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Abstract

This paper proposes a three-term Dai-Kou-type conjugate gradient method for solving constrained nonlinear monotone equations. This is achieved
by exploiting nice attributes of three-term conjugate gradient (TTCG) methods, which includes satisfying the vital condition for global conver-
gence, easy implementation as well as the efficiency of the classical Dai-Kou scheme. The proposed method combines a modified Dai-Kou search
direction with the projection strategy, where a hyperplane, which separates the current iterate from the required solution point is constructed. The
projection strategy ensures global convergence of the algorithm by projecting the current point onto the hyperplane. The derivative-free structure
of the method makes it ideal for solving large-scale and nonsmooth problems. The method also converge globally under mild assumptions. An
important contribution of the scheme is its application in image recovery problems, where experiments with some standard images show that
it de-blurs noisy images better than some methods in the literature. Furthermore, test results of some numerical experiments suggests that the
proposed approach outperforms three recent schemes for convex constrained nonlinear monotone equations
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1. Introduction

In recent decades, practical applications in areas such as sci-
ence, engineering, industry etc. have been modelled as systems

∗Corresponding author Tel. No: +234-803-614-3352.
Email address: abubakars.halilu@slu.edu.ng (A. S. Halilu)

of nonlinear equations. Some Instances of these include the
Chandrasekhar integral equation [1], which is vital in radiac-
tive transfer and transport theory [2], the economic equilibrium
problems studied in Ref. [3, 4] as well as signal and image
processing [5, 6] problems in compressed sensing. For more
practical applications of the concept, the reader may refer to
[7, 8].
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Typically, nonlinear system of equations is formulated as

F(x) = 0, x ∈ Rn, (1)

where F : Rn −→ Rn is a nonlinear mapping, which is con-
tinuous, and in some cases monotone, namely it satisfies the
inequality

(F(x) − F(y))T (x − y) ≥ 0, ∀x, y ∈ Rn. (2)

In this work, we consider the constrained version of Eq. (1)
in which the solution exists in a nonempty, closed convex set
C ⊂ Rn, and is formulated as

F(x) = 0, x ∈ C ⊂ Rn. (3)

Of all the iterative methods for solving Eq. (1) and its con-
strained version, the Newton’s and quasi-Newton’s methods [9–
11] are the most popular, due to their rapid local convergence
properties [12, 13]. These schemes, however, require huge ma-
trix storage to implement at each iteration making them unsuit-
able for large-scale problems.

By virtue of its less memory requirement, derivative-free
structure, and strong global convergence properties [14], the
conjugate gradient (CG) method is the most ideal iterative
scheme for solving Eq. (1) and Eq. (3) with large dimensions.
The methods is primarily developed for solving the minimiza-
tion problem

min
x∈Rn

f (x), (4)

where f : Rn −→ R represents a nonsmooth nonlinear function
with gradient given by g(xk) = ∇ f (x) = gk. From an initial
starting point x0 ∈ Rn, iterates of the CG method is generated
via the recursive formula

xk+1 = xk + αkdk, k = 0, 1, ..., (5)

where xk is the kth iterate, αk > 0 is a step-size determined by
a line search procedure, and dk is the scheme’s search direction
defined by

dk+1 = −gk+1 + βkdk, d0 = −g0, k = 0, 1, ..., (6)

in which gk+1 = g(xk+1) and βk is the CG update parameter,
which defines the type of CG method and is crucial in the
scheme’s performance. The classical βk parameters are defined
as follows:

βFR
k =

∥gk+1∥
2

∥gk∥
2 [15], βCD

k =
∥gk+1∥

2

−dT
k gk

[16], βDY
k =

∥gk+1∥
2

dT
k (gk+1 − gk)

[17]. (7)

βHS
k =

gT
k+1(gk+1 − gk)

dT
k (gk+1 − gk)

[18], βPRP
k =

gT
k+1(gk+1 − gk)

∥gk∥
2 [19, 20], βLS

k =
gT

k+1(gk+1 − gk)

−dT
k gk

[21].(8)

where ∥.∥ denotes ℓ2 − norm.

A CG scheme implemented using Eq. (4) and Eq. (5) is said to
satisfy the descent condition if

dT
k gk < 0, k ≥ 0. (9)

In most cases, it suffices to possess the descent condition Eq.
(9), however, it is crucial, especially in analyzing global con-
vergence, for CG schemes to satisfy the following sufficient de-
scent condition:

gT
k+1dk+1 ≤ −ϑ∥gk+1∥

2, ∀ k ≥ 0, ϑ > 0. (10)

Now, even though the CG methods for solving Eq. (4) ex-
hibit some nice attributes, non of the update parameters sat-
isfy Eq. (9) and Eq. (10). To address this shortcoming, their
modifications have been proposed in the past decades, see Refs.
([14, 22–28]) and the references therein.

As stated earlier, due to the appealing properties exhibited
by CG methods, their modifications for solving Eq. (1) and Eq.
(3) have been proposed in recent decades. This includes the
work of Cheng in Ref. [29], where the author developed a PRP-
type method for solving Eq. (1) by combining the unmodified
PRP scheme [19, 20] with the projection method [9]. Under
simple assumptions, the author proved global convergence of
the scheme.

By applying Powell’s strategy on the unmodified Liu-Storey
method [21], Liu et al. [30] proposed an LS-type scheme for
solving Eq. (3). The scheme satisfies the vital descent condition
and converges globally under appropriate conditions.

Inspired by the scheme in Ref. [31], Wang et al. [23]
proposed a three-term CG method for solving Eq. (3), where
the method’s update parameter is a modified variant of the HS
scheme [18]. In Ref. [32], Liu and Wang extended the FR-type
scheme developed in [25], to propose its modification for solv-
ing symmetric nonlinear equations. Global convergence of the
method was shown by employing appropriate conditions.

Liu and Li [33] also combined the DY scheme [34] with the
multivariate spectral gradient method developed in Ref. [35] to
propose a spectral DY-type method for solving Eq. (3). The
authors proved global convergence of the method by applying
some mild conditions.

Ahmed et al. [36] proposed a modified variant of the HS
method by conducting a singular value study of the search di-
rection of a modified scheme for constrained monotone nonlin-
ear system equations with applications. Ahmed et al. [37] also
proposed an extension of the method in [36] by developing its
two-parameter variant for solving Eq. (3) with applications to
signal and image deblurring. Only recently, Ahmed et al. [38]
proposed two RMIL-type CG methods for solving Eq. (3) with
compressed sensing applications.

For other methods and recent studies, see the works in Refs.
[10, 38–52].

By exploiting the self-scaling memoryless BFGS method
by Perry [53] and Shanno [54], an essential CG method that
has not gained much attention from researchers was proposed
by Dai and Kou [55], with the following formula for βk:

βDK
k =

gT
k+1yk

dT
k yk

−

τk +
∥yk∥

2

sT
k yk
−

sT
k yk

∥sk∥
2

 gT
k+1sk

dT
k yk

, (11)

where τk represents a scaling parameter similar to that of the
scaled memoryless BFGS method. The authors in Ref. [55]
also presented the truncated version of Eq. (11) as

β+k (τk) = max
βDK

k , η
gT

k+1dk

∥dk∥
2

 , η ∈ [0, 1]. (12)

An important attribute of the Dai-Kou search direction with the
updates Eq. (11) and Eq. (12) is that it satisfies the sufficient
descent condition Eq. (10) for all k ≥ 1. For different choices of
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τk that have been designed and implemented with the truncated
version Eq. (12), see Refs. [56–58] and the references therein.

In [55], the authors employed the parameter defined by
Oren and Spedicato in Refs. [57, 59], namely

τk =
yT

k sk

∥sk∥
2 , (13)

as their choice of τk. However, as an open problem, the au-
thors further stated that other more effective approximations
for τk are possible using different approaches and techniques.
In line with this, Huang and Liu [22] presented a Dai-Kou-type
method for solving the optimality condition ∇ f (x) = 0, where
the scheme utilizes only gradient information. The authors sug-
gested the following choice for τk:

τk = ζτ
(A)
k + (1 − ζ)τ(B)

k , ζ ∈ [0, 1],

where

τ(A)
k =

∥yk∥
2

sT
k yk

, τ(B)
k =

yT
k sk

∥sk∥
2 .

Other choices of the parameter τk in Eq. (11) have been
proposed over the years, including those in Refs. [60–66].
Though these choices have been employed to implement the
schemes, they have some limitations. For example, the choice
of τk derived in [65] may not always be positive, which can af-
fect the numerical performance of the scheme. Similarly, the
two choices for τk in [66] require frequent restart procedures
when they fail to meet the defined conditions.

Here, by employing a different approach from those at-
tempted in Refs. [22, 65, 66], we develop a three-term structure
for the Dai-Kou method in Eq. (11) with some modifications to
the choice of τk in Eq. (13), and present an effective Dai-Kou-
type method for solving Eq. (3).

The main contribution of this paper is to present a more ef-
fective Dai-Kou-type method that avoids some of the problems
of the methods in Refs. [65, 66] for solving the constrained
problem Eq. (3), with application in image deblurring prob-
lems. We are motivated by the work of Narushima et al. [67]
and the unmodified Dai-Kou method [55] for unconstrained op-
timization.

The rest of the paper is outlined as follows: the motiva-
tion, derivations, and algorithm of the scheme are presented in
Section 2. Global convergence of the proposed algorithm is es-
tablished in Section 3. Numerical results and discussions are
presented in Section 4. Application of the proposed method
in image deblurring is discussed in Section 5. Conclusions are
given in Section 6.

2. A three-term modified Dai-Kou method and its Algo-
rithm

In this section, we present some three-term methods pro-
posed for unconstrained optimization and use the idea of their
structure to formulate our method for solving Eq. (3). We be-
gin with some notations that will be useful in this section of the
work. We consider each vector v ∈ Rn to be a column vector

with its norm denoted as ∥v∥=
√

vT v. Now, directions of three-
term CG methods for solving Eq. (1), Eq. (3) and Eq. (4) are
generally formulated as

dk+1 = −gk+1 + βkdk + θkyk, ∀ k ≥ 0, (14)

where βk is any of the classical update parameters defined in
Eq. (7), Eq. (8) or their modified versions, while θk is a param-
eter defined to ensure the sufficient descent condition Eq. (10)
holds. It is known that the classical PRP method [19, 20] does
not satisfy Eq. (10). As a result, by employing the idea in Eq.
(14), its modified versions with that attribute have been pro-
posed. One of this methods is the three-term scheme proposed
by Zhang et al. [26] with search direction defined by

dk+1 = −gk+1 +
gT

k+1yk

gT
k gk

dk −
gT

k+1dk

gT
k gk

yk, ∀ k ≥ 0. (15)

It can clearly be observed that Eq. (15) satisfies the inequality
Eq. (10) independent of the line search procedure employed.
By employing the idea in Eq. (14) Zhang et al. [26] proposed a
three-term HS scheme with search direction defined as follows:

gk+1 = −gk+1 +
gT

k+1yk

sT
k yk

sk −
gT

k+1sk

sT
k yk

yk, ∀ k ≥ 0. (16)

Here also, the method satisfies Eq. (10) irrespective of the line
search technique used. The two schemes were also shown to
converge under mild assumptions.

In another development, based on the descent property ex-
hibited in Refs. [26] and [27], Zhang et al. [68] proposed a
descent three-term extension of the Dai-Liao method [69], with
the search direction defined as

dk+1 = −gk+1 +
gT

k+1(yk − tsk)
sT

k yk
sk −

gT
k+1 sk

sT
k yk

(yk − tsk), ∀k ≥ 0, t ≥ 0.

(17)

This method also satisfies the inequality Eq. (10).
Additionally, a three-term conjugate gradient (CG) method

was presented by Narushima et al. [67], where the scheme’s
search direction is defined by

dk+1 =

−g0, if k = 0 or gT
k+1φk = 0;

−gk+1 + βkdk − βk
gT

k+1dk

gT
k+1φk

φk, otherwise,
(18)

in which φk is a vector in Rn and βk is an update parameter of
the scheme. A careful inspection reveals that the scheme also
satisfies Eq. (10) irrespective of the line search strategy em-
ployed and the choice of the vector φk ∈ Rn. Other three-term
CG schemes can be found in Refs. [70–72] and the references
therein.

Considering that the efficiency and numerical performance
of the Dai-Kou method depends heavily on the choice of the
parameter τk, and given that the few existing adaptations of the
method for solving Eq. (3) suffer from certain shortcomings
attributed to their choices of τk, we present a three-term Dai-
Kou method that does not require the explicit computation of
the Dai-Kou parameter.
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Table 1. Test results of the four methods for problems 1-2.

NP VAR IG TTDK SCGP HTTCGP ACGD
NIT FE PT Norm ITN FE PT Norm ITN FE PT Norm ITN FE PT Norm

1 1000 a1 8 10 0.0520 1.32E-08 14 31 0.0334 8.76E-08 15 25 0.0297 1.65E-08 15 33 0.0273 3.08E-08
1000 a2 8 10 0.0159 1.32E-08 14 31 0.0143 8.75E-08 15 25 0.0215 1.65E-08 15 33 0.0206 3.08E-08
1000 a3 7 10 0.0160 7.30E-08 21 66 0.0256 9.76E-08 15 24 0.0214 5.68E-08 14 31 0.0203 6.53E-08
1000 a4 7 10 0.0087 6.17E-08 14 29 0.0124 8.24E-08 15 24 0.0193 4.79E-08 14 31 0.0143 5.51E-08
1000 a5 8 10 0.0093 1.14E-08 18 58 0.0267 1.68E-08 15 24 0.0129 8.92E-08 15 33 0.0143 2.66E-08
1000 a6 7 10 0.0122 9.06E-08 14 31 0.0135 5.99E-08 15 24 0.0123 7.04E-08 14 31 0.0141 8.10E-08

50000 a1 8 10 0.2036 9.38E-08 16 33 0.4553 7.38E-08 17 27 0.4235 5.02E-08 16 35 0.4646 5.67E-08
50000 a2 8 10 0.1970 9.38E-08 16 33 0.4262 7.37E-08 17 27 0.4129 5.02E-08 16 35 0.4531 5.67E-08
50000 a3 8 10 0.1923 5.16E-08 15 33 0.4509 8.28E-08 15 25 0.4021 6.43E-08 16 35 0.4614 3.12E-08
50000 a4 8 10 0.1987 4.36E-08 18 69 0.6253 7.71E-08 15 25 0.3996 5.42E-08 16 35 0.4851 2.63E-08
50000 a5 8 10 0.1962 8.10E-08 16 33 0.4354 5.75E-08 17 27 0.4163 4.34E-08 16 35 0.4502 4.90E-08
50000 a6 8 10 0.2090 6.40E-08 16 33 0.4318 5.11E-08 15 25 0.3911 7.97E-08 16 35 0.4469 3.87E-08
100000 a1 8 11 0.4568 6.63E-08 16 35 0.9663 5.16E-08 17 27 0.9148 7.10E-08 16 35 1.0059 8.02E-08
100000 a2 8 11 0.4239 6.63E-08 16 35 0.9468 5.16E-08 17 27 0.8789 7.10E-08 16 35 0.9684 8.02E-08
100000 a3 8 10 0.3974 7.30E-08 33 140 2.6886 8.75E-08 15 25 0.8469 9.09E-08 16 35 0.9958 4.41E-08
100000 a4 8 10 0.4207 6.16E-08 27 104 2.0297 7.08E-08 15 25 0.8224 7.67E-08 16 35 0.9692 3.73E-08
100000 a5 8 11 0.4552 5.73E-08 25 74 1.6842 7.66E-08 17 27 0.9052 6.14E-08 16 35 0.9745 6.93E-08
100000 a6 8 10 0.4225 9.05E-08 24 72 1.6736 5.00E-08 17 27 0.9403 4.85E-08 16 35 0.9955 5.47E-08

2 1000 a1 7 10 0.0065 6.48E-08 13 29 0.0094 6.82E-08 10 16 0.0072 5.19E-08 14 31 0.0104 2.78E-08
1000 a2 7 10 0.0070 6.49E-08 13 29 0.0096 6.83E-08 10 16 0.0070 5.30E-08 14 31 0.0149 2.78E-08
1000 a3 1 3 0.0041 0 2 5 0.0041 0 2 5 0.0040 0 14 33 0.0123 3.76E-08
1000 a4 9 11 0.0073 3.21E-08 14 32 0.0098 6.6E-08 3 6 0.0046 0 14 34 0.0156 3.00E-08
1000 a5 1 3 0.0034 0 1 3 0.0031 0 1 3 0.0036 0 14 33 0.0119 7.32E-08
1000 a6 9 11 0.0083 4.11E-08 14 32 0.0101 6.14E-08 2 5 0.0058 0 15 37 0.0115 7.36E-08

50000 a1 8 10 0.1329 4.58E-08 15 31 0.2541 5.73E-08 10 17 0.1812 5.24E-08 15 33 0.2846 5.15E-08
50000 a2 8 10 0.1353 4.58E-08 15 31 0.2434 5.73E-08 10 17 0.1686 5.25E-08 15 33 0.2875 5.15E-08
50000 a3 1 3 0.0378 0 2 5 0.0633 0 2 5 0.0486 0 15 35 0.2877 6.93E-08
50000 a4 10 12 0.1628 1.13E-08 16 34 0.2625 5.54E-08 3 6 0.0665 0 15 36 0.2733 4.45E-08
50000 a5 1 3 0.0266 0 1 3 0.0262 0 1 3 0.0270 0 16 37 0.2990 3.50E-08
50000 a6 10 12 0.1637 1.45E-08 15 33 0.2604 4.12E-08 2 5 0.0482 0 17 41 0.3059 3.52E-08
100000 a1 8 10 0.2404 6.48E-08 15 31 0.4705 8.11E-08 10 17 0.3173 7.42E-08 15 33 0.5055 7.29E-08
100000 a2 8 10 0.2334 6.48E-08 15 31 0.4822 8.11E-08 10 17 0.3465 7.42E-08 15 33 0.5315 7.29E-08
100000 a3 1 3 0.0566 0 2 5 0.0835 0 2 5 0.0999 0 15 35 0.5346 9.80E-08
100000 a4 10 12 0.2879 1.60E-08 16 34 0.5489 7.84E-08 3 6 0.1191 0 15 36 0.5563 6.29E-08
100000 a5 1 3 0.0500 0 1 3 0.0487 0 1 3 0.0493 0 16 37 0.5456 4.95E-08
100000 a6 10 12 0.2851 2.05E-08 16 34 0.5271 7.29E-08 2 5 0.0874 0 17 41 0.6133 4.98E-08

By substituting Eq. (13) into Eq. (11), the revised form of
Eq. (11) is obtained as

βDK
k =

gT
k+1yk

dT
k yk

−
∥yk∥

2

sT
k yk
·

gT
k+1sk

dT
k yk

. (19)

Motivated by the descent property exhibited by the three-
term method in Eq. (18) and the efficiency of Eq. (19), we
propose the following search directions:

dk+1 =


−F0, if k = 0,

−γk Fk+1 + β
DK1
k dk − β

DK1
k

FT
k+1dk

FT
k+1wk

wk , if FT
k+1wk ≥ ξ∥sk∥∥Fk+1∥> 0, ξ > 0,

−γk Fk+1 + β
DK+
k dk , otherwise,

(20)

where Fk+1 = F(xk+1), Fk = F(xk), and

βDK1
k := max

βDK2
k , µ

FT
k+1dk

∥dk∥
2

 , µ > 0, (21)

with

βDK2
k :=

FT
k+1

dT
k wk

wk −
∥wk∥

2

dT
k wk

dk

 , wk := yk + rsk , γk :=
sT

k sk

sT
k wk

, r > 0, (22)

yk := F(zk) − F(xk), zk = xk + αkdk, sk = zk − xk,

and γk is a spectral parameter, which can be considered a modi-
fication of the one proposed by Barzilai and Borwein [73]. The
term βDK+

k is a modified form of Eq. (19), defined as

βDK+
k := γk

FT
k+1wk

dT
k wk

− γk
∥wk∥

2

sT
k wk

·
FT

k+1sk

dT
k wk

. (23)

We now state the following assumptions required for the
next proposition and to establish the global convergence of the
proposed method.

Assumption 1. The solution set of F, which is defined as
C̄, is nonempty.

Assumption 2. The function F in Eq. (1) is Lipschitz con-
tinuous; i.e., there exists L > 0 such that

∥F(x) − F(y)∥≤ L∥x − y∥, ∀x, y ∈ Rn. (24)

Proposition 1. Suppose that F is monotone. Then the
search direction defined by Eq. (20), Eq. (21), Eq. (22), and
Eq. (23) satisfies the inequality

dT
k+1Fk+1 ≤ −ϑ∥Fk+1∥

2, ∀k ≥ 0, ϑ > 0. (25)

Proof. From Eq. (20), for k = 0, we have dT
0 F0 = −∥F0∥

2,
which implies that Eq. (25) holds with ϑ = 1.
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Table 2. Test results of the four methods for problems 3-4.

NP VAR IG TTDK SCGP HTTCGP ACGD
NIT FE PT Norm ITN FE PT Norm ITN FE PT Norm ITN FE PT Norm

3 1000 a1 7 10 0.0087 6.48E-08 13 29 0.0091 6.82E-08 7 11 0.0057 8.03E-08 14 31 0.0175 2.78E-08
1000 a2 7 10 0.0080 6.49E-08 13 29 0.0131 6.83E-08 7 11 0.0149 8.43E-08 14 31 0.0106 2.78E-08
1000 a3 1 3 0.0034 0 2 5 0.0048 0 2 5 0.0041 0 14 33 0.0107 3.76E-08
1000 a4 9 11 0.0094 3.21E-08 14 32 0.0101 6.60E-08 3 6 0.0045 0 14 34 0.0105 6.11E-08
1000 a5 1 3 0.0033 0 1 3 0.0032 0 1 3 0.0039 0 14 33 0.0148 7.32E-08
1000 a6 9 11 0.0066 4.11E-08 14 32 0.0145 6.14E-08 2 5 0.0041 0 15 37 0.0113 7.36E-08

50000 a1 8 10 0.1333 4.58E-08 15 31 0.2412 5.73E-08 8 14 0.1474 1.86E-08 15 33 0.2618 5.15E-08
50000 a2 8 10 0.1388 4.58E-08 15 31 0.2283 5.73E-08 8 14 0.1648 1.86E-08 15 33 0.2596 5.15E-08
50000 a3 1 3 0.0292 0 2 5 0.0450 0 2 5 0.0461 0 15 35 0.2848 6.93E-08
50000 a4 10 12 0.1611 1.13E-08 16 34 0.2704 5.54E-08 3 6 0.0647 0 15 36 0.2822 4.65E-08
50000 a5 1 3 0.0297 0 1 3 0.0258 0 1 3 0.0263 0 16 37 0.2893 3.50E-08
50000 a6 10 12 0.1477 1.45E-08 15 33 0.2526 4.12E-08 2 5 0.0491 0 17 41 0.3250 3.52E-08
100000 a1 8 10 0.2258 6.48E-08 15 31 0.5030 8.11E-08 8 14 0.2515 2.63E-08 15 33 0.5008 7.29E-08
100000 a2 8 10 0.2378 6.48E-08 15 31 0.4637 8.11E-08 8 14 0.2546 2.63E-08 15 33 0.5088 7.29E-08
100000 a3 1 3 0.0498 0 2 5 0.0834 0 2 5 0.0822 0 15 35 0.5501 9.80E-08
100000 a4 10 12 0.2901 1.60E-08 16 34 0.5014 7.84E-08 3 6 0.1206 0 15 36 0.5419 6.43E-08
100000 a5 1 3 0.0489 0 1 3 0.0428 0 1 3 0.0623 0 16 37 0.5211 4.95E-08
100000 a6 10 12 0.2899 2.05E-08 16 34 0.5365 7.29E-08 2 5 0.0925 0 17 41 0.6190 4.98E-08

4 1000 a1 9 11 0.0116 8.03E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 25 47 0.0216 4.20E-08 79 361 0.0990 6.94E-08
1000 a2 9 11 0.0088 3.13E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 13 23 0.0123 2.32E-08 21 78 0.0232 4.63E-08
1000 a3 8 11 0.0086 7.08E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 18 32 0.0153 1.19E-08 21 86 0.0255 2.83E-08
1000 a4 8 10 0.0081 2.88E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 17 30 0.0147 2.97E-08 15 45 0.0151 3.33E-08
1000 a5 9 11 0.0082 3.81E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 18 31 0.0144 7.17E-08 38 196 0.0458 9.15E-08
1000 a6 9 11 0.0123 5.38E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 16 30 0.0137 2.33E-08 33 152 0.0540 6.13E-08

50000 a1 10 12 0.2331 1.93E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 18 32 0.5149 8.82E-08 19 61 0.5916 3.97E-08
50000 a2 10 12 0.2215 5.11E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 18 33 0.4450 2.99E-08 23 82 0.7990 4.04E-08
50000 a3 9 11 0.2182 1.50E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 18 34 0.4332 4.78E-08 41 168 1.4467 4.89E-08
50000 a4 8 10 0.1914 1.94E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 19 32 0.4751 2.52E-08 17 51 0.5303 2.92E-08
50000 a5 9 12 0.2213 4.93E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 23 41 0.5447 5.63E-08 31 136 1.1270 3.62E-08
50000 a6 9 12 0.2517 7.46E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 17 31 0.4744 7.18E-08 16 47 0.4855 9.57E-08
100000 a1 9 12 0.4528 5.39E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15 28 0.7908 2.01E-08 26 92 1.8445 8.81E-08
100000 a2 10 12 0.4757 4.08E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 19 34 0.9936 9.43E-08 31 144 2.5643 9.44E-08
100000 a3 9 11 0.4336 6.04E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 16 30 0.8728 5.17E-08 27 114 2.0955 4.71E-08
100000 a4 9 12 0.4525 8.63E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 17 30 0.8704 3.34E-08 46 211 3.6977 9.29E-08
100000 a5 9 11 0.4515 3.63E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 15 28 0.7975 7.26E-08 25 89 1.7346 5.82E-08
100000 a6 9 12 0.4542 5.07E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 21 37 1.1124 3.71E-08 31 146 2.6017 4.99E-08

Now, for k ≥ 1 and when FT
k+1wk ≥ ξ∥sk∥∥Fk+1∥, we need

to ensure that γk is well-defined. To do this, it suffices to ensure
sT

k wk > 0. By definition and from Eq. (2), we obtain

sT
k wk = sT

k (yk + rsk) = sT
k (F(zk) − F(xk)) + r∥sk∥

2≥ r∥sk∥
2> 0,

(26)

which ensures that γk is well-defined.
Now, applying Assumption 2, the Cauchy–Schwarz in-

equality, and using Eq. (26), we have:

wT
k sk = (F(zk) − F(xk))T sk + r∥sk∥

2≤ L∥sk∥
2+r∥sk∥

2

= (L + r)∥sk∥
2. (27)

Combining Eq. (26) and Eq. (27), we obtain:

r∥sk∥
2≤ sT

k wk ≤ (L + r)∥sk∥
2. (28)

Thus,
1

L + r
:= c ≤

∥sk∥
2

sT
k wk
≤

1
r
,

which implies

c ≤ γk ≤ κ :=
1
r
.

Also, using the fact that sk = αkdk, we can similarly deduce:

dT
k wk = α

−1
k sT

k (F(zk) − F(xk) + rsk) ≥
r
αk
∥sk∥

2, (29)

which implies that dT
k wk > 0 whenever the solution is not at-

tained. Therefore, βDK1
k and βDK+

k are well-defined.
Now, when FT

k+1wk ≥ ξ∥sk∥∥Fk+1∥, we substitute into Eq.
(20) to get:

dT
k+1Fk+1 = −γk∥Fk+1∥

2+βDK1
k dT

k Fk+1 − β
DK1
k

dT
k Fk+1

FT
k+1wk

FT
k+1wk

= −γk∥Fk+1∥
2. (30)

Since c ≤ γk ≤ κ, it follows that

dT
k+1Fk+1 ≤ −c∥Fk+1∥

2.

Hence, Eq. (25) is satisfied with ϑ = c in this case.
Next, we consider the case where FT

k+1wk < ξ∥sk∥∥Fk+1∥.
From Eq. (20) and using Eq. (23), we obtain

dT
k+1Fk+1 = −γk∥Fk+1∥

2+γk
FT

k+1wk

sT
k wk

FT
k+1 sk − γk

∥wk∥
2(FT

k+1 sk)2

(sT
k wk)2

=
γk FT

k+1wk · sT
k wk · FT

k+1 sk − γk∥Fk+1∥
2(sT

k wk)2 − γk∥wk∥
2(FT

k+1 sk)2

(sT
k wk)2

.

(31)
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Table 3. Test results of the four methods for problems 5-6.

NP VAR IG TTDK SCGP HTTCGP ACGD
NIT FE PT Norm ITN FE PT Norm ITN FE PT Norm ITN FE PT Norm

5 1000 a1 32 36 0.0207 8.37E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 21 89 0.0231 6.45E-08 187 1669 0.2657 6.23E-08
1000 a2 35 39 0.0281 5.99E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 20 82 0.0265 7.08E-08 40 352 0.0556 2.16E-08
1000 a3 26 43 0.0190 9.87E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 22 89 0.0208 8.16E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1000 a4 34 39 0.0244 7.08E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 21 89 0.0210 6.45E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1000 a5 34 52 0.0255 8.90E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 25 106 0.0253 4.77E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1000 a6 35 53 0.0261 7.16E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 25 106 0.0310 9.55E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

50000 a1 37 41 0.5826 9.06E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 21 89 0.6070 4.91E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

50000 a2 36 41 0.5758 9.13E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 24 102 0.6444 9.77E-08 161 1457 6.5525 8.66E-08
50000 a3 30 48 0.5726 9.22E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 27 114 0.7288 6.35E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

50000 a4 31 49 0.5583 7.29E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 30 117 0.8255 9.48E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

50000 a5 36 56 0.6400 8.98E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 27 114 0.7092 7.08E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

50000 a6 38 57 0.6453 7.16E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 27 111 0.7380 9.46E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

100000 a1 38 42 1.2951 6.89E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 20 88 1.1858 9.22E-08 116 1060 10.7848 7.73E-08
100000 a2 38 42 1.3089 9.15E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 20 84 1.1278 9.45E-08 217 1819 18.5753 9.46E-08
100000 a3 30 49 1.1578 7.02E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 27 111 1.5035 5.96E-08 181 1455 14.8590 6.44E-08
100000 a4 31 50 1.1869 5.56E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 26 104 1.4388 5.62E-08 64 580 5.8005 3.88E-08
100000 a5 38 58 1.3649 6.42E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 29 121 1.6456 7.29E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

100000 a6 38 58 1.4028 5.54E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 33 124 1.7751 8.96E-08 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

6 1000 a1 2 6 0.0042 0 26 192 0.0492 6.27E-08 13 51 0.0129 3.52E-08 11 96 0.0236 0
1000 a2 2 6 0.0047 0 20 132 0.0274 4.12E-08 12 47 0.0117 0 16 145 0.0258 0
1000 a3 3 10 0.0079 0 3 18 0.0061 0 8 37 0.0104 0 2 15 0.0147 0
1000 a4 4 13 0.0066 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 20 125 0.0388 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1000 a5 1 8 0.0043 0 2 14 0.0052 0 3 17 0.0060 0 1 3 0.0044 0
1000 a6 5 15 0.0070 0 1 6 0.0052 0 6 39 0.0149 6.30E-10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

50000 a1 2 6 0.0692 0 13 63 0.4394 1.55E-08 12 47 0.3632 0 15 108 0.6409 2.12E-08
50000 a2 2 6 0.0791 0 13 60 0.4417 1.50E-08 12 47 0.3654 0 15 108 0.6488 2.12E-08
50000 a3 3 10 0.1284 0 3 18 0.1690 0 8 37 0.3176 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

50000 a4 4 13 0.1560 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 20 125 1.0203 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

50000 a5 1 8 0.0635 0 2 14 0.1035 0 3 17 0.1389 0 1 3 0.0370 0
50000 a6 5 15 0.1751 0 1 6 0.0596 0 6 39 0.2980 4.45E-09 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

100000 a1 2 6 0.1335 0 13 62 0.9059 2.16E-08 12 47 0.7396 6.00E-15 15 108 1.3636 3.05E-08
100000 a2 2 6 0.1311 0 13 61 0.8918 2.18E-08 12 47 0.7641 5.62E-15 15 108 1.3498 3.05E-08
100000 a3 3 10 0.2169 0 3 18 0.2894 0 8 37 0.6147 0 2 15 0.7056 0
100000 a4 4 13 0.2920 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 20 125 2.0233 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

100000 a5 1 8 0.1213 0 2 14 0.2017 0 3 17 0.2514 0 1 3 0.0762 0
100000 a6 5 15 0.3527 0 1 6 0.1167 0 6 39 0.7012 6.30E-09 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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Figure 1. The four method’s performance profile for number of itera-
tions.

Now, using the inequality cT
1 c2 ≤

1
2 (∥c1∥

2+∥c2∥
2) on the sec-

ond equality above, where we set

c1 =
√
γk

Fk+1(sT
k wk)
√

2
, c2 =

√
2γk(FT

k+1sk)wk,
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Figure 2. The four method’s performance profile for function evalua-
tions.

and obtain

dT
k+1Fk+1 ≤

γk∥Fk+1∥
2(sT

k wk )2

4 + γk∥wk∥
2(FT

k+1 sk)2 − γk(sT
k wk)2∥Fk+1∥

2−γk∥wk∥
2(FT

k+1 sk)2

(sT
k wk)2

=
γk∥Fk+1∥

2

4
− γk∥Fk+1∥

2

≤ −
3c
4
∥Fk+1∥

2.

(32)
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Table 4. Test results of the four methods for problems 7-8.

NP VAR IG TTDK SCGP HTTCGP ACGD
NIT FE PT Norm ITN FE PT Norm ITN FE PT Norm ITN FE PT Norm

7 1000 a1 13 16 0.0092 8.64E-08 29 138 0.02965 4.69E-08 22 59 0.0196 7.25E-08 13 57 0.0117 4.30E-08
1000 a2 13 16 0.0143 8.64E-08 26 110 0.01995 4.23E-08 23 63 0.0147 6.23E-08 13 57 0.0120 4.29E-08
1000 a3 15 18 0.0101 3.60E-08 53 287 0.04716 8.06E-08 17 45 0.0123 7.53E-08 17 64 0.0140 5.72E-08
1000 a4 15 19 0.0102 5.83E-08 46 215 0.04412 5.41E-08 22 58 0.0143 5.10E-08 17 64 0.0296 5.93E-08
1000 a5 15 18 0.0118 8.94E-08 47 251 0.03942 8.95E-08 20 54 0.0323 4.88E-08 17 65 0.0140 6.39E-08
1000 a6 16 19 0.0118 3.63E-08 43 192 0.03549 8.99E-08 17 42 0.0112 5.08E-08 16 63 0.0131 5.24E-08

50000 a1 15 17 0.2139 9.98E-08 34 142 0.72422 6.68E-08 18 50 0.3386 7.28E-08 14 61 0.3174 7.42E-08
50000 a2 15 17 0.2207 9.98E-08 27 112 0.56895 4.39E-08 22 61 0.4175 6.23E-08 14 61 0.3209 7.42E-08
50000 a3 16 19 0.2392 6.08E-08 46 224 1.08430 7.41E-08 21 56 0.4254 4.05E-08 18 68 0.3894 9.74E-08
50000 a4 16 20 0.2446 9.84E-08 54 272 1.27313 5.16E-08 24 63 0.4208 1.70E-08 18 68 0.4204 7.44E-08
50000 a5 17 20 0.2461 3.60E-08 49 265 1.18219 5.00E-08 21 56 0.3895 7.14E-09 19 73 0.4395 2.73E-08
50000 a6 17 20 0.2673 6.12E-08 58 280 1.41202 4.94E-08 17 44 0.3181 1.34E-08 17 67 0.3692 7.75E-08
100000 a1 15 18 0.4601 4.91E-08 50 234 2.25181 5.83E-08 24 65 0.9052 6.07E-08 15 65 0.7076 2.54E-08
100000 a2 15 18 0.4408 4.91E-08 20 63 0.77876 7.79E-08 23 62 0.8818 8.49E-08 15 65 0.7078 2.54E-08
100000 a3 16 19 0.4624 8.60E-08 57 328 2.92865 6.44E-08 21 56 0.8188 5.73E-08 19 72 0.8588 3.32E-08
100000 a4 17 20 0.4987 9.53E-08 54 289 2.67821 7.11E-08 24 63 0.8943 2.40E-08 19 72 0.8486 2.50E-08
100000 a5 17 20 0.5033 5.09E-08 48 243 2.35149 4.85E-08 21 56 0.7630 1.01E-08 19 73 0.8457 3.87E-08
100000 a6 17 20 0.4815 8.66E-08 72 400 3.69100 8.53E-08 17 44 0.6333 1.90E-08 18 71 0.8299 2.63E-08

8 1000 a1 2 3 0.0048 0 23 38 0.01473 5.07E-08 9 15 0.0080 0 12 32 0.0120 9.25E-09
1000 a2 2 3 0.0041 0 26 43 0.01834 7.33E-08 9 15 0.0081 0 14 48 0.0151 2.31E-08
1000 a3 2 3 0.0039 0 4 5 0.00499 0 3 4 0.0045 0 19 65 0.0189 8.87E-08
1000 a4 3 4 0.0047 0 4 5 0.00605 2.88E-13 3 4 0.0150 0 10 15 0.0092 1.73E-10
1000 a5 2 3 0.0051 0 2 3 0.00399 5.46E-14 3 4 0.0042 0 6 8 0.0071 1.56E-09
1000 a6 3 4 0.0089 0 3 4 0.00459 0 11 17 0.0098 3.49E-08 14 34 0.0214 3.23E-08

50000 a1 2 3 0.0446 0 24 43 0.43000 5.10E-08 10 17 0.1933 0 23 94 0.6404 4.96E-08
50000 a2 2 3 0.0451 0 24 43 0.43174 5.14E-08 10 17 0.1965 0 26 110 0.7383 2.92E-08
50000 a3 2 3 0.0452 0 4 5 0.07553 0 3 4 0.0614 0 15 27 0.3075 5.87E-08
50000 a4 3 4 0.0629 0 4 5 0.07986 0 3 4 0.0646 0 15 28 0.3013 8.41E-08
50000 a5 2 3 0.0417 0 2 3 0.03941 1.32E-11 3 4 0.0540 0 13 24 0.2405 4.54E-08
50000 a6 3 4 0.0635 0 3 4 0.06839 0 11 17 0.2322 5.81E-08 23 64 0.5205 3.60E-08
100000 a1 2 3 0.0869 0 24 43 0.88568 6.99E-08 10 17 0.3882 0 17 70 0.9634 0
100000 a2 2 3 0.0976 0 24 43 0.84930 7.07E-08 10 17 0.3833 0 18 79 1.0903 0
100000 a3 2 3 0.0837 0 4 5 0.15927 0 3 4 0.1172 0 17 32 0.6866 5.45E-08
100000 a4 3 4 0.1192 0 4 5 0.14799 4.60E-10 3 4 0.1266 0 13 23 0.4961 7.90E-08
100000 a5 2 3 0.0937 0 2 3 0.07667 0 3 4 0.1041 0 13 24 0.4740 6.40E-08
100000 a6 3 4 0.1183 0 3 4 0.11290 0 11 17 0.4124 7.87E-08 14 37 0.6510 0
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Figure 3. The four method’s performance profile for processing time.

By letting ϑ := min{1, c, 3c
4 }, the proof is established.

Now, we briefly discuss the projection operator. Let C ⊂ Rn

be as defined in the introduction section. Then, the projection
of x ∈ Rn onto C is defined as

PC(x) = arg min
y∈C
∥x − y∥,

with the properties

∥PC(x) − PC(y)∥≤ ∥x − y∥, ∀x, y ∈ Rn,

and

∥PC(x) − y∥≤ ∥x − y∥, ∀y ∈ C. (33)

Algorithm 1

1. Given ϵ > 0, x0 ∈ C, ϕ ∈ (0, 2), δ ∈ (0, 1), ζ > 0. Set
k = 0 and d0 = −F0.

2. Determine F(xk). If ∥F(xk)∥≤ ϵ, stop; otherwise, go to
step 3.

3. Compute zk = xk + αkdk, where αk = δ
mk with mk being

the smallest nonnegative integer m for which

−F(xk + δ
mdk)T dk ≥ ζδ

m∥dk∥
2 (34)

is satisfied.
4. If zk ∈ C and ∥F(zk)∥≤ ϵ, stop. Otherwise, compute

xk+1 = PC [xk − σkF(zk)] ,

where

σk =
F(zk)T (xk − zk)
∥F(zk)∥2

. (35)
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Figure 4. From the left: Original and blurred images (First and second
columns), restored images by TTDK, HTTCGP, and MFRM (third,
fourth and fifth columns.

5. Obtain direction dk+1 using Eq. (20), Eq. (21), and Eq.
(22) if F(xk+1)T wk ≥ ξ∥sk∥∥Fk+1∥; otherwise, set

dk+1 = −γFk+1 + β
DK+
k dk,

where γk and βDK+
k are defined by Eq. (22) and Eq. (23).

6. Set k = k + 1 and return to step 2.

3. Convergence Results

We begin with the following lemma.

Lemma. Let {dk+1} be the sequence of search directions ob-
tained by Algorithm 1. Then

ϑ∥Fk+1∥≤ ∥dk+1∥≤ ψ∥Fk+1∥, ∀ k ≥ 0, (36)

where ϑ := min{1, c, 3c
4 } and ψ := max{ψ1, ψ2, ψ3}.

Proof. It is easy from the Cauchy–Schwarz inequality and Eq.
(25) to show that the first inequality holds. From Eq. (20), we
have d0 = −F0, which shows ∥d0∥= ∥F0∥. Now, we prove that
the second inequality in Eq. (36) is satisfied for k ≥ 1. By the
Lipschitz continuity of F, we obtain

∥wk∥= ∥yk + rsk∥≤ ∥yk∥+r∥sk∥≤ L∥sk∥+r∥sk∥= (L + r)∥sk∥. (37)

Next, we consider three cases for the search directions for
k≥1.

Case 1:. From Eq. (20), for k ≥ 1 and FT
k+1wk ≥ ξ∥sk∥∥Fk+1∥.

If βDK2
k > µ

FT
k+1dk−1

∥dk−1∥
2 , then βDK1

k = βDK2
k . Using Eq. (20), Eq. (22),

Eq. (37), and Cauchy–Schwarz inequality, we get:

∥dk+1∥ ≤ γk∥Fk+1∥+
L + r

r
∥Fk+1∥+

(L + r
r

)2

∥Fk+1∥

+
L + r

rξ
∥Fk+1∥+

(L + r)3

ξr2 ∥Fk+1∥

= ψ1∥Fk+1∥,

(38)

where ψ1 = κ +
L+r

r +
(

L+r
r

)2
+ L+r

rξ +
(L+r)3

ξr2 .

Case 2:. From Eq. (20), for k ≥ 1 and FT
k+1wk ≥ ξ∥sk∥∥Fk+1∥.

If βDK2
k ≤ µ

FT
k+1dk

∥dk∥
2 , then βDK1

k = µ
FT

k+1dk

∥dk∥
2 . Using similar inequali-

ties, we get:

∥dk+1∥ ≤ κ∥Fk+1∥+µ∥Fk+1∥+µ
(L + r)
ξ
∥Fk+1∥

= ψ2∥Fk+1∥,

(39)

where ψ2 = κ + µ + µ
L+r
ξ

.

Case 3:. From Eq. (20), for k ≥ 1 and FT
k+1wk < ξ∥sk∥∥Fk+1∥,

then:

∥dk+1∥ ≤ κ∥Fk+1∥+
κ(L + r)

r
∥Fk+1∥+

κ(L + r)2

r2 ∥Fk+1∥

= ψ3∥Fk+1∥,

(40)

where ψ3 = κ +
κ(L+r)

r +
κ(L+r)2

r2 .
Thus, by defining ψ := max{ψ1, ψ2, ψ3}, we obtain the re-

quired result. We use the next Lemma to show that the line-
search condition Eq. (34) used in step 2 of Algorithm 1 is well-
defined and yields a uniform lower bound of αk.

Lemma. (1) Let {dk} and {xk} be sequences generated by Al-
gorithm 1. If F is continuous on Rn, for each k ≥ 0, then a
nonnegative integer mk exists such that Eq. (34) holds.

(2) Let Assumption 2 hold with {xk} and {zk} generated by Al-
gorithm 1. Then, the step-size αk > 0 computed in step 2 of
Algorithm 1 satisfies the inequality

αk ≥ α := min
{

1,
δϑ

(L + ζ)ψ2

}
. (41)

Proof. For the first part, suppose k0 ≥ 0 exists for which Eq.
(34) does not hold in the kth

0 iterate for each nonnegative integer
m. Then for all m ≥ 0,

−F(xk0 + δ
mdk0 )T dk0 < ζδ

m∥dk0∥
2. (42)

Since F is continuous on Rn, taking limit in Eq. (42) as m→ ∞
yields

F(xk0 )T dk0 ≤ 0,

which contradicts Eq. (25), i.e.,

F(xk0 )T dk0 ≤ −ϑ∥F(xk0 )∥2< 0.

Hence, we established the result.
For the proof of (2), assume that Algorithm 1 stops at xk,

then F(xk) = 0 or F(zk) = 0, implying xk to be a solution.
However, if F(xk) ̸= 0, by Eq. (25), we have that dk ̸= 0. To
show that Eq. (34) stops at a finite number of steps, we see from
Eq. (34) that if αk ̸= 1, then ᾱk = δ−1αk does not satisfy Eq.
(34), namely,

−F(z̄k)T dk < ζᾱk∥dk∥
2,

with z̄k = xk + ᾱkdk. From Eq. (24) and Eq. (25), we have

ϑ∥Fk∥
2 ≤ −FT

k dk

= (F(z̄k) − Fk)T dk − F(z̄k)T dk

≤ Lᾱk∥dk∥
2+ζᾱk∥dk∥

2

= δ−1αk(L + ζ)∥dk∥
2.

8



Kabiru et al. / J. Nig. Soc. Phys. Sci. 7 (2025) 2569 9

Table 5. Reported results for image de-blurring.
TTDK HTTCGP MFRM

Images PSNR SNR SSIM PT PSNR SNR SSIM PT PSNR SNR SSIM PT
Cameraman 27.64 21.82 0.88 31.72 26.96 21.20 0.86 3.09 27.46 21.70 0.87 4.16
Man 30.61 23.00 0.86 582.44 31.17 23.56 0.86 84.44 31.11 23.50 0.86 113.39
Barbara 25.61 19.73 0.80 163.88 24.92 19.34 0.77 16.17 25.32 19.64 0.79 28.25

Hence, we get

αk ≥
δϑ

L + ζ
·
∥Fk∥

2

∥dk∥
2

≥
δϑ

L + ζ
·
∥Fk∥

2

ψ2∥Fk∥
2

=
δ

(L + ζ)ψ2 ,

where the second inequality follows from Eq. (36).

Lemma. Given Assumptions 1 and 2 hold with x̄ being an ar-
bitrary solution of Eq. (3) in C̄. Then the sequence {∥xk − x̄∥} is
convergent and thus the sequence {xk} is bounded. Furthermore,
we have that

lim
k→∞

αk∥dk∥= 0. (43)

Proof. First, we show that {xk} and zk are bounded. From Eq.
(34) and the definition of zk, we get

(xk − zk)T F(zk) ≥ ζα2
k∥dk∥

2. (44)

From Eq. (2) and for all x̄ ∈ C̄, we have

(xk − x̄)T F(zk) = (xk − zk)T F(zk) + (zk − x̄)T F(zk)

≥ (xk − zk)T F(zk) + (zk − x̄)T F(x̄)

= (xk − zk)T F(zk).

(45)

From Eq. (33), Eq. (35), Eq. (44) and Eq. (45), we have

∥xk+1 − x̄∥2 =
∥∥∥PC

[
xk − ϕσkF(zk)

]
− x̄

∥∥∥2

≤ ∥xk − ϕσkF(zk) − x̄∥2

= ∥(xk − x̄) − ϕσkF(zk)∥2

= ∥xk − x̄∥2−2ϕσkF(zk)T (xk − x̄) + ϕ2σ2
k∥F(zk)∥2

≤ ∥xk − x̄∥2−2ϕσkF(zk)T (xk − zk) + ϕ2σ2
k∥F(zk)∥2

= ∥xk − x̄∥2−ϕ(2 − ϕ)

(
F(zk)T (xk − zk)

)2

∥F(zk)∥2

≤ ∥xk − x̄∥2−ϕ(2 − ϕ)
ζ2∥xk − zk∥

4

∥F(zk)∥2
.

(46)

This implies

0 ≤ ∥xk+1 − x̄∥≤ ∥xk − x̄∥, ∀ k ≥ 0. (47)

So, the sequence {∥xk − x̄∥} is decreasing, hence convergent,
and {xk} is bounded. Since {xk} is bounded and F is continuous,
a constant u1 exists such that

∥xk∥≤ u1, ∥F(xk)∥≤ u1, ∀ k ≥ 0.

Using Eq. (2), Cauchy-Schwarz inequality, and Eq. (44),
we get

u1 ≥ ∥Fk∥≥
FT

k (xk − zk)
∥xk − zk∥

≥
F(zk)T (xk − zk)
∥xk − zk∥

≥ ζ∥xk−zk∥≥ ζ∥zk∥−ζu1,

which implies

∥zk∥≤
u1 + ζu1

ζ
.

Setting u2 := u1(1+ζ)
ζ

, we see that {zk} is bounded. Thus,
continuity of F implies existence of constant ū such that

∥F(zk)∥≤ ū, ∀ k ≥ 0.

Using this and Eq. (46), we obtain

ζ2∥xk − zk∥
4≤

ū2

ϕ(2 − ϕ)
(∥xk − x̄∥2−∥xk+1 − x̄∥2). (48)

Since {∥xk − x̄∥} converges and {F(zk)} is bounded, taking
limit in Eq. (48) as k → ∞ yields

ζ2 lim
k→∞

α4
k∥dk∥

4≤ 0,

which implies
lim
k→∞

αk∥dk∥= 0.

Theorem. Let Assumptions 1 and 2 hold with {xk} obtained by
Algorithm 1. Then, {xk} converges to a solution of Eq. (3).

Proof. Considering Eq. (41) and Eq. (43), we deduce that 0 ≤
α∥dk∥≤ αk∥dk∥→ 0, hence limk→∞∥dk∥= 0. Combining this
with Eq. (36), we obtain

0 ≤ ϑ∥Fk∥≤ ∥dk∥→ 0,

implying limk→∞∥Fk∥= 0.
Since {xk} is bounded, a cluster point x̃ ∈ C̄ exists. Let

K ⊂ {0, 1, 2, ...} be an index set such that

lim
k→∞, k∈K

xk = x̃ ∈ C̄.

Then, by continuity of F,

0 = lim
k→∞
∥Fk∥= ∥F(x̃)∥,

which implies x̃ is a solution of Eq. (3). Also, since {∥xk − x̄∥}
is convergent by Lemma 3.3, setting x̄ = x̃ yields

lim
k→∞
∥xk − x̄∥= 0.

Therefore, {xk} converges to x̄ ∈ C̄.
9
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Assumption 3. For the solution x̄ ∈ C̄, τ ∈ (0, 1) and ς > 0 exist
satisfying

τdist(x, C̄) ≤ ∥F(x)∥, ∀x ∈ Mς(x̄), (49)

withMς(x̄) being the neighbourhood of x̄, which is defined as

Mς(x̄) := {x ∈ Rn : ∥x − x̄∥≤ ς}.

Furthermore, dist(x, C̄) stands for the distance from x to C̄.

Theorem. Suppose Assumptions 1, 2, and 3 hold and the se-
quence {xk} is obtained by Algorithm 1, then the sequence
dist(x, C̄) converges Q-linearly to 0, implying that {xk} is R-
linearly convergent to x̄.

Proof. Assuming that x̃k := arg min{∥xk − x̃∥: x̃ ∈ C̄}. Then

∥xk − x̃k∥= dist(xk, C̄). (50)

Utilizing x̃ for x̄ in Eq. (46), we obtain

∥xk+1 − x̃∥2≤ ∥xk − x̃∥2−Λ
ζ2t4

k∥dk∥
4

∥F(zk)∥2
, (51)

where Λ = ϕ(2 − ϕ).
From the definition of x̃k and Eq. (24), we have

∥F(zk)∥ = ∥F(zk) − F(x̃k)∥≤ L∥zk − x̃k∥

≤ L(∥zk − xk∥+∥xk − x̃k∥)
= L(tk∥dk∥+∥xk − x̃k∥)
≤ L(∥dk∥+∥xk − x̃k∥)
≤ L (ψ∥F(xk)∥+∥xk − x̃k∥)

= L (ψ∥F(xk) − F(x̃k)∥+∥xk − x̃k∥)

≤ L (1 + Lψ) ∥xk − x̃k∥

= L (1 + Lψ) dist(xk, C̄).

(52)

By the Cauchy-Schwarz inequality and Eq. (25), we obtain

∥dk∥≥ ϑ∥Fk∥. (53)

Thus, since x̃k ∈ C̄, from Eq. (49), Eq. (50), Eq. (51), Eq.
(52), Eq. (53), and the result in Eq. (41), we obtain

dist(xk+1, C̄)2 = ∥xk+1 − x̃k∥
2

≤ dist(xk, C̄)2 − Λ
ζ2t4

k∥dk∥
4

∥F(zk)∥2

≤ dist(xk, C̄)2 − Λ
ζ2t4ϑ4∥F(xk)∥4

∥F(zk)∥2

≤ dist(xk, C̄)2 − Λ
ζ2t4ϑ4τ4dist(xk, C̄)4

L2(1 + Lψ)2dist(xk, C̄)2

=

(
1 − Λ

ζ2t4ϑ4τ4

L2(1 + Lψ)2

)
dist(xk, C̄)2.

Now, since the positive scalarsΛ, τ, ϑ, ζ and t are all in (0, 1)
with L > 1, it shows that {dist(xk, C̄)} converges Q-linearly to 0,
implying that {xk} is R-linearly convergent to x̄.

4. Results of numerical experiments

Some numerical results are reported here by implement-
ing Algorithm 1, labelled simply as TTDK. Three recent ef-
fective algorithms in Refs. [74–76], which we label as SCGP,
HTTCGP and ACGD, were employed to compare the effective-
ness of the proposed scheme. All four algorithms were coded
in Matlab R2015a and implemented on a system with the fol-
lowing configuration: (4GB RAM, 2.30GHZ CPU). The same
linesearch described in Eq. (34) was used for each algorithm
with parameters for SCGP, HTTCGP, and ACGD set according
to each paper. We set parameters for Algorithm 1 as ζ = 10−2,
δ = 0.4, α = 0.1, r = 1, ξ = 0.26, and ϕ = 1.9. Also, the
criterion to terminate the program was set as ∥F(xk)∥≤ 10−7 or
∥F(zk)∥≤ 10−7 or iterations exceeding 1000.

Test problems for Algorithm 1, SCGP, HTTCGP, and
ACGD methods, where the mapping F is given as: F =

( f1(x), f2(x), ..., fn(x))T are as follows:

Problem 1. This problem is obtained from Ref. [77] where
C = Rn

+ is added to yield.
f1(x) = x1 − e

(
cos x1+x2

n+1

)
,

fi(x) = xi − e
(
cos xi−1+xi+xi+1

n+1

)
, i = 2, 3, . . . , n − 1,

fn(x) = xn − e
(
cos xn−1+xn

n+1

)
.

Problem 2. This problem is obtained from Ref. [78] where
C = Rn

+ is added to yield
fi(x) = 2xi − sin xi, i = 1, 2, . . . , n.

Problem 3. Nonsmooth function obtained from Ref. [78]
where C = Rn

+ is added to yield
fi(x) = 2xi − sin |xi|, i = 1, 2, . . . , n. This problem is

clearly nonsmooth at the point x = (0, 0, ..., 0)T .

Problem 4. Tridiagonal exponential function obtained from
Ref. [24].

f1(x) = x1 − e
(
cos x1+x2

2

)
,

fi(x) = xi − e
(
cos xi−1+xi+xi+1

i+1

)
, i = 2, 3, . . . , n − 1,

fn(x) = xn − e
(
cos xn−1+xn

n

)
.

where C = Rn
+.

Problem 5. This problem is obtained from Ref. [24].
f1(x) = 2x1 + sin x1 − 1,
fi(x) = 2xi−1 + 2xi + 2 sin xi − 1,
fn(x) = 2xn + sin xn − 1, i = 2, . . . , n − 1,
where C = Rn

+.

Problem 6. This problem is obtained from Ref. [24].
fi(x) = (exi )2 + 3 sin (xi) cos (xi) − 1, i = 1, 2, . . . , n,
where C = Rn

+.

Problem 7. This problem is obtained from Ref. [6].
fi(x) = xi − sin |xi − 1|, i = 1, 2, . . . , n,

whereC =

x ∈ Rn :
n∑

i=1

xi ≤ n, xi ≥ 0, i = 1, 2, . . . , n

.

10
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Problem 8. The Logarithmic Function obtained from Ref. [77]
where C = Rn

+ is added to yield fi(x) = log (xi + 1) − xi
n , i =

2, . . . n
The above problems were tested with dimensions

1000, 50, 000, 100, 000, and the following initial guesses:
a1=

(
n−1

n , n−2
n , n−3

n , ..., 0
)T

, a2 =
(

1
n ,

2
n ,

3
n , ..., 1

)T
, a3

=
(
3, 1, 3, ...,−2 [(−1)n−2]

2

)T
,

a4 =
(
4, 2, 4, ...,−2 [(−1)n−3]

2

)T
, a5 =

(
3, 0, 3, ...,−3 [(−1)n−1]

2

)T
,

a6=
(

9
2 ,

3
2 ,

9
2 ...,−3 [(−1)n−2]

2

)T
.

Furthermore, Tables 1 - 4 displays the experiment’s results,
where the columns marked ”NP” and ”VAR” stand for prob-
lem number and number of variables, ”IG” and ”ITN” denote
initial guess and number of iterations, FE” and ”PT” represent
function evaluations and processing time obtained. Value of
the norm attained at approximate solution and failure to solve a
problem are denoted by ”Norm” and ” ∗ ∗ ∗ ”.

Tables 1 - 4 showed that Algorithm 1 performs much better
than SCGP, HTTCGP, and ACGD schemes. It can be seen from
the Tables that Algorithm 1 solved all the test problems success-
fully and also yields the best results for less iterations, function
evaluations and cpu time. Furthermore, we employ the statisti-
cal tool proposed in Ref. [79] to clearly explain performances
of each of the four algorithms. Using the idea in Ref. [79], Fig-
ures 1 - 3 were drawn for the three aforementioned metrics. The
percentage of problems that an algorithm solved with less value
of any of the metrics is indicated on the y-axis of each figure;
the percentage of successfully solved problems is displayed on
the right side of each figure, while the most problems solved in
a time that was within a factor ϖ of the best time is given by the
algorithm whose curve stays at the top of the ones representing
the other algorithms. Figure 1 indicated that Algorithm 1 solved
74% (SCGP-11%, HTTCGP-32%, ACGD-10%) of problems
with least iterations. Figure 2 showed that Algorithm 1 recorded
88% (SCGP-10%, HTTCGP-14%, ACGD-2%) with less func-
tion evaluations. Also, Figure 3 indicated that Algorithm 1 is
the fastest of the algorithms since it solved 72.22% of prob-
lems with less processing time compared to (SCGP-11.11%,
HTTCGP-13.89%, ACGD-2.78%). It is worth noting that, for
the exception Figure 4, the values recorded in Figures 1 and 2
include cases where 2, 3 or all the four algorithms solved the
problems with the same value of the metric considered. Also,
note that in each of the figures, Algorithm 1 retains the top
curve. Based on these analysis, we conclude that Algorithm
1 is effective for solving Eq. (3).

5. Application of algorithm 1

Here, we first describe a concept in compressed sensing
problems known as sparse recovery, which involves obtaining
spars solutions to ill-conditioned linear systems of equations
Ax = b, with A ∈ Rk×n(k ≪ n) being linear operator, b ∈ Rk

is an observed value, and x ∈ Rn denotes the signal to be re-
constructed. The process involves minimizing the ℓ1 − norm

regularization problem

min
x

1
2
∥Ax − b∥22+η∥x∥1, (54)

where η > 0 is a regularization parameter. A suitable iterative
method (see Refs. [80–83] for details) is employed to solve Eq.
(54) by reconstructing an original signal, say x̂ from a sample of
disturbed signals. The scheme proposed in Ref. [83] has been
described as the most prominent of the methods. The technique
in Ref. [83] involves splitting any vector x ∈ Rn in to two parts
as follows:

x = υ − ν, υ ≥ 0, ν ≥ 0, (55)

with υ ∈ Rn, ν ∈ Rn, υi = (xi)+ and νi = (−xi)+ for all i =
1, 2, ..., n, where (.)+ is defined as (x)+ = max{0, x}. Utilizing
this, we have ∥x∥1= eT

n υ + eT
n ν, with en = (1, 1, ..., )T ∈ Rn. So,

Eq. (54) can be re-written as

min
υ,ν

1
2
∥A(υ − ν) − b∥22+ηeT

n υ + ηeT
n ν, υ ≥ 0, ν ≥ 0. (56)

In Ref. [83], it was indicated that Eq. (56) can be further ex-
pressed as

min
z

1
2

zT Dz + χT z, z ≥ 0, (57)

where

z =
(
υ

ν

)
, χ = ηe2n+

(
−h
h

)
, h = AT b, D =

(
ATA −ATA

−ATA ATA

)
.

Being that D represents positive semi-definite matrix, equation
Eq. (57) denotes a convex quadratic programming problem
[84]. Moreover, by the equivalence of the optimality condition
for Eq. (4) and Eq. (1), z in Eq. (57) represents the minimizer of
Eq. (57) provided it represents solution of the nonlinear equa-
tions

F(z) = min{z,Dz + χ} = 0.

In Refs. [84] and [85], the authors proved that F satisfies Eq.
(2) and Eq. (24), hence, Eq. (54) can be expressed as Eq. (3),
which can be solved using Algorithm 1.

Here, we apply Algorithm 1, HTTCGP [75] and MFRM
[86] solvers to de-blur some images that are contaminated by
impulse noise. The process is carried out by applying noise
suppression strategies, that require minimization of a composite
function [87]. To measure restoration quality, we use the signal-
to-noise ratio (SNR)

S NR = 20 × log10

(
∥x̃∥
∥x − x̃∥

)
,

and the peak signal to noise ratio (PSNR)

PS NR = 10 × log10
V2

MS E
,

with V being the reconstruction’s maximum absolute value and
MSE denotes mean square error. Furthermore, the process-
ing time (PT) is considered with the structured similarity in-
dex (SSIM), which exhibits similarity between actual and re-
covered images. The SSIM index MATLAB implementation

11
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can be assessed at http://www.cns.nyu.edu/lcv/ssim/. The pa-
rameters used for Algorithm 1 remain as applied in the first
experiment with r = 1.8. The HTTCGP and MFRM schemes
retain the parameters used in each of the papers. The standard
images Cameraman.png (256×256), Man.bmp (512×512), and
Barbara.png (512 × 512) were used in the experiment.

Typically, an algorithm having the largest values of SNR,
PSNR and SSIM is the most effective. In the experiments,
for the exception of the image Man, where HTTCGP recorded
much better results, Algorithm 1 has the largest values of the
three aforementioned performance metrics (see Table 5). In ad-
dition, Table 5 indicated that HTTCGP recorded the least pro-
cessing time. Also, Figure 4 displayed the original, blurry and
recovered images by the three Algorithms. Figure 4 also indi-
cated that all the three Algorithms were able to recover the im-
ages almost exactly. Following this analysis, we determine that
Algorithm 1 is appropriate for restoring original images from
blurry ones considered.

6. Conclusion

In an attempt to add to the few Dai-Kou-type methods for
solving constrained system of nonlinear monotone equations,
an efficient modified three-term version was presented in this
paper. To realize this objective, a version of the classical Dai-
Kou method obtained with the most effective choice of the pa-
rameter τk was used. Furthermore, to improve performance of
the new method, a modified version of the popular spectral pa-
rameter by Barzilai and Bowein was incorporated in the scheme
with the implication that it speeds up convergence by enhancing
the distribution of eigenvalues of the method’s search direction
matrix. Unlike the unmodified Dai-Kou method, our scheme
satisfies the condition for global convergence irrespective of the
line search procedure employed. Proof of the scheme’s global
convergence using mild conditions shows that its sequence of
iterates converged globally. Also, numerical results of some ex-
periments with eight test problems shows that the scheme out-
performs three other methods in the literature. To further high-
light the method’s effectiveness, it is applied to de-blur some
standard images contaminated by impulse noise. As a future re-
search, we intend to develop an improved version of the scheme
with its application in signal reconstruction.

Data Availability

No additional data was used beyond those presented in the
submitted manuscript.
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rithm for unconstrained optimization”, Optimization 60 (2011) 1457.

[73] J. Barzilai & J. M. Borwein, “Two-point step size gradient methods”,
IMA Journal of Numerical Analysis 8 (1988) 141. https://doi.org/10.
1093/imanum/8.1.141.

[74] M. Koorapetse, P. Kaelo & E. R. Offen, “A Scaled derivative-free pro-
jection method for solving nonlinear monotone equations”, Bulletin of
the Iranian Mathematical Society 45 (2019) 755. https://doi.org/10.1007/
s41980-018-0163-1.

[75] J. Yin, J. Jian, X. Jiang, M. Liu & L. Wang, “A hybrid three−term

conjugate gradient projection method for constrained nonlinear mono-
tone equations with applications”, Numerical Algorithm 88 (2021) 389.
https://doi.org/10.1007/s11075-02-01043-z.

[76] Y. Ding, Y. Xiao & J. Li, “A class of conjugate gradient methods for
convex constrained monotone equations”, Optimization 66 (2017) 2309.
https://doi.org/10.1080/02331934.2017.1372438.

[77] W. L. Cruz, J. M. Martinez & M. Raydan, “Spectral residual method
without gradient information for solving large-scale nonlinear systems
of equations, Theory and experiments”, Mathematics of computation 75
(2006) 1429.

[78] W. L. Cruz, “A Spectral algorithm for large-scale systems of nonlinear
monotone equations”, Numerical Algorithm 76 (2017) 1109. https://doi.
org/10.1007/s1107s-017-0299-8.
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