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Abstract

This research presents a computational optimization framework designed to maximize auctioneer revenue in modified discrete Dutch auctions by
explicitly incorporating bidders’ risk preferences—modeled independently of wealth through the Constant Absolute Risk Aversion (CARA) utility
function—thus enabling the analysis of risk-averse, risk-neutral, and risk-loving behaviors within the auction context. The study models bidders
with three distinct risk profiles–risk-loving, risk-neutral, and risk-averse–employing nonlinear programming techniques to optimize expected
revenues for the discrete bid levels. Discrete optimization methods are applied to analyze the impact of varying risk preferences, revealing that
auctioneer revenue grows nonlinearly with bidder participation. For risk-neutral bidders (α → 0), revenue increases sharply from R∗ = 0.3849
for n = 2 to R∗ = 0.8179 for n = 20 (a 112.5% increase), but the rate of growth declines significantly beyond n = 30, with revenue plateauing
near R∗ = 0.9454 for n = 100 (a mere 9.5% increase from n = 30 to n = 100). Similar patterns hold for risk-averse (α > 0) and risk-loving
(α < 0) bidders, though the magnitudes differ. Moreover, risk-loving bidders (for α = −0.5) yield R∗ = 1.2122 for n = 100, a 28% higher revenue
than risk-neutral case with R∗ = 0.9454 and a 61% higher than risk-averse case (for α = 0.5) with R∗ = 0.7519. This nonlinearity suggests
diminishing marginal returns to additional bidders, a critical insight for auction design. The findings suggest that for larger bidder groups, fewer
bid levels are sufficient for revenue maximization, with risk-averse behavior decreasing expected returns and risk-loving behavior amplifying
them. This computational approach highlights the critical role of risk preferences in auction design, offering a robust mathematical model that can
be adapted for broader applications in algorithmic auction mechanisms.
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1. Introduction

Dutch auctions (DA), also known as descending-price auc-
tions, are a unique auction format where the auctioneer starts
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Ali )

with a high asking price and progressively lowers it until a bid-
der accepts the current price. This type of auction is particularly
effective for selling perishable goods and time-sensitive items
due to its rapid transaction process. In most of the auction mod-
els, it is assumed that bidders are risk-neutral, meaning they do
not consider risk when making decisions. However, in reality,
bidders exhibit varying degrees of risk preferences, which can
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significantly influence their bidding behavior and the auction
outcomes.

This research investigates how to optimize the auctioneer’s
revenue in a modified discrete Dutch auction (DDA) - a for-
mat where prices descend in fixed discrete steps rather than
continuously. The modification considered here incorporates
bidder risk preferences through the Constant Absolute Risk
Aversion (CARA) utility function and it is defined as U(x) =
1−e−αx

α
, where α represents the risk parameter. This function

is widely used in economic modeling because it implies that a
bidder’s attitude toward risk remains constant regardless of their
wealth level. It enables consistent modeling of risk-averse, risk-
neutral, and risk-loving behaviors in a mathematically tractable
way. Three cases are explored in this study: risk-loving bidders
(α < 0), risk-neutral bidders (α → 0), and risk-averse bidders
(α > 0). Risk-loving bidders prefer uncertainty and are more
likely to bid early at higher prices; risk-neutral bidders evalu-
ate outcomes solely based on expected value without regard to
uncertainty; risk-averse bidders prefer certainty and tend to de-
lay bidding, waiting for lower prices to avoid potential losses.
This study establishes a computational framework for optimiz-
ing Dutch auction design by explicitly modeling bidder risk
profiles, enabling auctioneers to strategically select bid levels
and pricing structures to maximize revenue outcomes. The de-
rived analytical insights reveal how optimal auction parameters
vary parametrized by risk attitude, bidder count, and bid-level
granularity, providing actionable guidance for tailoring auction
formats to specific bidder populations while balancing revenue
potential against implementation complexity.

This study advances auction theory by extending the dis-
crete Dutch auction (DDA) model through the integration of
bidders’ diverse risk preferences, modeled using the CARA
utility function. This study develops a computational optimiza-
tion framework based on nonlinear programming, which sys-
tematically determines the set of discrete bid levels that max-
imize the auctioneer’s expected revenue under varying bidder
risk preferences independent of their wealth, modeled using the
CARA utility function. Implemented through parametric sim-
ulations in R, the model quantifies how revenue outcomes shift
with changes in number of bid levels, bidder count and risk
profiles—risk-averse, risk-neutral, and risk-loving. This en-
ables auctioneers to anticipate revenue performance under dif-
ferent market conditions and tailor bid level granularity accord-
ingly, thus offering a practical decision-support tool for auction
design. This research fills a critical gap in the literature by in-
corporating CARA risk preferences into the DDA model, pro-
viding a mathematically rigorous framework that reflects the
complexities of real-world bidding dynamics.

2. Literature review

DAs have been the subject of extensive study in auction the-
ory and continue to be a prominent area of research in various
fields [1, 2]. Under certain assumptions, Vickrey [3] established
the revenue equivalence between DA and first-price sealed-bid
auctions. Over time, numerous studies have challenged the con-
cept of revenue equivalence, demonstrating that it holds only

Figure 1: The maximum expected revenue of the auctioneer vs. num-
ber of bid levels with n = 80 and α→ 0.

under certain assumptions and does not apply universally [4–
7]. Subsequent research has examined various aspects of DAs,
including optimal reserve prices [8], asymmetric bidders [9],
and multi-unit auctions [10]. While traditional DA involve con-
tinuous price decrements, DDA use discrete bid levels to sim-
plify implementation. The distinction between DA and DDA
lies in the granularity of price decrements, with DDA offering
more structured bidding increments, which can influence bidder
strategies and auction outcomes.

Li and Kuo [11] were among the first to explore revenue
maximization in DDAs, formulating the problem as a nonlinear
program (NLP) and deriving closed-form expressions for op-
timal bid levels under the assumption of uniformly distributed
valuations. Their results demonstrate that expected revenue in-
creases with the number of bid levels. Building on this, Li and
Kuo [12] extended the DDA model by considering the num-
ber of bidders as a Poisson random variable, yielding similar
outcomes. Li et al. [13] further expanded this work by incorpo-
rating time constraints and specifying salvage values, revealing
that DDA models generate higher average revenues per unit of
time for the auctioneer compared to models without time con-
siderations. These studies underscore the critical role of bid
levels and time constraints in optimizing auction outcomes.

Most existing models of DAs assume risk-neutral bidders
[6, 12–16]. However, bidders often exhibit risk aversion or risk-
seeking behavior, significantly impacting auction outcomes.
Cox et al. [17] were among the early works to incorporate risk
aversion in auction models, demonstrating its effects on bidding
strategies and revenues. Hu et al. [18] explored the influence
of risk aversion on equilibrium strategies in continuous DAs,
and Makui et al. [19] conducted an experimental study on auc-
tion behavior with risk preferences. Recently, Shamim and Ali
[20] explored bidders’ emotional attachment in DDA by incor-
porating a lognormal valuation distribution and optimizing the
formulated nonlinear programming model.

The CARA utility function is widely used in the literature
to model risk preferences [21, 22] and has also been employed
by some researchers to study bidders’ risk preferences in auc-
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Table 1: Auctioneer’s maximum expected revenue for risk-neutral bidders (i.e. α→ 0) for v = 1, and m ∈ {2, 3, . . . , 15}.

n R∗m=2 R∗m=3 R∗m=4 R∗m=5 R∗m=6 R∗m=7 R∗m=8 R∗m=9 R∗m=10 R∗m=11 R∗m=12 R∗m=13 R∗m=14 R∗m=15
2 0.3849 0.4908 0.5394 0.5671 0.5850 0.5975 0.6067 0.6137 0.6193 0.6238 0.6275 0.6307 0.6334 0.6357
5 0.5824 0.6935 0.7377 0.7611 0.7754 0.7851 0.7920 0.7972 0.8013 0.8045 0.8072 0.8094 0.8113 0.8129
10 0.7153 0.8110 0.8449 0.8618 0.8718 0.8784 0.8830 0.8865 0.8891 0.8912 0.8929 0.8943 0.8955 0.8965
15 0.7793 0.8619 0.8892 0.9024 0.9101 0.9150 0.9185 0.9211 0.9230 0.9246 0.9258 0.9268 0.9277 0.9285
20 0.8179 0.8906 0.9136 0.9244 0.9306 0.9346 0.9374 0.9395 0.9410 0.9422 0.9432 0.9441 0.9447 0.9452
25 0.8440 0.9092 0.9291 0.9383 0.9435 0.9469 0.9492 0.9509 0.9522 0.9532 0.9540 0.9542 0.9543 0.9547
30 0.8631 0.9222 0.9398 0.9478 0.9523 0.9552 0.9572 0.9587 0.9598 0.9607 0.9607 0.9607 0.9607 0.9607
40 0.8891 0.9394 0.9536 0.9601 0.9637 0.9659 0.9675 0.9686 0.9692 0.9688 0.9695 0.9688 0.9688 0.9687
60 0.9185 0.9577 0.9682 0.9728 0.9753 0.9769 0.9771 0.9780 0.9780 0.9776 0.9779 0.9780 0.9772 0.9770
80 0.9349 0.9673 0.9757 0.9793 0.9813 0.9826 0.9826 0.9826 0.9826 0.9820 0.9821 0.9817 0.9817 0.9815
100 0.9454 0.9733 0.9803 0.9833 0.9850 0.9850 0.9850 0.9850 0.9850 0.9850 0.9850 0.9850 0.9850 0.9850

R

Figure 2: The maximum expected revenue of the auctioneer (R∗m=15)
vs. number of bidders (n) where m = 15 and α ∈ {−0.5, 0.4, . . . , 0.5}.

tion theory [9, 23–25]. With CARA utility, a bidder’s degree
of risk aversion is captured by a single parameter α. Posi-
tive α indicates risk aversion, negative α indicates risk-seeking
behavior and α → 0 reduces to the risk-neutral case. While
CARA utility has been applied to analyze various auction for-
mats [9, 23], its implications for DDAs have not been thor-
oughly explored. Other applications of CARA utility extend
beyond auctions, being utilized in financial risk management
and insurance modeling, where understanding risk preferences
is crucial for decision-making [26, 27].

Bidders’ risk preferences can significantly affect auction
outcomes, particularly in DAs. Risk-loving bidders may bid
earlier at higher prices, potentially increasing auctioneer rev-
enue, while risk-averse bidders may wait for lower prices, risk-
ing the item being sold to another bidder. Understanding these
dynamics is crucial for optimizing auction design and maxi-
mizing revenue. Studies have shown that incorporating risk
preferences into auction models can lead to different equilib-
rium strategies and revenue outcomes, emphasizing the need
for auctioneers to consider these factors in auction design [8].

Li and Kuo [11] and Li and Kuo [12] claimed to address risk

aversion in their studies. However, in their subsequent work
[13], they presented a similar model for risk-neutral bidders,
introducing additional parameters such as salvage value and fo-
cusing on maximizing revenue per unit of time instead of total
revenue. They suggested that future research could explore risk
preferences. Despite these claims, none of the studies—Li and
Kuo [11], Li and Kuo [12], and Li et al. [13]—included terms
explicitly representing bidders’ risk preferences, nor did they
explore the effects of increasing risk-aversion or risk-loving be-
haviors. Therefore, a more comprehensive model is developed
here that accurately captures these preferences. The model in
this study introduces bidders whose risk preferences are mod-
eled using the CARA utility function.

Most traditional models of DDAs have assumed risk-neutral
bidders, focusing primarily on the effects of bid level granu-
larity, reserve prices, and bidder asymmetries on auction out-
comes. Seminal works by Li and Kuo [11–13] formulated
revenue-maximizing DDA frameworks under the assumption
of uniformly distributed, risk-neutral bidder valuations, find-
ing that expected revenue generally increases with the number
of bid levels and bidders. However, this risk-neutral assump-
tion does not capture the diversity of real-world bidding be-
havior, where participants often exhibit varying degrees of risk
aversion or risk-seeking tendencies. Early research that incor-
porated risk preferences into auction models—such as the use
of the CARA utility function—demonstrated that risk attitudes
can significantly alter equilibrium strategies and auction rev-
enues, yet these studies were largely limited to continuous auc-
tion formats or did not explicitly address DDAs. The CARA
utility function, defined as U(x) = 1−e−αx

α
, is widely used in

auction and economic theory to capture risk attitudes indepen-
dent of wealth, with positive α indicating risk aversion and
negative α indicating risk-seeking behavior. Despite its the-
oretical appeal, the implications of CARA-based risk prefer-
ences for DDA outcomes have remained underexplored. Re-
cent literature suggests that incorporating such preferences can
lead to substantial differences in predicted revenues and opti-
mal auction design, highlighting the necessity of moving be-
yond risk-neutral models to better reflect the complexities of
bidder behavior. By addressing this gap, the present study
extends the DDA literature through the explicit integration of
CARA-modeled risk preferences, offering a more realistic and
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Table 2: Auctioneer’s maximum expected revenue for risk-averse bidders (i.e. α ∈ {0.1, 0.2, . . . , 0.5}) for v = 1, and m ∈
{2, 3, . . . , 15}.

n R∗
m=2 R∗

m=3 R∗
m=4 R∗

m=5 R∗
m=6 R∗

m=7 R∗
m=8 R∗

m=9 R∗
m=10 R∗

m=11 R∗
m=12 R∗

m=13 R∗
m=14 R∗

m=15

2 0.3741 0.4755 0.5218 0.5482 0.5651 0.5770 0.5857 0.5923 0.5976 0.6019 0.6054 0.6084 0.6109 0.6131
5 0.5625 0.6677 0.7094 0.7313 0.7447 0.7537 0.7602 0.7651 0.7688 0.7719 0.7743 0.7764 0.7781 0.7796
10 0.6879 0.7777 0.8094 0.8250 0.8343 0.8404 0.8446 0.8478 0.8503 0.8522 0.8538 0.8551 0.8562 0.8571
15 0.7478 0.8249 0.8503 0.8625 0.8695 0.8741 0.8773 0.8797 0.8815 0.8829 0.8840 0.8850 0.8858 0.8864
20 0.7838 0.8515 0.8727 0.8827 0.8884 0.8921 0.8946 0.8965 0.8979 0.8991 0.9000 0.9007 0.9014 0.9016
25 0.8081 0.8686 0.8869 0.8954 0.9002 0.9033 0.9054 0.9070 0.9082 0.9091 0.9098 0.9105 0.9103 0.9100
30 0.8257 0.8806 0.8967 0.9041 0.9083 0.9109 0.9128 0.9141 0.9151 0.9159 0.9160 0.9160 0.9160 0.9159
40 0.8498 0.8963 0.9094 0.9153 0.9186 0.9207 0.9221 0.9231 0.9235 0.9237 0.9239 0.9233 0.9233 0.9232
60 0.8769 0.9131 0.9227 0.9269 0.9292 0.9307 0.9317 0.9317 0.9313 0.9311 0.9317 0.9316 0.9309 0.9309
80 0.8920 0.9219 0.9296 0.9329 0.9347 0.9358 0.9358 0.9358 0.9358 0.9355 0.9352 0.9351 0.9349 0.9349

100 0.9017 0.9274 0.9338 0.9365 0.9380 0.9380 0.9380 0.9380 0.9380 0.9380 0.9380 0.9380 0.9380 0.9380
(a) For α = 0.1

2 0.3741 0.4755 0.5218 0.5482 0.5651 0.5770 0.5857 0.5923 0.5976 0.6019 0.6054 0.6084 0.6109 0.6131
5 0.5625 0.6677 0.7094 0.7313 0.7447 0.7537 0.7602 0.7651 0.7688 0.7719 0.7743 0.7764 0.7781 0.7796
10 0.6879 0.7777 0.8094 0.8250 0.8343 0.8404 0.8446 0.8478 0.8503 0.8522 0.8538 0.8551 0.8562 0.8571
15 0.7478 0.8249 0.8503 0.8625 0.8695 0.8741 0.8773 0.8797 0.8815 0.8829 0.8840 0.8850 0.8858 0.8864
20 0.7838 0.8515 0.8727 0.8827 0.8884 0.8921 0.8946 0.8965 0.8979 0.8991 0.9000 0.9007 0.9014 0.9016
25 0.8081 0.8686 0.8869 0.8954 0.9002 0.9033 0.9054 0.9070 0.9082 0.9091 0.9098 0.9105 0.9103 0.9100
30 0.8257 0.8806 0.8967 0.9041 0.9083 0.9109 0.9128 0.9141 0.9151 0.9159 0.9160 0.9160 0.9160 0.9159
40 0.8498 0.8963 0.9094 0.9153 0.9186 0.9207 0.9221 0.9231 0.9235 0.9237 0.9239 0.9233 0.9233 0.9232
60 0.8769 0.9131 0.9227 0.9269 0.9292 0.9307 0.9317 0.9317 0.9313 0.9311 0.9317 0.9316 0.9309 0.9309
80 0.8920 0.9219 0.9296 0.9329 0.9347 0.9358 0.9358 0.9358 0.9358 0.9355 0.9352 0.9351 0.9349 0.9349

100 0.9017 0.9274 0.9338 0.9365 0.9380 0.9380 0.9380 0.9380 0.9380 0.9380 0.9380 0.9380 0.9380 0.9380
(b) For α = 0.2

2 0.3637 0.4609 0.5051 0.5301 0.5463 0.5575 0.5657 0.5720 0.5770 0.5811 0.5844 0.5872 0.5896 0.5916
5 0.5437 0.6434 0.6825 0.7031 0.7156 0.7241 0.7301 0.7346 0.7382 0.7410 0.7433 0.7452 0.7468 0.7482
10 0.6620 0.7463 0.7758 0.7903 0.7989 0.8045 0.8085 0.8114 0.8137 0.8155 0.8169 0.8181 0.8191 0.8200
15 0.7181 0.7901 0.8137 0.8249 0.8314 0.8356 0.8386 0.8407 0.8424 0.8437 0.8447 0.8456 0.8463 0.8470
20 0.7516 0.8147 0.8343 0.8435 0.8488 0.8521 0.8545 0.8562 0.8575 0.8585 0.8594 0.8600 0.8606 0.8611
25 0.7742 0.8304 0.8473 0.8551 0.8596 0.8624 0.8643 0.8657 0.8668 0.8677 0.8684 0.8689 0.8689 0.8689
30 0.7906 0.8415 0.8563 0.8631 0.8669 0.8693 0.8710 0.8722 0.8732 0.8739 0.8740 0.8740 0.8740 0.8739
40 0.8129 0.8559 0.8680 0.8734 0.8764 0.8782 0.8795 0.8805 0.8812 0.8812 0.8810 0.8808 0.8810 0.8806
60 0.8379 0.8712 0.8801 0.8839 0.8860 0.8874 0.8883 0.8883 0.8883 0.8880 0.8883 0.8878 0.8876 0.8876
80 0.8518 0.8793 0.8863 0.8893 0.8910 0.8920 0.8920 0.8920 0.8920 0.8920 0.8920 0.8916 0.8920 0.8912

100 0.8607 0.8843 0.8901 0.8926 0.8940 0.8940 0.8940 0.8940 0.8940 0.8940 0.8940 0.8940 0.8940 0.8940
(c) For α = 0.3

2 0.3444 0.4338 0.4740 0.4967 0.5112 0.5213 0.5287 0.5344 0.5388 0.5425 0.5454 0.5479 0.5501 0.5519
5 0.5088 0.5983 0.6330 0.6511 0.6621 0.6695 0.6747 0.6787 0.6818 0.6842 0.6862 0.6879 0.6893 0.6905
10 0.6143 0.6886 0.7142 0.7268 0.7341 0.7390 0.7423 0.7448 0.7468 0.7483 0.7495 0.7506 0.7514 0.7521
15 0.6635 0.7264 0.7466 0.7562 0.7618 0.7653 0.7678 0.7697 0.7711 0.7722 0.7730 0.7738 0.7744 0.7749
20 0.6927 0.7474 0.7641 0.7719 0.7764 0.7792 0.7812 0.7826 0.7837 0.7846 0.7853 0.7859 0.7864 0.7868
25 0.7122 0.7607 0.7751 0.7817 0.7854 0.7878 0.7894 0.7906 0.7915 0.7922 0.7928 0.7933 0.7933 0.7933
30 0.7263 0.7701 0.7827 0.7884 0.7916 0.7936 0.7950 0.7960 0.7968 0.7974 0.7978 0.7976 0.7976 0.7975
40 0.7454 0.7822 0.7924 0.7969 0.7994 0.8010 0.8021 0.8029 0.8035 0.8035 0.8032 0.8031 0.8034 0.8030
60 0.7666 0.7951 0.8025 0.8057 0.8075 0.8086 0.8093 0.8094 0.8093 0.8093 0.8093 0.8093 0.8093 0.8088
80 0.7784 0.8018 0.8077 0.8102 0.8116 0.8124 0.8124 0.8124 0.8124 0.8124 0.8122 0.8124 0.8124 0.8120

100 0.7860 0.8060 0.8108 0.8129 0.8140 0.8141 0.8141 0.8141 0.8141 0.8141 0.8141 0.8141 0.8141 0.8141
(d) For α = 0.4

2 0.3354 0.4212 0.4595 0.4811 0.4949 0.5045 0.5115 0.5169 0.5211 0.5246 0.5274 0.5298 0.5318 0.5335
5 0.4927 0.5775 0.6102 0.6271 0.6374 0.6443 0.6493 0.6529 0.6558 0.6581 0.6600 0.6615 0.6628 0.6639
10 0.5923 0.6621 0.6860 0.6976 0.7045 0.7089 0.7121 0.7144 0.7161 0.7176 0.7187 0.7196 0.7204 0.7211
15 0.6384 0.6972 0.7160 0.7248 0.7299 0.7332 0.7355 0.7372 0.7385 0.7395 0.7403 0.7410 0.7416 0.7420
20 0.6656 0.7166 0.7321 0.7393 0.7434 0.7460 0.7478 0.7491 0.7501 0.7509 0.7515 0.7521 0.7525 0.7529
25 0.6838 0.7289 0.7422 0.7482 0.7516 0.7538 0.7553 0.7564 0.7572 0.7579 0.7584 0.7588 0.7589 0.7589
30 0.6968 0.7375 0.7491 0.7543 0.7573 0.7591 0.7604 0.7613 0.7620 0.7626 0.7627 0.7631 0.7627 0.7627
40 0.7145 0.7486 0.7580 0.7621 0.7644 0.7659 0.7669 0.7676 0.7681 0.7682 0.7680 0.7681 0.7679 0.7677
60 0.7342 0.7604 0.7672 0.7701 0.7718 0.7728 0.7734 0.7735 0.7735 0.7735 0.7735 0.7735 0.7735 0.7731
80 0.7450 0.7666 0.7719 0.7742 0.7755 0.7762 0.7763 0.7763 0.7763 0.7763 0.7763 0.7763 0.7762 0.7762

100 0.7519 0.7704 0.7748 0.7767 0.7777 0.7778 0.7778 0.7780 0.7778 0.7778 0.7778 0.7778 0.7778 0.7777
(e) For α = 0.5

nuanced understanding of how risk attitudes shape auction out-
comes and providing new insights for auction design and rev-
enue optimization.

While our model focuses on maximizing revenue by opti-
mizing bid levels based on risk preferences, it also inherently
considers the risk of overpayment. Risk-averse bidders, for in-

stance, may wait for lower prices, reducing the likelihood of
overpayment. Conversely, risk-loving bidders may bid earlier at
higher prices, potentially leading to overpayment. Our frame-
work allows auctioneers to balance these risks by adjusting bid
levels according to the prevailing risk attitudes among bidders,
thereby mitigating the risk of overpayment while maximizing
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Table 3: Auctioneer’s maximum expected revenue for risk-loving bidders (i.e. α ∈ {−0.1, −0.2, . . . , −0.5}) for v = 1, and
m ∈ {2, 3, . . . , 15}.

n R∗
m=2 R∗

m=3 R∗
m=4 R∗

m=5 R∗
m=6 R∗

m=7 R∗
m=8 R∗

m=9 R∗
m=10 R∗

m=11 R∗
m=12 R∗

m=13 R∗
m=14 R∗

m=15

2 0.3963 0.5068 0.5579 0.5871 0.6059 0.6191 0.6288 0.6362 0.6421 0.6469 0.6509 0.6542 0.6570 0.6595
5 0.6032 0.7206 0.7677 0.7926 0.8079 0.8183 0.8257 0.8313 0.8356 0.8391 0.8420 0.8444 0.8464 0.8481

10 0.7442 0.8463 0.8827 0.9009 0.9117 0.9188 0.9238 0.9275 0.9304 0.9326 0.9345 0.9360 0.9373 0.9384
15 0.8126 0.9011 0.9306 0.9449 0.9532 0.9585 0.9623 0.9651 0.9672 0.9689 0.9703 0.9714 0.9724 0.9732
20 0.8541 0.9322 0.9571 0.9688 0.9756 0.9799 0.9830 0.9852 0.9869 0.9882 0.9893 0.9902 0.9910 0.9912
25 0.8822 0.9524 0.9739 0.9839 0.9896 0.9933 0.9958 0.9977 0.9991 1.0002 1.0011 1.0014 1.0019 1.0012
30 0.9028 0.9665 0.9856 0.9944 0.9993 1.0025 1.0046 1.0062 1.0075 1.0084 1.0085 1.0085 1.0084 1.0084
40 0.9309 0.9852 1.0008 1.0078 1.0117 1.0142 1.0159 1.0172 1.0175 1.0174 1.0173 1.0172 1.0172 1.0172
60 0.9627 1.0052 1.0167 1.0217 1.0245 1.0263 1.0275 1.0270 1.0270 1.0268 1.0275 1.0265 1.0265 1.0264
80 0.9806 1.0158 1.0250 1.0289 1.0311 1.0325 1.0325 1.0325 1.0325 1.0319 1.0315 1.0317 1.0314 1.0313
100 0.9921 1.0224 1.0301 1.0333 1.0352 1.0351 1.0352 1.0351 1.0352 1.0352 1.0351 1.0352 1.0351 1.0351

(a) For α = −0.1
2 0.4082 0.5237 0.5773 0.6080 0.6279 0.6418 0.6521 0.6600 0.6662 0.6713 0.6755 0.6790 0.6820 0.6846
5 0.6253 0.7493 0.7994 0.8260 0.8424 0.8534 0.8614 0.8674 0.8720 0.8758 0.8788 0.8814 0.8836 0.8854

10 0.7748 0.8836 0.9227 0.9423 0.9540 0.9617 0.9671 0.9711 0.9742 0.9767 0.9787 0.9804 0.9818 0.9829
15 0.8480 0.9427 0.9746 0.9900 0.9990 1.0049 1.0090 1.0120 1.0143 1.0162 1.0176 1.0189 1.0199 1.0208
20 0.8925 0.9764 1.0033 1.0161 1.0235 1.0282 1.0315 1.0339 1.0358 1.0372 1.0384 1.0394 1.0402 1.0404
25 0.9228 0.9983 1.0217 1.0326 1.0388 1.0428 1.0456 1.0476 1.0492 1.0504 1.0514 1.0516 1.0516 1.0515
30 0.9450 1.0137 1.0344 1.0440 1.0494 1.0528 1.0552 1.0570 1.0583 1.0593 1.0594 1.0594 1.0594 1.0594
40 0.9754 1.0341 1.0510 1.0587 1.0630 1.0657 1.0676 1.0689 1.0692 1.0691 1.0691 1.0690 1.0691 1.0690
60 1.0099 1.0560 1.0685 1.0740 1.0771 1.0790 1.0799 1.0801 1.0802 1.0794 1.0796 1.0792 1.0793 1.0792
80 1.0293 1.0676 1.0776 1.0819 1.0843 1.0858 1.0858 1.0858 1.0852 1.0858 1.0849 1.0848 1.0847 1.0847
100 1.0418 1.0748 1.0832 1.0868 1.0888 1.0887 1.0887 1.0888 1.0887 1.0887 1.0888 1.0887 1.0888 1.0888

(b) For α = −0.2
2 0.4208 0.5415 0.5978 0.6302 0.6511 0.6658 0.6767 0.6850 0.6916 0.6970 0.7014 0.7051 0.7083 0.7110
5 0.6485 0.7796 0.8329 0.8613 0.8788 0.8907 0.8992 0.9056 0.9106 0.9146 0.9179 0.9207 0.9230 0.9250

10 0.8073 0.9233 0.9653 0.9864 0.9990 1.0073 1.0131 1.0175 1.0209 1.0236 1.0257 1.0275 1.0290 1.0303
15 0.8855 0.9870 1.0214 1.0381 1.0478 1.0542 1.0587 1.0620 1.0645 1.0665 1.0681 1.0694 1.0706 1.0715
20 0.9333 1.0235 1.0526 1.0665 1.0745 1.0796 1.0832 1.0859 1.0879 1.0895 1.0908 1.0919 1.0928 1.0928
25 0.9660 1.0473 1.0726 1.0845 1.0913 1.0956 1.0987 1.1009 1.1026 1.1039 1.1050 1.1052 1.1052 1.1051
30 0.9899 1.0640 1.0865 1.0969 1.1028 1.1066 1.1092 1.1111 1.1126 1.1137 1.1137 1.1138 1.1138 1.1137
40 1.0228 1.0863 1.1047 1.1130 1.1177 1.1207 1.1228 1.1243 1.1245 1.1245 1.1244 1.1244 1.1243 1.1244
60 1.0602 1.1101 1.1238 1.1298 1.1332 1.1353 1.1356 1.1364 1.1361 1.1362 1.1357 1.1356 1.1356 1.1355
80 1.0812 1.1228 1.1338 1.1385 1.1412 1.1428 1.1428 1.1428 1.1423 1.1428 1.1418 1.1416 1.1415 1.1417
100 1.0949 1.1308 1.1399 1.1439 1.1460 1.1461 1.1460 1.1461 1.1461 1.1461 1.1460 1.1460 1.1461 1.1460

(c) For α = −0.3
2 0.4340 0.5602 0.6193 0.6535 0.6756 0.6911 0.7026 0.7114 0.7184 0.7241 0.7288 0.7327 0.7361 0.7390
5 0.6731 0.8117 0.8684 0.8987 0.9174 0.9301 0.9393 0.9462 0.9515 0.9558 0.9594 0.9623 0.9648 0.9669

10 0.8416 0.9654 1.0105 1.0332 1.0468 1.0558 1.0621 1.0669 1.0705 1.0734 1.0758 1.0777 1.0794 1.0808
15 0.9253 1.0341 1.0712 1.0893 1.0999 1.1068 1.1116 1.1152 1.1180 1.1201 1.1219 1.1234 1.1246 1.1256
20 0.9767 1.0736 1.1051 1.1202 1.1289 1.1345 1.1384 1.1413 1.1435 1.1453 1.1467 1.1479 1.1488 1.1489
25 1.0118 1.0994 1.1269 1.1398 1.1472 1.1520 1.1553 1.1577 1.1596 1.1610 1.1622 1.1625 1.1623 1.1622
30 1.0376 1.1177 1.1421 1.1534 1.1599 1.1640 1.1669 1.1689 1.1705 1.1718 1.1718 1.1718 1.1713 1.1716
40 1.0733 1.1419 1.1620 1.1711 1.1762 1.1795 1.1817 1.1834 1.1836 1.1836 1.1836 1.1835 1.1834 1.1834
60 1.1138 1.1680 1.1829 1.1895 1.1932 1.1955 1.1971 1.1971 1.1967 1.1971 1.1963 1.1960 1.1957 1.1956
80 1.1367 1.1819 1.1939 1.1991 1.2020 1.2038 1.2038 1.2038 1.2038 1.2030 1.2028 1.2026 1.2022 1.2021
100 1.1516 1.1906 1.2006 1.2049 1.2073 1.2073 1.2074 1.2074 1.2074 1.2074 1.2073 1.2074 1.2073 1.2073

(d) For α = −0.4
2 0.4479 0.5799 0.6420 0.6780 0.7014 0.7178 0.7299 0.7393 0.7467 0.7527 0.7576 0.7618 0.7654 0.7685
5 0.6990 0.8456 0.9059 0.9383 0.9583 0.9719 0.9818 0.9892 0.9949 0.9996 1.0034 1.0065 1.0092 1.0115

10 0.8780 1.0101 1.0585 1.0831 1.0977 1.1074 1.1143 1.1194 1.1234 1.1265 1.1291 1.1312 1.1330 1.1345
15 0.9676 1.0842 1.1242 1.1438 1.1553 1.1628 1.1681 1.1720 1.1750 1.1773 1.1793 1.1809 1.1822 1.1833
20 1.0228 1.1270 1.1611 1.1775 1.1869 1.1931 1.1973 1.2005 1.2029 1.2048 1.2064 1.2076 1.2087 1.2088
25 1.0607 1.1550 1.1848 1.1989 1.2070 1.2122 1.2158 1.2184 1.2204 1.2220 1.2233 1.2234 1.2234 1.2234
30 1.0885 1.1749 1.2014 1.2138 1.2208 1.2253 1.2284 1.2307 1.2325 1.2338 1.2339 1.2339 1.2335 1.2339
40 1.1271 1.2013 1.2231 1.2331 1.2387 1.2423 1.2448 1.2466 1.2467 1.2466 1.2467 1.2466 1.2466 1.2466
60 1.1711 1.2298 1.2461 1.2533 1.2574 1.2599 1.2609 1.2617 1.2617 1.2603 1.2602 1.2601 1.2600 1.2600
80 1.1960 1.2451 1.2581 1.2639 1.2670 1.2673 1.2673 1.2690 1.2690 1.2679 1.2675 1.2674 1.2674 1.2671
100 1.2122 1.2546 1.2655 1.2703 1.2729 1.2729 1.2729 1.2730 1.2730 1.2729 1.2729 1.2729 1.2729 1.2729

(e) For α = −0.5

revenue.
This research addresses the gap in the literature by incorpo-

rating CARA risk preferences into a DDA model. By extending
the nonlinear programming approach of Li and Kuo [11] and Li
et al. [13] to account for heterogeneous bidder risk attitudes,
the study analyzes how different distributions of risk prefer-
ences impact the optimal auction design and expected revenues.
It provides a more realistic representation of DAs and yields
insights into revenue maximization strategies when faced with
risk-averse or risk-seeking bidders.

In summary, this paper contributes to both auction theory
and computational mathematics by:

1. Extending the DDA model through the integration of di-
verse bidder risk preferences, utilizing the CARA utility
function.

2. Applying nonlinear programming techniques to analyze
the impact of these risk preferences on optimal bid levels
and expected revenues, demonstrating the role of mathe-
matical optimization in understanding auction dynamics.

3. Offering a computational framework that provides theo-
5
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Table 4: Risk-neutral (i.e. α→ 0) optimal bid levels for m = 15 and v = 1.

n b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

2 0 0.1351 0.2341 0.318 0.393 0.462 0.5265 0.5874 0.6455 0.7012 0.7548 0.8067 0.857 0.9059 0.9535
5 0 0.3108 0.4448 0.5345 0.6037 0.6611 0.7104 0.7541 0.7934 0.8293 0.8625 0.8934 0.9223 0.9496 0.9754

10 0 0.4884 0.6208 0.6959 0.7487 0.7898 0.8235 0.8523 0.8775 0.8999 0.9201 0.9386 0.9556 0.9714 0.9862
15 0 0.5911 0.7111 0.7735 0.8155 0.8472 0.8728 0.8942 0.9127 0.929 0.9436 0.9568 0.9689 0.98 0.9903
20 0 0.5853 0.7394 0.8044 0.8443 0.8729 0.8953 0.9136 0.9292 0.9427 0.9547 0.9654 0.9752 0.9841 0.9923
25 0 0.0008 0.043 0.7163 0.8141 0.8606 0.8905 0.9125 0.9298 0.9442 0.9564 0.9671 0.9766 0.9851 0.9929
30 0 0.0013 0.0015 0.0017 0.128 0.7638 0.8514 0.8923 0.9185 0.9375 0.9525 0.9649 0.9754 0.9846 0.9927
40 0 0.0044 0.0048 0.0054 0.0086 0.0168 0.2649 0.8235 0.8951 0.9279 0.9485 0.9635 0.9752 0.9848 0.9929
60 0 0.0008 0.0013 0.0019 0.0041 0.007 0.0074 0.0093 0.2946 0.8795 0.9356 0.9597 0.9745 0.9851 0.9933
80 0 0.0015 0.008 0.0102 0.0113 0.0116 0.0139 0.0177 0.0193 0.4267 0.9113 0.9556 0.9743 0.9856 0.9937

100 0 0.0015 0.0019 0.0024 0.0028 0.0053 0.0086 0.0087 0.0106 0.0582 0.9191 0.9619 0.9783 0.988 0.9948

retical guidance for auctioneers in setting bid levels to
maximize revenue under various bidder risk profiles.

By addressing these aspects, this research enhances the ap-
plication of mathematical computing to auction design and op-
timization, offering valuable insights into designing more ef-
ficient auction mechanisms. This contribution employs non-
linear programming and discrete optimization to solve a real-
world auction problem, thereby advancing both auction theory
and computational optimization.

Further, the paper is structured as follows. Section 3 covers
the development of the DDA model, considering bidders with
CARA risk preferences. Section 4 presents the results and dis-
cussion, where the non-linear programming model from Sec-
tion 3 is optimized using R software. Finally, Section 5 pro-
vides the conclusion.

3. Model development

This study examines the effects of the bidders’ risk prefer-
ences on the revenue of a DA characterized by discrete bidding
increments within an independent private value (IPV) frame-
work with symmetric information. In this context, each partic-
ipant is aware of their own valuation of the item up for auction
which is taken from the uniform distribution, and this valua-
tion is not influenced by or known to other bidders [13, 28, 29].
This study examines scenarios where bidders demonstrate risk-
averse, risk-neutral, or risk-loving behavior. In each case, a bid-
der is expected to place a bid when the asking price first drops
to or below their valuation.

The discrete bid levels taken in this setting are b1 < b2 <
· · · < bm, where m ≥ 1. Initially, the auctioneer opens the bid-
ding process at a very high bid level bm+1 where nobody is will-
ing to bid, and then the price decreases to bm, bm−1, · · · , b2, b1
after each preset interval of time until a bidder bids to buy the
item at bid level bk for any k ∈ {1, 2, · · · ,m}. In the DA setting,
the item is sold at a price bi if and only if there exist q number of
bidders having their valuations in the interval [bi, bi+1) and no-
body is willing to buy it for the price higher than bi+1. Also, the
remaining n−q bidders’ valuations lie below bi, i = 1, 2, · · · ,m.
If only one bidder has the valuation in the interval [bi, bi+1), then
the object is sold to him/her and if there are two or more such

bidders, the one who stops the clock first or calls out ‘mine’
first will get the item.

If n ≥ 2 participants are participating in the auction then
the probability of the item to be sold at the price level bi, i =
1, 2, · · · ,m is P(bi) and is given by Li et al. [11, 13];

P(bi) =
n∑

q=1

(
n
q

)
F(bi)n−q [F(bi+1) − F(bi)]q

= F(bi+1)n − F(bi)n,

(1)

where the valuations of bidders are drawn from a distribution
whose cumulative distribution function (c.d.f.) is F(.) and prob-
ability distribution function (p.d.f.) is f (.).

To account for the risk preferences of the bidders, whether
they are risk-loving, risk-neutral, or risk-averse, their utility of
accepting a bid at the price level bi is represented using the
CARA utility function U (bi) = 1−e−αbi

α
, where α is the constant

of absolute risk aversion [19, 24, 29–31]. Therefore, the rev-
enue expected by the auctioneer in a DDA considering the risk
preferences is given by;

R =
m∑

i=1

U (bi) P (bi) . (2)

In light of equation (1), the equation (2) becomes:

R =
m∑

i=1

1 − e−αbi

α

(
F(bi+1)n − F(bi)n), (3)

where α is the coefficient of constant absolute risk aversion
which determines the level of risk and v is the bidder’s valu-
ation.

Here, it is assumed that the valuation of each bidder j is
v j, j = 1, 2, · · · , n, which is drawn from a uniform distribution
defined on [0, v] with c.d.f. F(.) and p.d.f f (.). Also, the study
defines b1 = 0, bm+1 = v, F(b1) = 0 and F(bm+1) = v
without any loss of generality [12, 32, 33]. It means that the
highest asking price is v and the least asking price is 0 indicating
that the item is ultimately given away for free and F(bi) = bi

v ,
i = 1, 2, · · · ,m. Hence, the seller’s expected revenue R can be
expressed as follows;

R =
m∑

i=1

1 − e−αbi

α

[(bi+1

v
)n
−

(bi

v
)n
]
. (4)

6
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(a) For n = 5. (b) For n = 20.

(c) For n = 40. (d) For n = 80.

Figure 3: Constant of absolute risk aversion (α) vs. Optimal bid levels (b∗i ) when m = 15.

Therefore, the formulated model as an NLP in decision vari-
ables b1, b2, · · · , bm and the parameters α, m and n is given as;

Maximize

R =
m∑

i=1

1 − e−αbi

α

[(bi+1

v
)n
−

(bi

v
)n
]
. (5)

subject to:

bi+1 ≥ bi, i = 1, 2, · · · ,m,
b1 ≥ 0,
bm+1 = v.

(6)

In the problem (equation (5)), it is crucial to recognize that
as α approaches 0, it signifies the risk-neutral case. This is due
to the fact that limα→0

1−e−αbi

α
= bi, which leads to the reduction

of the NLP (equation (6)) to the model described by Li and
Kuo [11], which does not account for the risk preferences of
the bidders, as that model lacks any parameters to define risk
behaviors. Moreover, positive α indicates risk-averse bidders,
and negative α indicates risk-seeking behavior of the bidders
[24, 29, 30].

This paper focuses on maximizing the NLP (equation (5))
while adhering to the specified constraints, and R software is
utilized to accomplish this.

4. Results and discussion

In this section, a set of problem instances is addressed
to explore the behavior of the developed model as a func-
tion of certain parameters. The number of bid levels is de-
noted as m ∈ {2, 3, . . . , 15}, the number of bidders as n ∈
{2, 5, 10, 15, 20, 25, 30, 40, 60, 80, 100}, v = 1 (as in Ref. [13])
and the risk parameter as α ∈ {−0.5,−0.4, . . . , 0.5}. According
to equation (5), the NLPs are set up and solved for the various
combinations of m, n, and α by running a program on the R
software. In the subsequent discussion, R∗m=γ denotes the auc-
tioneer’s maximum expected revenue with γ bid levels.

To initiate further discussions, Table 1 summarizes the auc-
tioneer’s expected revenues for all values of m mentioned, un-
der the assumption of risk-neutral bidders. When the bidders
are risk-neutral (α → 0), the model (equation (6)) simplifies to
the revenue model described in the studies of Li and Kuo [11],
and the results presented in Table 1 align with those reported
by Li and Kuo [11]. However, it is important to highlight that
their analysis was conducted with v = 10 and limited to n = 20,
whereas this study adopts v = 1 and explores a wider range of
n values, extending up to 100. By setting v = 10, all the results
of Li and Kuo [11] can be verified.

It can be seen in Table 1 that with the increase in the num-
7
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Table 5: Risk-averse (i.e. α ∈ {0.1, 0.2, . . . , 0.5}) optimal bid levels for m = 15 and v = 1.

n b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

2 0 0.1327 0.2304 0.3135 0.3881 0.4569 0.5213 0.5824 0.6408 0.6969 0.751 0.8035 0.8544 0.9041 0.9526
5 0 0.3075 0.4411 0.5309 0.6003 0.6579 0.7075 0.7515 0.7911 0.8274 0.8609 0.8921 0.9213 0.949 0.9751

10 0 0.4854 0.6182 0.6937 0.7469 0.7882 0.8222 0.8512 0.8765 0.8991 0.9195 0.9381 0.9553 0.9712 0.986
15 0 0.5885 0.7093 0.7721 0.8143 0.8462 0.872 0.8935 0.9121 0.9285 0.9432 0.9565 0.9687 0.9799 0.9903
20 0 0.4831 0.7156 0.7929 0.8372 0.8681 0.8917 0.911 0.9272 0.9412 0.9535 0.9646 0.9746 0.9838 0.9922
25 0 0.007 0.0071 0.4533 0.7556 0.8325 0.8735 0.9011 0.9218 0.9384 0.9523 0.9642 0.9747 0.984 0.9924
30 0 0.0008 0.0009 0.0062 0.184 0.7656 0.8518 0.8924 0.9184 0.9375 0.9525 0.9649 0.9754 0.9846 0.9927
40 0 0.0017 0.0017 0.0018 0.0024 0.0035 0.2222 0.8204 0.894 0.9272 0.9481 0.9632 0.975 0.9847 0.9929
60 0 0.0021 0.0028 0.0046 0.0047 0.0048 0.0054 0.007 0.4422 0.8847 0.937 0.9603 0.9749 0.9852 0.9934
80 0 0.0017 0.0021 0.004 0.0041 0.0062 0.0075 0.0085 0.0136 0.4979 0.9136 0.9562 0.9745 0.9858 0.9938

100 0 0.0001 0.0003 0.0004 0.001 0.0019 0.0058 0.0069 0.0076 0.0556 0.9185 0.9617 0.9783 0.988 0.9948
(a) For α = 0.1

2 0 0.1303 0.2267 0.3091 0.3832 0.4518 0.5162 0.5774 0.6361 0.6925 0.7472 0.8002 0.8519 0.9023 0.9516
5 0 0.3042 0.4375 0.5273 0.5969 0.6547 0.7047 0.7489 0.7889 0.8254 0.8592 0.8908 0.9204 0.9483 0.9748

10 0 0.4823 0.6157 0.6916 0.745 0.7866 0.8208 0.85 0.8755 0.8983 0.9188 0.9376 0.9549 0.9709 0.9859
15 0 0.5859 0.7075 0.7707 0.8132 0.8453 0.8711 0.8928 0.9116 0.9281 0.9429 0.9562 0.9685 0.9797 0.9902
20 0 0.6535 0.7633 0.8172 0.8524 0.8785 0.8993 0.9166 0.9314 0.9443 0.9559 0.9663 0.9757 0.9844 0.9925
25 0 0.0024 0.0028 0.6747 0.7974 0.851 0.8841 0.9079 0.9265 0.9417 0.9546 0.9658 0.9757 0.9846 0.9926
30 0 0.0001 0.0012 0.0044 0.199 0.7652 0.8513 0.8921 0.9182 0.9373 0.9523 0.9648 0.9753 0.9845 0.9927
40 0 0.0011 0.0065 0.007 0.0073 0.0108 0.3202 0.8245 0.8952 0.9278 0.9484 0.9634 0.9751 0.9847 0.9929
60 0 0 0.0054 0.0062 0.0083 0.0134 0.0173 0.0184 0.5638 0.8905 0.9388 0.9611 0.9752 0.9855 0.9935
80 0 0.0005 0.0046 0.0046 0.0051 0.0071 0.0146 0.0153 0.0154 0.5498 0.9153 0.9566 0.9747 0.9858 0.9938

100 0 0.0029 0.0093 0.0144 0.027 0.0274 0.0277 0.0292 0.0305 0.1508 0.9194 0.9619 0.9783 0.988 0.9948
(b) For α = 0.2

2 0 0.128 0.2231 0.3047 0.3784 0.4467 0.5111 0.5724 0.6313 0.6881 0.7432 0.7969 0.8492 0.9005 0.9507
5 0 0.3009 0.4338 0.5237 0.5935 0.6515 0.7017 0.7463 0.7866 0.8234 0.8576 0.8894 0.9193 0.9476 0.9744

10 0 0.4792 0.6131 0.6894 0.7431 0.785 0.8194 0.8488 0.8745 0.8974 0.9181 0.9371 0.9545 0.9707 0.9858
15 0 0.5833 0.7056 0.7692 0.812 0.8443 0.8703 0.8922 0.911 0.9276 0.9425 0.9559 0.9683 0.9796 0.9902
20 0 0.6512 0.7619 0.8161 0.8516 0.8778 0.8987 0.9161 0.931 0.944 0.9556 0.9661 0.9756 0.9844 0.9925
25 0 0.0007 0.1156 0.7156 0.8127 0.8593 0.8894 0.9116 0.9291 0.9436 0.956 0.9668 0.9764 0.985 0.9928
30 0 0.0003 0.0006 0.0006 0.1746 0.7622 0.85 0.8913 0.9176 0.9369 0.9521 0.9646 0.9752 0.9844 0.9926
40 0 0.0015 0.0017 0.0018 0.0042 0.0043 0.2747 0.821 0.8939 0.9271 0.9479 0.9631 0.9749 0.9846 0.9929
60 0 0.0014 0.007 0.0081 0.021 0.0284 0.0284 0.0307 0.7932 0.912 0.9466 0.9648 0.9773 0.9864 0.9938
80 0 0 0.0001 0.0006 0.004 0.008 0.0082 0.01 0.01 0.5486 0.9149 0.9565 0.9746 0.9858 0.9938

100 0 0.0001 0.0034 0.0036 0.0036 0.0046 0.0053 0.0088 0.0202 0.1532 0.919 0.9618 0.9783 0.988 0.9948
(c) For α = 0.3

2 0 0.1257 0.2196 0.3004 0.3735 0.4416 0.5059 0.5674 0.6265 0.6837 0.7393 0.7935 0.8466 0.8986 0.9497
5 0 0.2976 0.4302 0.5201 0.5901 0.6483 0.6988 0.7436 0.7842 0.8214 0.8559 0.8881 0.9183 0.9469 0.9741

10 0 0.4762 0.6106 0.6872 0.7413 0.7833 0.818 0.8476 0.8735 0.8966 0.9175 0.9365 0.9541 0.9704 0.9857
15 0 0.5807 0.7038 0.7678 0.8108 0.8433 0.8695 0.8915 0.9104 0.9272 0.9421 0.9557 0.968 0.9795 0.9901
20 0 0.649 0.7605 0.8151 0.8507 0.8772 0.8982 0.9157 0.9306 0.9437 0.9554 0.9659 0.9755 0.9843 0.9924
25 0 0.0105 0.1086 0.7134 0.8115 0.8585 0.8888 0.9111 0.9287 0.9433 0.9558 0.9666 0.9762 0.9849 0.9928
30 0 0.0006 0.0022 0.0036 0.2471 0.7658 0.851 0.8917 0.9178 0.937 0.9521 0.9646 0.9752 0.9844 0.9926
40 0 0.0009 0.003 0.0034 0.004 0.0156 0.4648 0.8327 0.8976 0.9289 0.949 0.9637 0.9753 0.9848 0.993
60 0 0.0019 0.0098 0.0109 0.0112 0.0121 0.0122 0.0123 0.6338 0.8946 0.9399 0.9616 0.9755 0.9856 0.9935
80 0 0.0001 0.0015 0.0018 0.0051 0.0054 0.0085 0.0118 0.023 0.7758 0.9286 0.9608 0.9765 0.9866 0.9941

100 0 0.0015 0.0047 0.0053 0.0059 0.0062 0.0208 0.0227 0.0293 0.1855 0.9191 0.9618 0.9782 0.988 0.9948
(d) For α = 0.4

2 0 0.1235 0.2161 0.2961 0.3688 0.4366 0.5008 0.5623 0.6216 0.6792 0.7353 0.7901 0.8438 0.8967 0.9487
5 0 0.2944 0.4266 0.5165 0.5866 0.6451 0.6958 0.741 0.7819 0.8194 0.8542 0.8867 0.9173 0.9462 0.9737

10 0 0.4731 0.608 0.685 0.7394 0.7817 0.8166 0.8464 0.8725 0.8957 0.9168 0.936 0.9537 0.9702 0.9855
15 0 0.5781 0.7019 0.7663 0.8096 0.8423 0.8687 0.8908 0.9099 0.9267 0.9417 0.9554 0.9678 0.9793 0.99
20 0 0.6468 0.7591 0.8141 0.8499 0.8765 0.8976 0.9152 0.9303 0.9434 0.9552 0.9657 0.9753 0.9842 0.9924
25 0 0.002 0.0814 0.7096 0.8098 0.8574 0.888 0.9105 0.9283 0.943 0.9555 0.9664 0.9761 0.9848 0.9927
30 0 0.0065 0.0095 0.0113 0.3012 0.7688 0.8518 0.892 0.918 0.937 0.9521 0.9646 0.9752 0.9844 0.9926
40 0 0.0037 0.0037 0.0085 0.0101 0.026 0.4752 0.8329 0.8976 0.9288 0.9489 0.9636 0.9752 0.9848 0.9929
60 0 0.0003 0.0057 0.0097 0.0114 0.0114 0.0156 0.0225 0.68 0.8982 0.9411 0.9622 0.9758 0.9857 0.9936
80 0 0.01 0.0127 0.0142 0.0143 0.0222 0.0298 0.0298 0.0403 0.8948 0.9474 0.9678 0.9798 0.9883 0.9948

100 0 0.0025 0.0056 0.0064 0.0114 0.0122 0.0122 0.0147 0.0153 0.1442 0.9178 0.9614 0.9781 0.9879 0.9948
(e) For α = 0.5

ber of bidders n, the expected revenue consistently increases for
each value of the number of bid levels m from 2 to 15. Also,

the expected revenue increases with the increase in the value of
m corresponding to each value of n. This observation is con-
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Table 6: Risk-loving (i.e. α ∈ {−0.1, −0.2, . . . ,−0.5}) optimal bid levels for m = 15 and v = 1.

n b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

2 0 0.1376 0.2379 0.3225 0.398 0.4671 0.5316 0.5924 0.6502 0.7055 0.7586 0.8099 0.8595 0.9076 0.9544
5 0 0.3142 0.4484 0.5381 0.6071 0.6642 0.7133 0.7566 0.7956 0.8313 0.8641 0.8947 0.9233 0.9502 0.9758

10 0 0.4915 0.6233 0.698 0.7505 0.7913 0.8249 0.8535 0.8785 0.9007 0.9208 0.9391 0.956 0.9717 0.9863
15 0 0.5937 0.7129 0.7749 0.8166 0.8482 0.8736 0.8949 0.9133 0.9295 0.9439 0.9571 0.9691 0.9801 0.9904
20 0 0.3895 0.7026 0.7881 0.8348 0.8667 0.8909 0.9104 0.9268 0.941 0.9534 0.9645 0.9746 0.9837 0.9922
25 0 0.0035 0.0101 0.2978 0.7411 0.8275 0.871 0.8996 0.9209 0.9379 0.9519 0.964 0.9745 0.9839 0.9923
30 0 0.0045 0.0049 0.0071 0.1264 0.7651 0.8521 0.8928 0.9188 0.9378 0.9528 0.9651 0.9755 0.9847 0.9928
40 0 0.0026 0.0033 0.0123 0.0129 0.0164 0.2282 0.8227 0.8951 0.9279 0.9485 0.9635 0.9752 0.9848 0.9929
60 0 0.0047 0.0056 0.0092 0.0096 0.0107 0.0145 0.0191 0.3813 0.8832 0.9367 0.9603 0.9748 0.9853 0.9934
80 0 0.0004 0.006 0.0062 0.0088 0.01 0.0152 0.0214 0.0269 0.4794 0.9137 0.9563 0.9746 0.9858 0.9938

100 0 0.0041 0.0067 0.009 0.0094 0.0113 0.0114 0.0131 0.0132 0.0629 0.9197 0.9621 0.9784 0.9881 0.9948
(a) For α = −0.1

2 0 0.1402 0.2417 0.3271 0.403 0.4723 0.5367 0.5974 0.6548 0.7097 0.7623 0.813 0.8619 0.9093 0.9553
5 0 0.3176 0.4521 0.5417 0.6105 0.6673 0.7161 0.7591 0.7978 0.8331 0.8657 0.8959 0.9242 0.9509 0.9761

10 0 0.4946 0.6259 0.7001 0.7524 0.7929 0.8262 0.8546 0.8794 0.9015 0.9215 0.9396 0.9564 0.9719 0.9864
15 0 0.5963 0.7147 0.7763 0.8178 0.8491 0.8744 0.8955 0.9138 0.9299 0.9443 0.9573 0.9693 0.9803 0.9905
20 0 0.3123 0.6941 0.7849 0.8332 0.8657 0.8903 0.9101 0.9266 0.9408 0.9533 0.9645 0.9745 0.9837 0.9922
25 0 0.0168 0.0169 0.3169 0.7441 0.8289 0.8719 0.9003 0.9214 0.9382 0.9522 0.9642 0.9747 0.984 0.9924
30 0 0.0021 0.0022 0.004 0.0815 0.7644 0.8522 0.893 0.919 0.9379 0.9529 0.9651 0.9756 0.9847 0.9928
40 0 0.0033 0.0047 0.0049 0.0236 0.0275 0.2689 0.8256 0.8962 0.9285 0.9489 0.9637 0.9754 0.9849 0.993
60 0 0.0023 0.0083 0.0096 0.0117 0.0239 0.0243 0.0461 0.4688 0.8873 0.938 0.9609 0.9751 0.9854 0.9934
80 0 0.0189 0.0228 0.0245 0.025 0.0258 0.0283 0.0392 0.0424 0.6144 0.9193 0.9579 0.9753 0.9861 0.9939

100 0 0.0058 0.0065 0.0132 0.0266 0.0282 0.0475 0.0493 0.0561 0.1643 0.9216 0.9626 0.9786 0.9882 0.9949
(b) For α = −0.2

2 0 0.1428 0.2456 0.3317 0.408 0.4775 0.5419 0.6023 0.6595 0.7139 0.766 0.816 0.8643 0.9109 0.9561
5 0 0.3211 0.4558 0.5452 0.6139 0.6704 0.7189 0.7616 0.8 0.835 0.8672 0.8972 0.9252 0.9515 0.9764

10 0 0.4977 0.6284 0.7022 0.7542 0.7945 0.8276 0.8558 0.8804 0.9023 0.9221 0.9401 0.9567 0.9721 0.9865
15 0 0.5989 0.7165 0.7777 0.8189 0.8501 0.8751 0.8962 0.9144 0.9304 0.9447 0.9576 0.9695 0.9804 0.9905
20 0 0.1892 0.6833 0.7811 0.8312 0.8646 0.8896 0.9096 0.9263 0.9406 0.9531 0.9643 0.9745 0.9837 0.9922
25 0 0.0005 0.0088 0.228 0.7383 0.8271 0.871 0.8998 0.9211 0.9381 0.9521 0.9641 0.9746 0.984 0.9924
30 0 0.0015 0.0084 0.0085 0.0292 0.7636 0.8522 0.8931 0.9191 0.938 0.9529 0.9652 0.9757 0.9847 0.9928
40 0 0.0127 0.0145 0.049 0.0554 0.0554 0.316 0.8289 0.8974 0.9291 0.9493 0.964 0.9755 0.985 0.993
60 0 0.0019 0.0077 0.008 0.0158 0.0159 0.0189 0.0418 0.4108 0.8854 0.9375 0.9607 0.975 0.9854 0.9934
80 0 0.0178 0.0186 0.0186 0.0219 0.032 0.0427 0.0461 0.0496 0.6991 0.9243 0.9597 0.9762 0.9865 0.9941

100 0 0.0096 0.01 0.0271 0.0272 0.0363 0.0386 0.0386 0.0446 0.0752 0.9209 0.9624 0.9786 0.9882 0.9949
(c) For α = −0.3

2 0 0.1455 0.2496 0.3364 0.413 0.4826 0.547 0.6072 0.664 0.718 0.7696 0.819 0.8666 0.9125 0.9569
5 0 0.3246 0.4595 0.5488 0.6172 0.6734 0.7216 0.7641 0.8022 0.8369 0.8688 0.8984 0.9261 0.9521 0.9767

10 0 0.5008 0.6309 0.7043 0.7559 0.796 0.8289 0.8569 0.8813 0.9031 0.9227 0.9406 0.9571 0.9724 0.9866
15 0 0.6015 0.7183 0.7791 0.82 0.851 0.8759 0.8968 0.9149 0.9308 0.945 0.9579 0.9697 0.9805 0.9906
20 0 0.1159 0.6792 0.78 0.8308 0.8644 0.8896 0.9096 0.9263 0.9407 0.9532 0.9644 0.9745 0.9837 0.9922
25 0 0.0006 0.0007 0.0686 0.7299 0.8244 0.8697 0.8991 0.9207 0.9378 0.9519 0.964 0.9746 0.9839 0.9923
30 0 0.0002 0.0007 0.0036 0.0046 0.7136 0.8361 0.8849 0.9142 0.9349 0.9508 0.9638 0.9747 0.9842 0.9925
40 0 0.0096 0.0098 0.0103 0.0119 0.0127 0.1014 0.8211 0.895 0.9281 0.9487 0.9637 0.9753 0.9849 0.993
60 0 0.0002 0.0003 0.0009 0.0121 0.0151 0.0156 0.0167 0.2354 0.8805 0.9362 0.9601 0.9748 0.9852 0.9934
80 0 0.0051 0.0068 0.0081 0.0122 0.0123 0.0125 0.0176 0.027 0.3874 0.9122 0.956 0.9745 0.9858 0.9938

100 0 0.0002 0.0002 0.0095 0.0105 0.0234 0.0247 0.0248 0.0248 0.0888 0.9216 0.9626 0.9787 0.9882 0.9949
(d) For α = −0.4

2 0 0.1482 0.2536 0.3411 0.4181 0.4878 0.5521 0.6121 0.6685 0.7221 0.7731 0.822 0.8689 0.9141 0.9578
5 0 0.3281 0.4632 0.5524 0.6205 0.6765 0.7244 0.7665 0.8043 0.8387 0.8703 0.8996 0.927 0.9527 0.977

10 0 0.5039 0.6334 0.7064 0.7577 0.7975 0.8302 0.858 0.8823 0.9039 0.9233 0.9411 0.9575 0.9726 0.9867
15 0 0.604 0.72 0.7805 0.8212 0.8519 0.8767 0.8975 0.9154 0.9312 0.9454 0.9582 0.9699 0.9806 0.9907
20 0 0.1598 0.6845 0.7825 0.8325 0.8657 0.8905 0.9103 0.9269 0.9411 0.9536 0.9647 0.9747 0.9838 0.9922
25 0 0.0013 0.0015 0.11 0.7339 0.8262 0.8708 0.8999 0.9213 0.9382 0.9523 0.9643 0.9747 0.984 0.9924
30 0 0.0091 0.0168 0.017 0.1048 0.77 0.8549 0.8947 0.9202 0.9388 0.9535 0.9656 0.9759 0.9849 0.9929
40 0 0.0295 0.0301 0.0369 0.0373 0.0383 0.1964 0.8256 0.8966 0.9289 0.9492 0.964 0.9755 0.985 0.993
60 0 0.002 0.0065 0.007 0.0084 0.0099 0.01 0.01 0.1893 0.88 0.9361 0.9601 0.9747 0.9852 0.9934
80 0 0.0008 0.009 0.0134 0.015 0.0173 0.0187 0.0214 0.0214 0.3052 0.9108 0.9556 0.9743 0.9857 0.9938

100 0 0.0002 0.003 0.0079 0.0097 0.0174 0.0292 0.0336 0.0378 0.0519 0.9217 0.9627 0.9787 0.9882 0.9949
(e) For α = −0.5

sistent with the existing results in the literature [11, 13, 34].
However, for n ≥ 30, the expected revenue initially rises as m
increases, up to a certain value of m. Beyond this point, the

revenue either begins to decline or ceases to grow further. The
highest optimum values for expected revenue corresponding to
each value of n are boldfaced in Table 1. For example, in the
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table, the highest revenues for n = 30, 40, 60, 80, 100 are ob-
served at m = 11, 12, 9, 7, 6 respectively. The scenario with
n = 80 is illustrated in Figure 1, showing that the optimum rev-
enue R∗m=2 increases with m, peaking at 0.9826 when the least
value of m is 7. This suggests that the auctioneer can maximize
expected revenue with only 12 or fewer bid levels when n is
greater than or equal to 30, and for n ≥ 100, only 6 bid levels
are sufficient. A similar trend is observed in the study by Li et
al. [13], where it was shown that only three or fewer bid levels
are needed to maximize the auctioneer’s expected revenue per
unit of time. It is important to note that Li et al. [13] focused
on maximizing revenue per unit of time, whereas maximizing
total revenue requires comparatively more bid levels.

Table 2 presents the auctioneer’s maximum expected rev-
enue for various bid levels m and numbers of bidders n un-
der conditions of risk-averse bidders, specifically for α ∈
{0.1, 0.2, . . . , 0.5}, where a higher value of α signifies greater
risk aversion [35, 36]. The table shows that as α increases, re-
flecting increased risk-aversion, the auctioneer’s expected rev-
enue decreases corresponding to each value of m and n. The
higher the value of α, the greater the risk-aversion, leading bid-
ders to bid less aggressively and wait for the price to drop due to
their increased tendency to avoid potential losses. This behav-
ior results in a decrease in the auctioneer’s maximum expected
revenue as α increases. Moreover, comparison between the re-
sults of Table 1 for risk-neutral bidders and the results of Table
2 for risk-averse bidders, shows that the revenue for risk-neutral
bidders is greater than the revenue for risk-averse bidders. As
risk-averse bidders tend to bid less aggressively to avoid poten-
tial losses, resulting in a decrease in the auctioneer’s maximum
expected revenue compared to risk-neutral bidders [35, 37]. In
summary, risk-averse bidders are inclined to adopt strategies
that prioritize minimizing potential losses over maximizing ex-
pected gains. Consequently, this behavior of bidders results in
lower bids, directly impacting and reducing the auctioneer’s ex-
pected revenue [38, 39]. Furthermore, in Table 2a-2e the high-
est expected revenue corresponding to each value of n is bold-
faced and it shows that for a higher number of bidders, a lesser
number of bid levels are needed to maximize the auctioneer’s
expected revenue. The maximum number of bid levels to max-
imize the auctioneer’s expected revenue also increases with the
increase in the risk-aversion coefficient α. For instance, in the
case of n = 100 for α = 0.1 only 6 bid levels are sufficient to
maximize the expected revenue but for α = 0.5, 9 bid levels are
needed.

Table 3 presents the auctioneer’s maximum expected rev-
enue for various bid levels m and numbers of bidders n un-
der conditions of risk-loving/risk-seeking bidders, specifically
for α ∈ {−0.1,−0.2, . . . ,−0.5}, where a more negative value
of α signifies greater risk-seeking behavior [35, 36]. The ta-
ble demonstrates that as α becomes more negative, reflecting
increased risk-loving behavior, the auctioneer’s expected rev-
enue rises for each value of m and n. This increased risk-loving
behavior leads bidders to bid more aggressively, avoiding de-
lays for price drops due to their higher tendency to seek risks.
Consequently, the auctioneer’s maximum expected revenue in-
creases as α decreases. Moreover, when comparing the results

of Table 1 for risk-neutral bidders with those of Table 3 for risk-
loving bidders, it is evident that the revenue for risk-neutral bid-
ders is lower than that for risk-loving bidders. Risk-loving bid-
ders, driven by their propensity to take risks, tend to bid more
aggressively, resulting in higher maximum expected revenue
for the auctioneer compared to risk-neutral bidders [35, 37].
In summary, risk-loving bidders prioritize strategies that maxi-
mize expected gains over minimizing potential losses. This be-
havior leads to higher bids, which directly increase the auction-
eer’s expected revenue [38, 39]. Furthermore, in Tables 3a-3e,
the highest expected revenue for each value of n is boldfaced,
indicating that a higher number of bidders requires fewer bid
levels to maximize the auctioneer’s expected revenue. Addi-
tionally, the maximum number of bid levels needed to maxi-
mize revenue increases as the risk parameter α becomes more
negative. For instance, in the case of n = 100, only 6 bid lev-
els are sufficient to maximize expected revenue for α = −0.1,
whereas 9 bid levels are required for α = −0.5.

From Table 1 to Table 3, it is evident that the inequality
Rrl > Rrn > Rra holds consistently for each value of m and n,
where Rrl, Rrn, and Rra denote the auctioneer’s expected rev-
enue for risk-loving, risk-neutral, and risk-averse bidders, re-
spectively. These results for m = 15 are also illustrated in Fig-
ure 2, where the expected revenue R∗m=15 increases consistently
as the value of α decreases, confirming the aforementioned in-
equality. Furthermore, Figure 2 demonstrates that as the num-
ber of bidders increases, the revenue initially grows rapidly but
the rate of increase slows down after that. Almost similar re-
sults can be observed for other values of m.

Tables 4, 5, and 6 present the optimal bid levels for m = 15
with v = 1 for risk-neutral (α → 0), risk-averse (α > 0), and
risk-loving (α < 0) bidders, respectively. In each table, b1 = 0
indicates that the lowest bid level is zero, meaning the item will
be given away for free if not sold by that point [11]. This is
an assumption in the developed model. Additionally, bm+1, the
highest asking price, is set to 1, with all other bid levels deter-
mined by optimizing the NLP (equations (5) and (6)). Figure 3
illustrates the relationship between the constant of absolute risk
aversion α and the optimal bid levels li from Table 4-6. Specif-
ically, Figure 3a and 3b represent the case for n = 5 and n = 20
respectively, where it is evident that for a small number of bid-
ders, the auctioneer must set each bid level distinctly to max-
imize expected revenue for each value of α. However, as the
number of bidders increases, the lines representing b∗i become
closer, as depicted in 3c and 3d, indicating that the auctioneer
can skip several bid levels, as represented by nearly coincident
lines, and still maximize revenue for each value of α. These
graphs also demonstrate that fewer bid levels are sufficient to
maximize the auctioneer’s expected revenue as the number of
bidders significantly increases.

Although this study has not presented the optimal solution
of the NLP (equation (6)) for the parameters chosen in Li and
Kuo [11], by selecting the same parameter values and setting
α → 0, those results can easily be verified . This demon-
strates the superiority of the model developed in this study, as
it not only validates existing findings in the literature but also
addresses the impact of bidders’ risk preferences on the auc-
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tioneer’s expected revenue in DDAs, a topic that has not been
explored before.

5. Conclusion

This study presents a novel approach to modeling the DDA
through a nonlinear program that maximizes the auctioneer’s
expected revenue while accounting for bidders’ risk prefer-
ences. The developed model extends previous research by in-
corporating the CARA utility function to represent bidders’ risk
attitudes, with α as the risk parameter. The results of the exten-
sive numerical experiments yield several significant insights:

Findings of the study indicate that as the number of bidders
increases, the auctioneer’s expected revenue in DDA also rises.
Initially, when the number of bidders increases, the expected
revenue experiences rapid growth; however, as the number of
bidders becomes larger, the rate of revenue growth slows. For
smaller values of n, the auctioneer must set each bid level dis-
tinctly from the others to maximize revenue. In contrast, for
higher values of n, some bid levels can be omitted without a
decrease in optimum revenue. Additionally, with the increase
in the number of bid levels m, the maximum expected revenue
of the auctioneer increases up to some point and for a substan-
tial number of bidders (n ≥ 30), the study determined that 12
or fewer bid levels are sufficient to maximize expected revenue,
with only 6 bid levels needed when n ≥ 100. These insights are
valuable for auctioneers in estimating potential revenues based
on the number of participants. Also, these results have practical
implications for auction design, suggesting that auctioneers can
simplify their processes without compromising revenue.

As the risk aversion coefficient α increases, the auctioneer’s
expected revenue decreases. This trend is attributed to risk-
averse bidders’ tendency to bid less aggressively, prioritizing
loss avoidance over potential gains. Conversely, as α becomes
more negative (indicating increased risk-loving behavior), the
auctioneer’s expected revenue rises. This is due to risk-loving
bidders’ propensity to bid more aggressively, prioritizing po-
tential gains over loss avoidance. It is = consistently observed
that Rrl > Rrn > Rra, where Rrl, Rrn, and Rra represent the
auctioneer’s expected revenue for risk-loving, risk-neutral, and
risk-averse bidders, respectively. This finding underscores the
substantial influence of bidders’ risk attitudes on auction out-
comes.

While the developed model extends beyond previous re-
search by incorporating risk preferences, it successfully repro-
duces results from earlier studies when α → 0, confirming its
validity and broader applicability.

These findings significantly advance the understanding of
DDA and provide practical insights for auction design. How-
ever, this study has certain limitations. The absence of real-
world data for validation, the assumption of a zero minimum
selling price, and the exclusive use of the CARA utility func-
tion alongside uniform bidder valuations underscore areas for
future exploration. Subsequent research could address these
gaps by examining the effects of setting a non-zero minimum
price, optimizing revenue per unit of time, exploring alternative
probability distributions for bidder valuations, and considering

other risk utility functions. Furthermore, validating the model
with empirical data, if available, would enhance its practical
applicability. While our model assumes that risk aversion is
independent of wealth, which simplifies the analysis, we recog-
nize that this assumption may not hold universally. In reality,
wealth can influence risk attitudes, with wealthier individuals
potentially being more risk-tolerant. Future research could ex-
plore how incorporating wealth-dependent risk aversion affects
auction outcomes, potentially leading to more nuanced models
of bidder behavior.

In conclusion, this research enhances the understanding of
DDA by incorporating bidders’ risk preferences using a compu-
tational optimization framework, offering a more nuanced and
realistic model for auction outcomes. By applying nonlinear
programming to analyze the impact of risk preferences, this
study not only contributes to auction theory but also advances
the application of mathematical computing in auction design.
The insights gained from this work provide a foundation for de-
veloping more efficient and effective auction mechanisms, with
implications for various economic and computational contexts.

Data availability

We do not have any research data outside this manuscript.
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