(I0

mvE1
hz + I1

mvE0
hz) + α2η1(I0

zvE1
hm + I1

zvE0
hm) − B5E1

hmz,

dI2
hm

dt
= δ1E1

hm − α2η1I0
zvI1

hm − α2η1I1
zvI0

hm − B2I1
hm,

dI2
hmT

dt
= ϵ1I1

hm − B3I1
hmT ,

dI2
hmU

dt
= ϵ2I1

hm − B4I1
hmT ,

dI2
hzS

dt
= δ2χ1E1

hz − D2I1
hzS − α1β1I0

mvI1
hzS − α1β1I1

mvI0
hzS ,

dI2
hzA

dt
= δ2χ2E1

hz − D3I1
hzA − α1β1I0

mvI1
hzA − α1β1I1

mvI0
hzA,

dI2
hzT

dt
= ψI1

hzS − D4I1
hzT ,

dI2
hmz

dt
= α1β1I0

mvI1
hzS + α1β1I1

mvI0
hzS + α1β1I0

mvI1
hzA + α1β1I1

mvI0
hzA

+ α1β1I0
mvI1

hzA + α1β1I1
mvI0

hzA + δ3E1
hmz − D5I1

hmz,

dI2
hmzT

dt
= σ1I1

hmz − D6I1
hmzT ,

dI2
hmzU

dt
= σ2I1

hmz − D7I1
hmzU ,

dR2
h

dt
= γ1I1

hmT + γ2I1
hmzT + ω1I1

hzS + ω2I1
hzT + ω3I1

hzA − B6R1
h,

dS 2
mv

dt
= −α1β3I0

hmS 1
mv − α1β3I1

hmS 0
mv − α1β4I0

hmT S 1
mv

− α1β4I1
hmT S 0

mv − α1β5I0
hmUS 1

mv − α1β5I1
hmUS 0

mv

− α1β6I0
hmzS

1
mv − α1β6I1

hmzS
0
mv − α1β7I0

hmzT S 1
mv

− α1β7I1
hmzT S 0

mv − α1β8I0
hmzUS 1

mv − α1β8I1
hmzUS 0

mv

− (κ1 MS IT + µm)S 1
mv

dE2
mv

dt
= α1β3I0

hmS 1
mv + α1β3I1

hmS 0
mv + α1β4I0

hmT S 1
mv + α1β4I1

hmT S 0
mv

+ α1β5I0
hmUS 1

mv + α1β5I1
hmUS 0

mv + α1β6I0
hmzS

1
mv + α1β6I1

hmzS
0
mv

+ α1β7I0
hmzT S 1

mv + α1β7I1
hmzT S 0

mv + α1β8I0
hmzUS 1

mv

+ α1β8I1
hmzUS 0

mv − (ν1 + µm)E1
mv

dI2
mv

dt
= ν1E1

mv − µmI1
mv.

dS 2
zv

dt
= α2η2I0

hzS S 1
zv + α2η2I1

hzS S 0
zv + α2η3I0

hzAS 1
zv + α2η3I1

hzAS 0
zv

+ α2η4I0
hzT S 1

zv + α2η4I1
hzT S 0

zvα2η5I0
hmzS

1
zv + α2η5I1

hmzS
0
zv

+ α2η6I0
hmzT S 1

zv + α2η6I1
hmzT S 0

zv + α2η7I0
hmzUS 1

zv + α2η7I1
hmzUS 0

zv

− (κ2ZS IT + µz)S 1
zv

dE2
zv

dt
= α2η2I0

hzS S 1
zv + α2η2I1

hzS S 0
zv + α2η3I0

hzAS 1
zv + α2η3I1

hzAS 0
zv

+ α2η4I0
hzT S 1

zv + α2η4I1
hzT S 0

zv + α2η5I0
hmzS

1
zv + α2η5I1

hmzS
0
zv

+ α2η6I0
hmzT S 1

zv + α2η6I1
hmzT S 0

zv + α2η7I0
hmzUS 1

zv

+ α2η7I1
hmzUS 0

zv − (ν2 + µz)E1
zv

dI2
zv

dt
= ν2E1

zv − µzI1
zv.

Making use of the parameter values in Table 1, and the as-
sumed initial conditions S h = 500, S hu = 320, S hv = 19, Ehm =
48, Ehz = 30, Ehmz = 20, Ihm = 35, IhmU = 8, IhmT = 21, IhzS =
20, IhzA = 40, IhzT = 15, Ihmz = 15, IhmzU = 3, IhmzT = 9,Rh =
20, S mv = 500, Emv = 60, Imv = 50, S zv = 500, Ezv = 25, Izv =
10, solving the various systems of ordinary differential equa-
tions generated for p, p1andp2 to obtain the values of the state
variables, the solutions to the system (1) by HPM allowing
p = 1 now becomes

S h(t) = S 0
h + pS 1

h + p2S 2
h = 500 − 414.728t + 192.9739t2

S hu(t) = S 0
hu + pS 1

hu + p2S 2
hu = 320 + 107.0992t − 143.7306t2

S hv(t) = S 0
hv + pS 1

hv + p2S 2
hv = 19 + 139.9203t − 58.9404t2

Ehm(t) = E0
hm + pE1

hm + p2E2
hm = 48 + 214.9582t + 34.6583t2

Ehz(t) = E0
hz + pE1

hz + p2E2
hz = 30 − 23.5836t + 10.1205t2

Ehmz(t) = E0
hmz + pE1

hmz + p2E2
hmz = 20 + 18.7764t + 8.9226t2

Ihm(t) = I0
hm + pI1

hm + p2I2
hm = 35 − 28.5971t + 22.4152t2

IhmT (t) = I0
hmT + pI1

hmT + p2I2
hmT = 21 + 16.4424t − 10.9234t2

IhmU (t) = I0
hmU + pI1

hmU + p2I2
hmU = 8 + 9.8071t − 5.0718t2

IhzS (t) = I0
hzS + pI1

hzS + p2I2
hzS = 20 − 32.3023t + 26.1163t2

IhzA(t) = I0
hzA + pI1

hzA + p2I2
hzA = 40 − 29.6086t + 10.0020t2

IhzT (t) = I0
hzT + pI1

hzT + p2I2
hzT = 15 + 14.4944t − 14.9391t2

Ihmz(t) = I0
hmz + pI1

hmz + p2I2
hmz = 15 + 27.3212t − 31.3151t2

IhmzT (t) = I0
hmzT + pI1

hmzT + p2I2
hmzT = 8 + 9.7948t + 9.2887t2

IhmzU (t) = I0
hmzU + pI1

hmzU + p2I2
hmzU = 3 + 2.3979t + 2.3382t2

Rh(t) = R0
h + pR1

h + p2R2
h = 20 + 16.0347t − 0.3653t2

S mv(t) = S 0
mv + pS 1

mv + p2S 2
mv = 500 − 62, 494.68t + 3, 911, 918.167t2

Emv(t) = E0
mv + pE1

mv + p2E2
mv = 60 + 57.324t − 4, 267.7745t2

Imv(t) = I0
mv + pI1

mv + p2I2
mv = 50 + 3.32t + 2.7739t2

S zv(t) = S 0
zv + pS 1

zv + p2S 2
zv = 500 − 62, 711.3t + 3, 938, 997.241t2

Ezv(t) = E0
zv + pE1

zv + p2E2
zv = 25 + 279.61t − 314.2182t2

Izv(t) = I0
zv + pI1

zv + p2I2
zv = 10 + 1.944t + 13.9265t2.

5. Numerical simulation

5.1. Comparison of HPM and RK – 4 for the co-infection model
In this section, the numerical simulation of the semi-

analytical solutions by HPM is presented and discussed. The
results are shown in Figures 1 -10.

In Figures 1 and 2, we could see that the solutions obtained
from homotopy perturbation method is similar to that obtained
from Runge-Kutta method of order 4. We could see that both
trajectories started and progressed alike but slightly seperated
at a point.

The same scenario is seen in Figures 3 and 4 which com-
pared the solutions of the vaccinated and infectious humans
with malaria obtained by HPM to the ones obtained by RK–
4. In Figures 5 and 7, the symptomatic humans with zika and
coinfectious humans with both diseases did not appear much
similar as the trajectories differ after few steps. However, the
trajectories for the asymptomatic humans with zika and recov-
ered humans obtained by HPM appeared much similar to the

10
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Table 1. Parameters, values and sources.
Parameters Values Sources Parameters Values Sources
Λh 50 Assumed β3 0.0044 [19, 20]
Λmv 100 Assumed β4 0.0022 Assumed
Λzv 100 Assumed β5 0.0044 [19, 20]
Φ 0.0125 [11] β6 0.0022 Assumed
θ 0.0146 [18] β7 0.0044 Assumed
ρ1 0.65 [11] β8 0.0022 Assumed
ρ2 0.28 [11] ω1 0.1429 [21]
γ1 0.25 [18] ω2 0.1667 [22]
γ2 0.111 [11] ω3 0.118 [23]
τ3 0.0003 [11] χ1 0.31 Assumed
τ4 0.0006454 [11] χ2 0.62 Assumed
ϕ1 0.13 Assumed α1 0.4 [18]
α2 0.1 Assumed β1 0.034 [24]
ϕ2 0.1 Assumed τ1 0.00004 [17]
β2 0.013 [25] τ2 0.00032338 [25]
η1 0.0009 [22] η2 0.07 [22]
η3 0.07 [22] η4 0.05 Assumed
η5 0.03 Assuned η6 0.02 Assumed
η7 0.03 Assumed ψ 0.85 [15]
ϵ1 0.62 [11] ϵ2 0.31 Assumed
σ1 0.72 [11] σ2 0.18 [11]
κ1 0.25 [11] κ2 0.25 [11]
ν1 0.1 [11, 18] δ1 0.0833 [11]
ν2 0.1 [12] δ2 0.125 [15]
MS IT 500 Assumed δ3 0.0833 [11]
Z∗S IT 500 Assumed µm 0.0556 [22]
µz 0.0556 [22]

solutions obtained by RK–4 as shown in Figures 6 and 8 re-
spectively.

Figures 9 and 10 show the trajectories of the solutions by
HPM against RK–4. We coulc see that though the direction is
the same but they are not close. A further study will require ob-
taining solutions by other semi-analytic methods and compar-
ing with these ones to ascertain which method is most suitable
for the system studied. The performance of the HPM may not
entirely conform to the RK-4 since only two term approxima-
tions were used.

5.2. Convergence and stability of solutions
The behaviour of the solutions obtained from homotopy

perturbation method is further investigated by comparing the
solutions with that obtained from Runge-Kutta method of or-
der 4. The HPM is a semi-analytical method while RK-4 is a
purely numerical method. Hence, it is a good reference function
to help investigate the convergence and stability of the solutios
by HPM since the exact solutions cannot be obtained. First, we
observe that the solutions by HPM for each state variable is ei-
ther monotonically increasing or decreasing just as the ones ob-
tained by RK-4 shown in Table 2. This shows that the solutions
are either increasing or decreasing to a point. The convergence
of the solutions by RK-4 will suggest the convergence of the
solutions by HPM since both are following similar numerical
pattern.

To check the stability of the solutions obtained, we simply
see if there is a perturbation effect on the solutions by varying
the initial guess. If the solutions converges to the same point
irrespective of the initial guess, then the solution is considered
to be stable. The effect of changes in the initial values of some
state variables are shown in Figures 11-15. The Figures showed
that irrespective of the initial values of the state variables, the
solutions obtained by Homotopy perturbation method will con-
verge to the same point with time. This shows that the solutions
are not affected by changes in the starting point of the solutions
hence, suggesting that the solutions are stable and converge.

5.3. Effects of the Controls in the System

In this section, we investigate the effects of the various con-
trols employed in the system on the populations studied. The
effects of the individual controls as well as when they are com-
bined are analyzed. The simulation is shown in Figures 16–57.

5.3.1. Effects of treatment only
The effect of employing treatment only is shown in Figures

16–21. In these Figures, the populations of the infectious hu-
mans with malaria only (Figure 16), symptomatic humans with
zika virus disease (Figure 17) and coinfectious humans with
both diseases (Figure 18) all reduced with treatment as com-
pared to when there was no treatment.

11
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Table 2. Comparison of Solutions for t = 0, 0.1, 0.2, 0.3, 0.4, 0.5.
S h S hu S hv Ehm Ehz Ehmz Ihm IhmT IhmU IhzS IhzA

HPM 500.00 320.00 19.0000 48.0000 30.0000 20.0000 35.0000 21.0000 8.0000 20.0000 40.0000
RK-4 500.00 320.00 19.0000 48.0000 30.0000 20.0000 35.0000 21.0000 8.0000 20.0000 40.0000
HPM 460.4569 329.2726 32.4026 69.8424 27.7428 21.9669 32.3644 22.5350 8.9300 17.0309 37.1392
RK-4 460.3985 329.0055 32.4261 69.8106 27.7284 21.7991 32.3572 22.5404 8.9325 17.0176 37.1374
HPM 424.7734 335.6706 44.6264 92.3780 25.6881 24.1122 30.1772 23.8515 9.7585 14.5842 34.4784
RK-4 424.3162 334.9033 44.7878 92.1023 25.6225 23.4482 30.1249 23.8937 9.7779 14.4813 34.4640
HPM 392.9493 339.1940 55.6715 115.6067 23.8357 26.4359 28.4382 24.9496 10.4857 12.6598 32.0176
RK-4 391.4405 338.1106 56.1796 114.6721 23.6714 24.9575 28.2696 25.0886 10.5495 12.3248 31.9691
HPM 364.9846 339.8428 65.5377 139.5286 22.1858 28.9381 27.1476 25.8292 11.1114 11.2577 29.7569
RK-4 361.4868 339.0015 66.6875 137.3428 21.8647 26.3366 26.7593 26.1511 11.2594 10.4917 29.6422
HPM 340.8794 337.6170 74.2251 164.1437 20.7383 31.6189 26.3053 26.4903 11.6356 10.3779 27.6962
RK-4 334.1955 337.9108 76.3899 159.9602 20.1926 27.5944 25.5634 27.1047 11.9185 8.9336 27.4734

IhzT Ihmz IhmzT IhmzU Rh S mv Emv Imv S zv Ezv Izv

HPM 15.0000 15.0000 8.0000 3.0000 20.0000 500.00 60.0000 50.0000 500.00 25.0000 10.0000
RK-4 15.0000 15.0000 8.0000 3.0000 20.0000 500.00 60.0000 50.0000 500.00 25.0000 10.0000
HPM 16.3000 17.4190 10.0723 3.2632 21.5998 33369.7137 23.0547 50.3597 33618.8424 49.8188 10.3337
RK-4 16.3080 17.5947 9.0817 3.2627 21.5890 0.8006 59.5792 50.3210 0.7979 26.8634 10.2125
HPM 17.3013 19.2116 10.3305 3.5731 23.1923 14447.78 -99.2461 50.7750 14551.76 68.3532 10.9458
RK-4 17.3622 19.6407 10.3170 3.5643 23.1724 0.7988 58.6626 50.6315 0.7963 26.4905 10.4219
HPM 18.0038 20.3780 11.7744 3.9298 24.7775 33382.42 -306.9025 51.2457 33619.64 80.6034 11.8366
RK-4 18.2017 21.2185 11.6679 3.8951 24.7514 0.7986 57.7673 50.9313 0.7962 26.1218 10.6265
HPM 18.4075 20.9181 13.4041 4.3333 26.3554 60140.90 -599.9143 51.7718 60565.50 86.5691 13.0058
RK-4 18.8595 22.3974 13.1020 4.2473 26.3273 0.7987 56.8861 51.2206 0.7964 25.7573 10.8262
HPM 18.5124 20.8318 15.2196 4.7835 27.9260 94723.22 -978.2816 52.3534 95389.37 86.2505 14.4536
RK-4 19.3639 23.2380 14.5921 4.6138 27.9013 0.7991 56.0187 51.4995 0.7971 25.3969 11.0213

Figure 16. Infectious humans with malaria.

This shows that employing treatment of infectious persons
is critical in the control of infectious diseases. As the infec-
tious classes are treated, the population of recovered humans
increases as shown in Figure 19. The increase is because
treatment increases the rate of recovery and reduces the time
spent in the infectious class. In Figures 20 and 21, we also
saw that treatment helped to reduce the number of infectious
mosquitoes. As more people are treated, the rate of recovery
increases thereby reducing the population of infectious humans
that can infect the mosquitoes. In this case, the infectious hu-
man population was mostly affected by the measure than the in-

Figure 17. Symptomatic humans with zika.

fectious mosquito population because the measure was directly
applied to human population.

5.3.2. Effects of vaccination only
The effect of vaccination is shown in Figures 22–27. In

these Figures, vaccination was seen to reduce the population of
susceptible humans as shown in Figure 22.

This is because vaccination protects more humans from
malaria thus reducing the susceptible population of humans.
The population of humans infectious with malaria and coinfec-
tious humans also reduced as more people are protected from
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Figure 18. Coinfectious humans.

Figure 19. Recovered humans.

Figure 20. Infectious Anopheles mosquitoes.

malaria by vaccination seen in Figures 23 and 25. However, this
measure did not affect the infectious humans with zika virus
disease (Figure 24) as the control measure is not targeted at
them.

Also, the population of the infectious Anopheles

Figure 21. Infectious Aedes mosquitoes.

Figure 22. Susceptible humans.

Figure 23. Infectious humans with malaria.

mosquitoes were affected slightly as seen in Figure 26
while that of infectious Aedes mosquitoes (Figure 27) were not
affected just like that of the symptomatic infectious humans
with zika.
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Figure 24. Symptomatic humans with zika.

Figure 25. Coinfectious humans.

Figure 26. Infectious Anopheles mosquitoes.

5.3.3. Effects of SIT only
The effects of employing only sterile insect technique are

shown in Figures 28–33. In these Figures, all the infectious
classes were reduced under the application of SIT. Also, the
susceptible mosquito populations were reduced. The applica-

Figure 27. Infectious Aedes mosquitoes.

Figure 28. Susceptible Anopheles mosquitoes.

Figure 29. Susceptible Aedes mosquitoes.

tion of SIT causes the female mosquitoes in the wild to lay
eggs that do not hatch thus reducing the number of suscepti-
ble mosquitoes with time.

14



Duru et al. / J. Nig. Soc. Phys. Sci. 7 (2025) 2436 15

Figure 30. Infectious humans with malaria.

Figure 31. Coinfectious humans.

Figure 32. Infectious Anopheles mosquitoes.

5.3.4. Effects of treatment and vaccination only
The effects of treatment and vaccination in the system are

shown in Figures 34–39. In these Figures, vaccination and
treatment were seen to reduce the population of susceptible hu-
mans as shown in Figure 34.

Figure 33. Infectious Aedes mosquitoes.

Figure 34. Susceptible humans.

Figure 35. Infectious humans with malaria.

Also, the infectious and coinfectious human populations
were reduced significantly but the mosquito population reduced
slightly. The slight reduction in the mosquito population was
because the control measures employed here were not directly
on the mosquito population hence does not affect the population
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Figure 36. Symptomatic humans with zika.

Figure 37. Coinfectious humans.

Figure 38. Infectious Anopheles mosquitoes.

of the susceptible mosquitoes.

5.3.5. Effects of treatment and SIT only
The effects of treatment and SIT are shown in Figures 40–

45. Employing treatment and sterile insect technique as a con-

Figure 39. Infectious Aedes mosquitoes.

Figure 40. Susceptible humans.

trol measure reduce both the infectious and coinfectious pop-
ulation significantly as well as the susceptible mosquito popu-
lations. The reduction of the susceptible mosquitoes causes a
consequential reduction in the infectious mosquito population
thus reducing the infectious human population as the number of
mosquitoes that can infect humans are reduced. This strategy
produced a better result than applying any of the controls indi-
vidually showing that the diseases are best fought by applying
measures that affects both the human and mosquito populations
simultaneously.

5.3.6. Effects of vaccination and SIT only
The effects of vaccination and SIT are shown in Figures 46–

51. In these Figures, vaccination and SIT were seen to reduce
the population of susceptible humans as shown in Figure 46. It
also reduced the populations of the infectious and coinfectious
humans greatly as seen in other cases. The population of the
infectious mosquitoes were also reduced in this case showing
that SIT and vaccination offers significant option in reducing
the infectious human populations.
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Figure 41. Infectious humans with malaria.

Figure 42. Symptomatic humans with zika.

Figure 43. Coinfectious humans.

5.3.7. Effects of treatment, SIT and vaccination only
Figures 52–57 show the effect of employing the three con-

trols which are treatment, vaccination and use of SIT to control
the vectors. The simulation also showed that the combination of
these three control measures performed relatively better when

Figure 44. Infectious Anopheles mosquitoes.

Figure 45. Infectious Aedes mosquitoes.

Figure 46. Susceptible humans.

compared to using only one or two control measures.
In this case, combining the three controls ensured that the

three different populations had a measure employed to help re-
duce the spread of the diseases. This will ensure rapid and
efficient control of the diseases. Hence, we suggest that the
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Figure 47. Infectious humans with malaria.

Figure 48. Symptomatic humans with zika.

Figure 49. Coinfectious humans.

three controls should be incorporated simultaneously in the
fight against malaria and zika virus disease.

The analyses performed in this work has shown the impor-
tance of vaccination against infectious diseases such as malaria.
It was shown that in the presence of vaccination in all cases

Figure 50. Infectious Anopheles mosquitoes.

Figure 51. Infectious Aedes mosquitoes.

Figure 52. Susceptible humans.

where it was employed in the simulation, the population of in-
fectious and coinfectious humans reduced drastically. The re-
duction is because the number of humans susceptible to the dis-
ease was reduced significantly by vaccination. This underlines
the importance of vaccination and the need for health practition-
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Figure 53. Infectious humans with malaria.

Figure 54. Symptomatic humans with zika.

Figure 55. Coinfectious humans.

ers to keep encouraging people to embrace vaccination. Efforts
should be made to ensure that every barrier against vaccination
such as religious and ethnic sentiments as well as some con-
spiracy theories are overcome. Also, people should be educated
that refusing to be vaccinated does not only put them at risk but

Figure 56. Infectious Anopheles mosquitoes.

Figure 57. Infectious Aedes mosquitoes.

those around them thereby causing a global health burden. The
importance of treatment was equally shown in this work. Treat-
ment of infectious humans helped significantly to improve the
rate of recovery and reduce the time infectious humans spent
being sick. This ensures that there are few infectious humans
who can infect the mosquitoes and renew the cycle of the spread
of the diseases. Thus refusing to be treated when sick is not an
option that should be entertained. Moreover, as proposed in
Ref. [11], using sterile insect technique as a control measure
against the continuous growth of mosquitoes was shown to be
highly successful. The focus of the simulation done in Ref. [11]
was to obtain what proportion of SIT mosquitoes that should be
interacting with a given number of female mosquitoes in the
wild for effective control. Here, the focus is to know how the
various controls performed relative to one another and show
the importance of incorporating them together rather than using
each seperately.

6. Conclusion

In this paper, we looked at the coinfection model proposed
in Ref. [11] and provided more insight into the study. The
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model incorporated vaccination and treatment as control mea-
sures against the spread of malaria, zika virus disease and their
coinfection. It also proposes using sterile insect technique to
control the population of the mosquitoes. The existence and
uniqueness of solutions to the system were first established.
Thereafter, the system was shown to be well-posed epidemio-
logically by showing that the solutions to the system are always
positive and bounded. Then, the approximate solutions to the
system were obtained using homotopy perturbation technique
which is a semi-analytical method. Furthermore, numerical
simulations were performed to show the effects of the various
controlled adopted in the work. The performance of each con-
trol when adopted singly and when combined were all shown.
The result showed that combining the three controls performed
better than when they are adopted individually or combined one
with each other. This shows that if malaria and zika virus will
be effectively controlled, then efforts should not only be fo-
cused on humans nor mosquitoes seperately but simultaneously
on both humans and mosquitoes. In future studies, the optimal
control of the system and associated cost effectiveness analysis
can be researched. Also, investigation into the dynamics of the
enddemic equilibrium and bifurcation analysis can also be car-
ried out. The performance of different incidence functions can
also be employed and compared to the results obtained here.
Furthermore, different controls such as physical and chemical
procedures can also be incorporated into the system to see if
better results will be obtained.
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