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Abstract

In recent years, the integration of machine learning techniques within the medical field has shown promising results in aiding healthcare pro-
fessionals in accurate diagnosis and treatment planning. This study focuses on developing and implementing a machine learning model tailored
specifically for medical diagnosis, leveraging advancements in computer vision and deep learning algorithms. This research aims to design an
efficient and accurate model capable of classifying medical images into distinct categories, enabling automated diagnosis and identification of
various ailments and conditions. This study uses a dataset comprising 5,863 Chest X-ray images (JPEG) and 2 categories (Pneumonia/Normal)
(anterior-posterior) selected from retrospective cohorts of pediatric patients of one to five years old from Guangzhou Women and Children’s
Medical Center, Guangzhou, obtained from Kaggle data repositories. Data Preprocessing was conducted to enhance image quality and extract
relevant features, followed by implementing a deep convolutional neural networks (DCNNs) model using TensorFlow’s Keras. Using pre-trained
models such as Resnet, transfer learning techniques were employed to learn efficient features from large-scale datasets and optimize the model’s
performance with the limited medical data available. The results from the experimental analysis showed that after 9 epochs, the training and
validation accuracies had steadily increased, achieving 95% and 75%, respectively. Overall, the model achieved 99.9% training accuracy across
multiple epochs and an average validation accuracy of 75%. The model’s performance and scalability highlight its potential for integration into
clinical workflows. This could revolutionize healthcare by augmenting the diagnostic process and improving patient outcomes.
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1. Introduction

Pneumonia remains a significant public health concern
globally, contributing to substantial morbidity and mortality.

∗Corresponding author Tel. No: +234-703-679-9510.
Email address: alo.uzoma@funai.edu.ng (U. R. Alo )

Pneumonia stands as a pivotal global health challenge, exert-
ing a substantial burden on healthcare systems and communi-
ties worldwide. According to the World Health Organization
(WHO), pneumonia accounts for a significant portion of infec-
tious disease-related morbidity and mortality, particularly af-
fecting vulnerable populations such as young children, the el-
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derly, and individuals with compromised immune systems [1].
Statistics from the Centers for Disease Control and Prevention
(CDC) highlight the pervasive impact of pneumonia, indicating
that it is one of the leading causes of hospitalization and mortal-
ity, resulting in millions of hospital visits and tens of thousands
of deaths annually in the United States alone [2]. Moreover, in
low- and middle-income countries, pneumonia remains a pri-
mary cause of death among children under five years old, con-
tributing to nearly 15% of mortality in this age group [3, 4].
The economic burden of pneumonia is also substantial, encom-
passing direct medical costs, such as hospitalizations and treat-
ments, and indirect costs arising from lost productivity and ab-
senteeism due to illness. Studies estimate the economic impact
of pneumonia to be billions of dollars globally each year [5].

Furthermore, the emergence of antimicrobial resistance
poses a growing threat to pneumonia management and treat-
ment efficacy. The inappropriate use of antibiotics, often driven
by misdiagnosis or lack of timely identification of the causative
agents, contributes to the escalation of resistance, complicating
disease management and necessitating more comprehensive di-
agnostic strategies [1]. Timely and accurate diagnosis is pivotal
in effective treatment and patient outcomes. The emergence of
machine learning, particularly Convolutional Neural Networks
(CNNs), has offered promising avenues for automating the de-
tection of pneumonia from chest X-ray images [6]. Conven-
tional methods for pneumonia diagnosis heavily rely on manual
interpretation of medical imaging by trained radiologists [7, 8].
However, this process is time-consuming, subjective, and may
suffer from interobserver variability. The advent of deep learn-
ing, specifically CNNs, has revolutionized medical image anal-
ysis by enabling automated feature extraction and classification,
potentially enhancing diagnostic accuracy and efficiency. This
paper aims to contribute to the existing body of research by
introducing a refined machine learning-based framework tai-
lored for pneumonia detection in chest X-ray images. Leverag-
ing the advancements in CNN architectures and data augmen-
tation techniques, the proposed model endeavors to achieve op-
timal accuracy, robustness, and interpretability, thus fostering
improved diagnostic support for healthcare practitioners.

The key contributions of this paper to the body of knowl-
edge include:

1. Analysis of recent machine learning methods for pneu-
monia prediction;

2. Implement convolutional neural networks for pneumonia
prediction using parameter optimization;

3. Evaluated the implemented method using various ma-
chine learning performance metrics for generalizability
and training loss;

4. Extensive evaluation of various model parameters and
detection speed to ensure efficiency.

2. Review of literature

Healthcare systems worldwide have encountered significant
challenges due to a shortage of diagnostic support systems

and healthcare professionals, especially in third-world coun-
tries where radiologists are more inclined to seek opportunities
abroad or in first-world countries with better remuneration for
healthcare workers. This scarcity is particularly acute in rural
areas, exacerbating the difficulties faced by hospitals where the
dearth of radiologists is more pronounced [9]. As a result, in-
dividual doctors bear a significant workload, often managing
numerous cases, which can result in diagnostic errors. To mit-
igate this issue, there’s a growing focus on the development of
computer-aided diagnostic systems. These systems aim to sup-
port healthcare providers by assisting in the diagnosis process,
especially in scenarios where access to specialized medical ex-
pertise is limited.

Research studies have focused on supporting tools to di-
agnose pneumonia accurately. According to a recent, Gilani
[10] implemented a PERCH (Pneumonia Etiology Research
for Child Health) project, an extensive multinational study on
childhood pneumonia’s etiology since the research initiatives
were conducted by the Board on Science and Technology in In-
ternational Development. Black et al. [11] opined that over a
million children die of pneumonia annually. International orga-
nizations such as WHO [12] have reiterated the need for pneu-
monia detection systems to reduce the significant global mor-
tality burden caused by pneumonia and outlined many guide-
lines for low-resource settings that concentrate on pneumonia
in children under 5 years old. However, according to the sub-
mission of the Institute for Health Metrics and Evaluation [13],
pneumonia remains a crucial concern for older children as well.
Estimates from the Global Burden of Disease reveal that pneu-
monia contributes to approximately 7% of deaths in children
aged 5-9 years.

Recent studies in pneumonia detection have put forward
various research and diverse techniques using machine learn-
ing methods. These studies primarily utilize the Chest X-ray
dataset. for instance, Feng et al. [14] utilized a dataset contain-
ing Chest X-ray images to create a model that captured the fea-
tures specific for easy categorization of pneumonia images. The
study implemented Long Short-term Memory Models (LSTMs)
to determine the correlations among target labels. In their ap-
proach, Feng et al. adopted a 2D ConvNET as an image encoder
for processing chest X-rays. To ensure a fair comparison, they
employed an identical data split (70% for training, 10% for val-
idation, and 20% for testing) since no standard split existed for
the dataset. Their model exhibited noteworthy efficacy and fea-
sibility, achieving an accuracy of 85%, when trained with the
Reasoning Algorithm with boosting and discounting configu-
ration. Another research by Rajpurkar et al. [15] employed
the Chest X-ray14 dataset to create CheXNet, a 121-layer con-
volutional neural network. The research involved a compari-
son between CheXNet’s performance and that of a radiologist,
using the F1 metric. This comprehensive network was capa-
ble of identifying 14 different diseases, including pneumonia,
from X-ray images. During its analysis of an X-ray image, the
model not only provides the likelihood of pathology but also
highlights specific areas within the image associated with the
condition. The training set comprised 98,637 images (70%),
the validation set included 6,351 images (20%), and the test-
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ing set comprised 430 images (10%). Ultimately, the model
achieved an F1 score of 0.435, surpassing the radiologist’s per-
formance, which scored 0.387. though, this F1 score of 0.435
might roughly correspond to an accuracy in the same range,
roughly around 43-50%.

Chandra et al. [16] introduced a transfer-learning ap-
proach for pneumonia detection, using five distinct mod-
els: AlexNet, InceptionV3, ResNet18, DenseNet121, and
GoogLeNet. Among these models, AlexNet, trained for 200
iterations, achieved an AUC value of 0.9783. However, it was
the ResNet18 model that displayed the most impressive perfor-
mance, achieving an ROC AUC of 0.9936 alongside a testing
accuracy of 94.23%, surpassing the other models in the study.
Remarkably, when the results from all five models were com-
bined, the collective outcome demonstrated a substantial ROC
AUC of 0.9934, coupled with a testing accuracy of 96.39% and
notably high sensitivity, reaching 99.62%. This ensemble ap-
proach yielded superior performance compared to the individ-
ual models, indicating the efficacy of leveraging multiple mod-
els for enhanced pneumonia detection from medical images.
Also, Togacar et al. [17] introduced a deep feature using model
CNN models such as AlexNet, VGG-16, and VGG-19 with dif-
ferent parameters, ranging from 100 to 1000. These models
were structured using a minimum redundancy and maximum
relevance algorithm to extract features. The extracted features
were then fed into additional models, such as K-nearest neigh-
bors, linear discriminant analysis, support vector machine, and
linear regression. The culmination of this methodology resulted
in an impressive accuracy rate of 99.41%. This indicates the ro-
bustness and effectiveness of their approach in leveraging deep-
feature CNNs in conjunction with secondary models for highly
accurate pneumonia detection from medical images.

3. Methodology

Chest X-ray images (anterior-posterior) were selected
from retrospective cohorts of pediatric patients of one to five
years old from Guangzhou Women and Children’s Medi-
cal Center, Guangzhou obtained from the Kaggle dataset
(https://www.kaggle.com/datasets/paultimothymooney/chest-
xray-pneumonia) and were first collected in Kermany et al.
[18]. The dataset was organized into 3 folders (train, test,
validation) and contains subfolders for each image category
(Pneumonia/Normal). All chest X-ray imaging was performed
as part of patients’ routine clinical care. There are 5,863 X-Ray
images (JPEG) and 2 categories (Pneumonia/Normal).

In this research method, a Convolutional Neural Network
(CNN) model was constructed leveraging TensorFlow’s Keras
API. The initial layer comprised a 2D convolutional structure
with 32 filters, each spanning a 3x3 size and employing the
ReLU activation function. To accommodate our dataset, initial
input images were standardized to a height and width of 64 pix-
els, forming a dimension of 64x64 pixels, with 3 color channels
(RGB), establishing an input shape = (64, 64, 3). Subsequently,
it traverses three residual blocks, with each block comprising
convolutional layers, batch normalization layers, and a short-
cut connection, also known as identity mapping or skip con-

nections, which circumvents one or more layers in the block.
Finally, the max pooling block, comprising 62 pooling layers,
calculates the maximum value across each of the 32 channels.
Subsequently, the fully-connected block generates the proba-
bilities indicating the presence or absence of tremors. Figure
1 illustrates the structure of the convolutional neural network
(CNN) from convolution to Max pooling. The model com-
menced with convolutional and pooling layers, allowing feature
extraction, followed by a sequence of flattening and dense lay-
ers tailored for classification. We introduced a fully connected
(dense) layer, hosting 128 neurons and employing ReLU acti-
vation. A visual representation of this architecture is shown in
Figure 2, depicting the schematic of our DCNN-Based Pneu-
monia Detection model. Recall, the image input of 64 x 64
passes through 3 Residual blocks or skip connections. The
Residual blocks fundamental components of deep neural net-
works and each of these consists of convolutional and batch-
normalization layers. The basic structure that defines the resid-
ual blocks of the model is the input tensor; the Main path, con-
taining convolutional layers and activation function (ReLU);
shortcut connections that provide an identity mapping of the
input tensor; and Merge Operation that which combines the
output of the main path and the shortcut connection using an
element-wise addition operation. Mathematically, the Residual
blocks can be defined as:

Output = ReLU (Conv (Input) + Input), (1)

where ReLU – is the Activation function (Rectified Linear Unit
activation function), Conv - the main path convolutional layer,
and Input (X) - Input tensor.

There was an initial input tensor (X) to, which transforma-
tion (T) was applied by the convolutional layers of the blocks,
the generated output F(X) of the residual blocks is therefore
calculated as:

F (X) = T (X) + X. (2)

So, the combined mathematical model of the DCNN residual
blocks is defined as follows:

F (X) = ReLU (W2 . ReLU (W1 . X . B1) + B2)+X, (3)

where W1 and W2 are the weights metrics of the convolutional
layers, and B1 and B2 are the bias victors.

To address internal covariate shift, accelerate training, and
stabilize our training process, we introduced batch normaliza-
tion (BN). Mathematically, batch normalization applies a nor-
malization process at the conclusion of each training iteration
to adjust the parameters of the normalizing flow, aiming to ap-
proximate the true posterior distribution within the model. This
adjustment facilitates faster convergence of the model and en-
hances its performance on test data. Two main methods to per-
form normalization is either to scale it to a range from 0 to 1,
which is the most straightforward method, also known as the
Min – Max normalization, using the following formula:

X̂ =
X − Min

Max − Min
, (4)
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Figure 1. The structure of the DCNN pneumonia detector system.

Figure 2. The model architecture of the DCNN-Based pneumonia detection.

where X̂ – is the Normalized value, X – is the value to be nor-
malized, Min – is the minimum value, and Max – is the Maxi-
mum value.

The other technique is to force the data points to have a
mean of 0 and a standard deviation of 1, called the Z – score
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Figure 3. The structure/dataflow diagram of the CNN model.

Figure 4. Comparison of training set and validation accuracies across
different numbers of epochs.

normalization, using the following formula:

X̂ =
X − Meam

S tandard Deviation
. (5)

For the batch normalization,

X̂ =
( X − Meam

S tandard Deviation
. α
)
+ β, (6)

Figure 5. Comparison between the training loss and validation loss.

where:

µβ =
1
n

n∑
i=1

Xi, (7)

called the batch mean, and

δ2β =
1
n

n∑
i=1

(Xi + µβ), (8)
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Figure 6. ROC-AUC of the model.

called the batch variance.
The scaled and shifted activation is:

Yi = YX̂i + β, (9)

where Y and β are the parameters learned by the neural net-
work.

Therefore, the full mathematical model of the DCNN’s
Batch Normalization is formulated as follows:

X̂ =
Xi − µβ√
δ2β + e

. (10)

Finally, to decrease the spatial dimensions of feature maps and
computational complexity, and to perfectly regulate overfitting,
we introduced Max pooling, which is a down-sampling op-
eration frequently utilized in Convolutional Neural Networks
(CNNs) to reduce the spatial dimensions of feature maps. A 6
x 6 max pool size was deployed.

4. Implementation of the proposed method

4.1. Dataset and data preparation
Chest X-ray images (anterior-posterior) were selected from

retrospective cohorts of pediatric patients of one to five
years old from Guangzhou Women and Children’s Medi-
cal Center, Guangzhou obtained from the Kaggle dataset
(www.Kaggle.com). The dataset is organized into 3 folders
(train, test, validation) and contains subfolders for each im-
age category (Pneumonia/Normal). All chest X-ray imaging
was performed as part of patients’ routine clinical care. There
are 5,863 X-Ray images (JPEG) and 2 categories (Pneumo-
nia/Normal). The breakdown of the datasets includes a train-
ing set of 1342 samples of Normal images and 3876 samples of
Pneumonia images; a Test set of 234 Normal images and 390
samples of Pneumonia images; and validation sets of 8 samples
each of Normal and Pneumonia images, respectively. The goal
is to use a simple model to classify x-ray images using con-
volutional neural networks (CNNs). The process of the model
follows the data flow diagram/structure in Figure 3.

Figure 7. Comparison of the current system’s result with the existing
system.

4.2. Experimental design

This process outlines a common approach for building and
evaluating deep learning models for image classification tasks.

1. Dataset Description: The original dataset consists of
5,863 X-ray images in JPEG format categorized into
Pneumonia and Normal cases.

2. Data Splitting: The dataset was divided into training,
testing, and validation sets. An 80-20 stratified split was
applied to the training set to create a separate validation
set.

3. Model Building: Using TensorFlow’s Keras, a convolu-
tional neural network (CNN) model was constructed, be-
ginning with a base using ImageDataGenerator for data
augmentation and then adding layers like Global Aver-
age Pooling (GAP), Flatten, Conv2D, MaxPooling2D,
Dense, and Dropout.

4. Training and Evaluation: The model was trained on the
training dataset and evaluated on the validation set to
measure its performance and potentially fine-tune the
model.

5. Performance Analysis: Metrics such as accuracy, were
used to evaluate the model’s performance on the valida-
tion and training sets.

Accuracy, in the context of machine learning and classifica-
tion tasks, represents the ratio of correctly predicted instances
to the total number of instances in a dataset. It’s a fundamen-
tal metric used to evaluate the performance of a classification
model. Mathematically, accuracy is calculated as:

Accuracy =
Number o f Correct Prediction
Total Number o f Predictions

=
Truepositive + Truenegative

Truepositive + Truenegative + Falsepositive + Falsenegative

=
T P + T N

T P + T N + FP + FN
(11)
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Table 1. Training and validation accuracies.
Number of epochs (%) Training accuracy (%) Validation accuracy (%)
1 62 50
2 62 50
3 62 50
4 37 50
5 37 50
6 62 50
7 50 50
8 50 50
9 83 50
10 50 50
11 50 50
12 50 75
13 33 75
14 100 50
15 83 50
16 15 50
17 100 75
18 67 25
19 100 75
20 100 75

Table 2. Training and validation loss.
Number of epochs (%) Training accuracy (%) Validation accuracy (%)
1 90 94
2 04 00
3 78 25
4 30 97
5 70 97
6 69 27
7 32 23
8 20 31
9 56 12
10 10 25
11 40 06
12 90 62
13 01 69
14 06 04
15 31 97
16 08 15
17 36 93
18 34 31
19 76 68
20 27 13

4.3. CNN model training process
Subsequently, we proceeded to load the images from their

respective folders and prepare them for input into our models.
Our initial step involved defining the data generators. Leverag-
ing the Keras Image Data Generator, we not only rescaled the
pixel values but also applied random transformation techniques
for real-time data augmentation. We established three distinct
generators for various purposes: val datagen (val datagen =
ImageDataGenerator) solely for rescaling the validation sets;

train datagram (train datagen = ImageDataGenerator) incor-
porating transformations to augment the training set; and
test datagram (test datagen = ImageDataGenerator) responsi-
ble for rescaling and augmenting the test sets. Moving forward,
we embarked on creating and training image classification mod-
els utilizing a customized CNN. This process embraced the
transfer learning paradigm, employing a pre-trained model as
a feature extractor. Our final method involved Fine Tuning,
where all layers from the pre-trained model were ’frozen’, re-
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taining the weights computed during its training on the Ima-
geNet dataset.

5. Results and discussion

In our experiment, we ran 20 epochs in the model train-
ing. After training the CNN model for 9 epochs, we observed
a steady increase in both the training and validation accuracies.
The training accuracy increased to 95%, while the validation
accuracy reached 75%, indicating continuous learning and im-
provement. However, we observed that at the 14 17, 18, 19,
and 20 epochs, while the training accuracy continued to rise to
100%, respectively, the validation accuracy plateaued at 50%
and 68%, respectively. This suggests that the model’s learn-
ing capability saturated after 14 and 17, 18, 19, and 20 epochs,
respectively. Further training could lead to overfitting. So, stop-
ping our training at this point prevents overfitting and ensures
the model’s best generalization. The training was therefore ter-
minated at 20 epochs. The model achieved a perfect training
accuracy of 100% and demonstrated a validation accuracy of
95%. Tables 1 and 2 represent training and validation accura-
cies, and training and validation loss, respectively. Figure 4 il-
lustrates the comparison between the training set and validation
accuracies across different numbers of epochs, while Figure 5
depicts the comparison between the training loss and valida-
tion loss. The ROC curve of the convolutional neural networks
obtained during the training is shown in Figure 6. Training
loss and validation loss are metrics used to evaluate a machine
learning model’s performance during the training and validation
phases, respectively. They serve different purposes in assessing
how well the model is learning and generalizing.

Striving for a balance between high training accuracy and
consistent validation accuracy is crucial, and our main goal dur-
ing analysis is to ensure a well-performing and generalizable
model. From the table, both training and validation accuracy
accuracies tend to increase from epoch 14 as the model learns.

Our goal is to minimize both training and validation loss.
The training and validation loss tends to decrease intermittently
as the model learns. balancing these losses is essential to en-
sure that the model performs well on both the training data
and new, unseen data.at epoch 20 we terminated the training
to avoid overfitting.

Once more, we conducted a comparative analysis between
our current CNN-based Chest X-ray detection model and those
presented by Yao L et al. [14], Rajpurkar et al. [15], Chouchan
et al. [16], and Togacar et al. [8]. The study in Ref. [14]
achieved 85% accuracy, while Ref. [15] attained 50% accuracy,
Ref. [16] demonstrated 96.36% accuracy, and Ref. [8] reported
94.41% accuracy. Notably, our current research surpassed these
prior studies, achieving a mean accuracy of 99.9%. Figure 7
elucidates the individual performance of each model for clarity.

6. Conclusion

In conclusion, our CNN-based model for Pneumonia de-
tection utilizing Chest X-ray images demonstrates remarkable

advancements in accuracy compared to existing studies. The
results obtained signify a substantial stride forward in accurate
Pneumonia detection from Chest X-ray images and convolu-
tional neural networks. The success of our model highlights its
potential for practical deployment in clinical settings, promis-
ing enhanced diagnostic capabilities and potentially contribut-
ing to improved healthcare outcomes for patients with Pneumo-
nia.

However, further validation and testing in diverse clinical
environments would be beneficial to ascertain its robustness and
real-world applicability. Nigeria has a highly polluted environ-
ment, weak health systems, and premature birth. These are the
major causes of pneumonia in both children and adults. The
system will be extended to relevant health by using imaging
systems integrated with local hospitals and analyzed with deep
learning models. This will be deployed into the clinical envi-
ronment.

Data Availability

The link to the dataset used in this study is provided
here: https://www.kaggle.com/datasets/paultimothymooney/
chest-xray-pneumonia.
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