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Abstract

Vibrational Resonance (VR), which is characterised by the enhancement of the maximum response of a weakly driven system’s output signal
induced by a high-frequency (HF) periodic signal, was numerically examined in a bi-harmonically driven dimensionless model of an enzyme-
substrate reaction with fractional-order damping, which models coherent oscillations in brain waves. The model incorporates a damping force
that depends on a non-integer (fractional) order derivative rather than the typical first-order derivative in classical damping models. The output
response was obtained by solving the model numerically using Grünwald-Letnikov’s fractional derivatives definition. The response amplitude,
computed from the Fourier spectrum of the output signal, was used to characterise VR. The effect of the fractional-order damping coefficient
on the observed VR was considered for different damping strength coefficients. Single-peak resonances were observed. The fractional-order
damping modulated the observed VR in a manner similar to the damping strength in an integer-order system, by reducing the high-frequency
signal amplitude at which VR occurs. Increased brain wave activity from enzyme-substrate reaction may be due to inherent energy transfers from
changes in the rate of decay, hence significant behavioural changes in brain wave activity could be linked to inherent changes in the decay rate of
the excited enzymes, even when there is no change in the number of enzyme-substrate carriers. This study reveals the potential of fractional-order
damping for enhancing biophysical system modelling, with implications for understanding brain wave activities.
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1. Introduction

Molecules, atoms, and ions are the building blocks of bi-
ological systems, and they function coherently and efficiently

∗Corresponding author: Tel.: +234-806-972-0796

Email address: k.omoteso2@derby.ac.uk (K. A. Omoteso )

by exhibiting quantum effects, such as the absorption of ra-
diation at specific wavelengths (e.g., photosynthesis in plants,
UV-ray absorption in DNA, and vision in humans), the mak-
ing and breaking of chemical bonds (e.g. enzyme-catalysed re-
actions and enzymatic cleavage), the conversion of chemical
energy into mechanical motion (e.g. Adenosine Triphosphate
(ATP) hydrolysis), and single-electron transfer through biolog-
ical polymers (e.g. DNA, proteins, and iron-sulphur proteins)
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[1–3]. Biophysical models describe how billions of biolog-
ical components function cohesively to produce macroscopic
effects, which are fundamental to life processes, using the laws
of physics. In physics, biophysical models provide simplified
answers that focus on collective behaviour rather than the com-
prehensive microscopic descriptions considered in biology and
chemistry. The laws of physics commonly applied are New-
ton’s laws. The development of differential calculus facilitated
the extension of Newton’s equations to describe continuous
changes in various physical quantities.

Differential equations describe how continuous systems
evolve, and the behaviour of a system can be analysed by solv-
ing the modelled differential equation of motion [4]. Usually,
a system’s evolution is interpreted through a series of phenom-
ena such as limit cycles, chaos, and resonance [5, 6]. Biophys-
ical mechanics modelling accounts for memory effects during
system evolution. Hence, such systems are modelled with frac-
tional derivatives [7, 8].

Fractional-order differential equations (FDEs) contain arbi-
trary (non-integer) order derivatives. A system is said to be a
fractional-order system if its dynamics can be modelled by a
fractional differential equation [9]. Fractional calculus offers
two key benefits, which account for the remarkable increase
in the applicability of FDEs across various scientific and en-
gineering domains [9–14]. First, it provides access to unlim-
ited system memory and hereditary properties, which are highly
useful in the modelling of natural systems. Secondly, the addi-
tional fractional-order (FO) parameters introduced into the sys-
tem create more space and flexibility. Furthermore, it is often
difficult to establish the dynamics between two different points
when the system is modelled with an integer-order (IO) deriva-
tive. Consequently, FO systems reveal new, previously unob-
served, and intriguing system behaviour, improving the physi-
cal modelling of real-life problems with greater reliability and
precision than their IO counterparts [15].

FDEs have been adapted to model biological systems due
to the need to incorporate long-range temporal memory effects,
which are present in many life processes, into existing biolog-
ical models [16]. Many intriguing results have been obtained
from these studies. For instance, the electrical conductance
of biological organisms’ cell membranes is of fractional or-
der [17]. The stability conditions, bifurcations, and chaos of
fractional-order prey-predator systems are fractional-order de-
pendent [18].

In epidemiology, the impact of infectious disease transmis-
sion within a community is established using a fractional op-
erator. The result is important for decision-making on disease
control [19]. Mansal and Sene (2020) deduced that the dynam-
ics of the fractional-order fishery model depend critically on
the harvesting rate [20]. The dynamics of the hepatitis E virus,
modelled using a fractional derivative, are explained in terms
of the existence and uniqueness of solutions to the model [21].
The mathematical modelling of tuberculosis infection dynam-
ics, with a prototype solution highlighting the significance of
the fractional operator, has been studied in [22]. For a more
extensive review of fractional calculus and its applications to
epidemic models in life sciences, we encourage readers to con-

sult the recent review by Nisar et al. (2024) [19].
Generally, FDEs have been reported to exhibit chaotic at-

tractors [23, 24], hidden attractors [25], self-excited attrac-
tors [26], resonance, and other fascinating features of non-
linear differential equations, including vibrational resonance
[27]. The resonance phenomenon is especially important be-
cause, due to their resonance, bodies and cells can transfer en-
ergy between domains, resulting in a state of interference and
interaction that maintains the connectivity of the whole uni-
verse. The concept of VR in biophysical systems is impor-
tant for understanding image processing techniques such as
Magnetic Resonance Imaging (MRI) and Positron Emission
Tomography (PET). Since resonance involves energy trans-
fer, enzyme-substrate reaction modelling brain wave activity
is interpreted in terms of increased processes, such as en-
zymatic combination-recombination processes, chemical reac-
tions, transport processes, and decay rate of excited enzymes.

Vibrational Resonance (VR) is a deterministic phenomenon
characterised by the enhancement of the response of a weak
signal to an external high-frequency perturbation [27, 28]. It
serves as a deterministic substitute for noise in stochastic pro-
cesses [29–31]. Many of the systems considered in studies on
VR are modelled as ODEs [32–38]. However, there is a sig-
nificant body of literature analysing vibrational resonance in
fractional-order systems. For instance, an overdamped frac-
tional Duffing oscillator exhibits a double-resonance pattern
due to the fractional-order derivative term [39].

VR has been examined in several fractional-order systems,
including the Duffing system [40], the quintic oscillator [41],
delayed systems [42], multistable systems [43], the Toda os-
cillator [44], and biophysical models such as the FitzHugh-
Nagumo (FHN) neuron model [45] and a birhythmic biologi-
cal system [46]. For a comprehensive review of the concept
of VR–including its variants, the many systems in which it
has been observed, the types of external excitations and the
mechanisms initiating the resonance phenomenon, as well as
its applications–we refer the reader to a recent review by Yang
et al. (2024) [27].

VR has been shown to be significantly impacted by frac-
tional order. For instance, when compared to the integer-order
model, the fractional order FHN neuron exhibits robust electri-
cal activity [45]. The fractional-order damping coefficient has
been shown to contribute significantly to the observed VR. For
example, Mbong et al. (2016) [41] showed that damping influ-
ences the quintic oscillator’s high-frequency force amplitude at
resonance.

Fractional-order models are known to produce more abun-
dant dynamical behaviours than their traditional integer-order
counterparts. While fractional-order systems offer enhanced
modelling capabilities, their role in modulating vibrational res-
onance in biophysical systems remains underexplored, and only
a few studies have examined the implications of fractional-
order damping in biological contexts. Specifically, the effect
of fractional-order damping on observed vibrational resonance
in coherent oscillations in a biophysical system modelling an
enzyme-substrate reaction with ferroelectric behaviour in brain
wave models has not been reported. Understanding vibra-
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tional resonance in enzyme-substrate reactions can provide in-
sights into brain wave dynamics and other biological phenom-
ena. Hence, this research examines the role of fractional-order
damping in the VR phenomenon in a biophysical system mod-
elling coherent oscillations in brain waves.

2. The model

The model considered in this research describes coherent
chemical oscillations of the enzyme-substrate reaction with fer-
roelectric behavior in brain wave model. It employs macro-
scopic theories to describe the functional complexity of biolog-
ical materials as proposed by Froehlich [1], based on the fol-
lowing assumptions:

• A simple unit of biological system consists of
biomolecules surrounded by water

• The configuration of the biological setup can lead to ex-
istence of very high electric field that causes a strongly
polarized membrane.

• When energized, the setup exists in high electrically po-
larized metastable state.

• The oscillating polarized membrane can set up an electric
vibration.

• The longest of these longitudinal electric vibrations sets
up a dipole vibration of the whole system. In the presence
of metabolic energy, these electric vibrations are strongly
and coherently excited.

• The long-range selective interaction, coupled with the ex-
istence of this polar metastable state, explains the high
sensitivity of certain biological systems to magnetic and
electric fields. The presence of coherent electric vibra-
tions may be decisive for the EEG observed in the brain.
[47–49].

Certain chemical processes may be made possible by the
selective transport of enzymes brought about by long-range in-
teractions. The entire chemical oscillation results from the ex-
citation and de-excitation of enzyme molecules from reactions
with substrates, assuming the enzymes and substrates show
long-range selective interactions that increase their influx. Each
enzymatic transition from a weakly or non-polar ground state
to a highly polar excited state chemically destroys a substrate
molecule. Additionally, spontaneous de-excitation of enzymes
from the excited state to the ground (or weakly polar) state takes
place. Given the population of N excited and R unexcited en-
zymes, and S as the number of substrate molecules, then a bio-
logical reaction is described by

dN
dτ0

= vNRS − ξN,

dS
dτ0

= γS − vNRS , (1)

dR
dτ0

= ξN − vNR − λ(R −C),

where ξ denotes the de-excitation decay rate of enzymes, v the
nonlinear enzyme-substrate reaction strength, γ the range of at-
traction of the substrate particle due to the auto-catalytic reac-
tion, C is the equilibrium concentration of the unexcited en-
zyme molecules when N = S = 0, that is, when neither the
excited enzyme nor the substrate are present.

To simplify Equation (1), we use the adiabatic elimination
of fast variable by supposes that the equilibrium of the unex-
cited enzyme concentration is reached fast, Equation (1) is re-
duced to the Lotka-Voltera equation of the form

dN
dτ0
= vCNS − ξN, (2)

dS
dτ0
= γS − vCNS . (3)

From equation (2) and (3), two steady states are obtained at
No, S o = (0, 0) and NoS o =

(
γ

vC ,
ξ

vC

)
and perturbing around

this steady states give

dε
dτ0
= γη − vCnε, (4)

dη
dτ0
= −ξε − vCnε, (5)

where ε and η are respectively the excess concentration of ac-
tivated enzymes and substrate molecules beyond their equilib-
rium value No and S o. Given the electric resistance of the over-
all system due to oscillation as - σP and assuming that the
macroscopic polarization P to be proportional to the time de-
pendent number ε of excited enzymes molecules, then

dε
dτ0
= (k2e−ψ

2ε2
− σ2)ε. (6)

Lastly accounting for the electric field F which interacts with
polarization, then

dε
dτ0
= γη +

(
k2e−ψ

2ε2
− σ2

)
ε + vCnε + F(τ0). (7)

Considering the series development in series of the function
e−ψ

2ε2
at third order with a frequency of chemical oscillation

as ω0 =
√
ξγ, the following rescaling was applied.

t = ω0τ, ω
2
0 = ξγ, x = Ξε, Ξ =

√
3

κ2 − σ2 κψ, ,

µ =
κ2 − σ2

ω0
, f (t) =

Ξ

ω2
0

d
dt

F
(

t
ω0

)
, α =

5
18κ2 (κ2 − σ2),

β =
7

162κ
(κ2 − σ2)

2
. (8)

It was found that the biological system process was governed
by the equation

d2x
dt2 − µ

(
1 − x2 + αx4 − βx6

) dx
dt
+ x = f cosωt, (9)

where f and ω are amplitude and frequency of external exci-
tation respectively and α, β and µ are positive parameters of
nonlinearity [49].
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By adding a fast periodic siganl, g cosΩt with amplitude
g and frequency Ω (Ω ≫ ω) to the system (Equation 9), and
factoring in the memory capabilities of contributing properties,
the biophysical system is modelled as a bi-harmonically driven
FO system of the form

dλ2 x
dtλ2
− µ(1 − x2 + αx4 − βx6)

dλ1 x
dtλ1
+ x

= g cosΩt + f cosωt, (10)

where y = dλ1 x
dtλ1

and λ1 and λ2 are the non-integer orders of the
differential equation. To obtain the output signal, Equation (10)
is first expressed in form of a coupled lower order differential
equation of the form

dλ1 x
dtλ1

= y, (11)

dλ2 y
dtλ2

= µ(1 − x2 + αx4 − βx6)y − x + g cosΩt + f cosωt.

3. Numerical simulation of VR

To obtain the output signal, which corresponds to the solu-
tion of Equation (10), we apply an approximation method us-
ing discretisation of the corresponding fractional-order differ-
entiator, which typically requires information about the previ-
ous state of the system, a condition known as the memory effect.
Here, we apply the short memory principle to the Grünwald-
Letnikov definition of the fractional derivative, so as to reduce
the computational cost and control the accuracy of the numeri-
cal solution of the system [50].

The Grünwald-Letnikov definition of the fractional deriva-
tive is a simpler definition compared to other well-known defi-
nitions, such as the Riemann-Liouville and Caputo definitions.
However, for a wide class of functions, the three definitions
are equivalent under certain conditions (zero initial condition
and lower terminal a = 0) [50, 51]. It is employed because
of its simplicity in the discretisation of fractional-order opera-
tors, overcoming the difficulties of evaluating an integral and
a gamma function embedded in the Caputo definition, as well
as the rigorous practical implementation issues due to the dif-
ficulty in assigning some physical meaning to the initial condi-
tions associated with the Riemann-Liouville definition.

The short memory principle is effective for time-dependent
dynamical systems. The technique is an approximation, which
assumes that, at large time t, the effect of the historical mem-
ory becomes negligible and can be truncated at a certain time
interval, instead of considering all past values. As such, the
infinite sum in the Grünwald-Letnikov definition of the frac-
tional derivative is approximated by truncating the series to a
finite number L, representing the ”memory length” of the sys-
tem. Consequently, the Grünwald-Letnikov binomial coeffi-
cients, which correspond to the values of the function around
the initial condition (say t = 0), have a negligible contribution
to the present state (say, the solution at time t). The approx-
imate numerical solution is solely dependent on the system’s
recent history [t − L, t], with the derivative computed over a
moving low limit.

Generally, the technique guarantees that for f (a) = 0, the
Riemann-Liouville, Caputo and Grünwald-Letnikov definitions
of fractional derivative are equivalent for most functions [51].
By applying the short memory principle, the explicit numerical
approximation of the Grünwald-Letnikov definition of the frac-
tional derivative of order λ (0 < λ < 1) for a function f (t) at the
points tk = kh, where k = 1, 2, . . ., is given by

LD
λ
tk ≈ lim

h→0

1
hλ

[N(t)]∑
j=0

(−1) j
(
λ
j

)
f (tk− j)

= lim
h→0

1
hλ

[N(t)]∑
j=0

c(λ)
j f (tk− j), (12)

where h is the integration step size. The relation N(t) =
min( tk−L

h , L
h ) helps to eliminate the dependence on initial con-

ditions t = 0 as normally required for systems with memory.
c(λ)

j ( j = 0, 1, 2, . . . , k) is the binomial coefficient generalized
for fractional order, which is computed using the recursive re-
lation

c(λ)
0 = 1, c(λ)

j =

(
1 −

1 + λ
j

)
c(λ)

j−1.

The discretisation of the system (Equation (11)) is achieved
by using the relation for the explicit approximation of fractional
derivatives (Equation (12)) in Equation (10), such that Equa-
tion (11) can be written in the discretised form as:

x(tk) = (y(tk−1))hλ1 −

N−1∑
j=1

c(λ1)
j x(tk− j), (13)

y(tk) = (−x(tk) + µ(1 − x(tk)2 + αx(tk)4 − βx(tk)6)y(tk−1)

+ g cos(Ωhtk))hλ2 + f cos(ωhtk))hλ2 −

N−1∑
j=1

c(λ2)
j y(tk− j).

Resonance is typically described using the response factor Q,
also referred to as the response amplitude. It provides insight
into how an amplified output results from the parameter mod-
ulation of a high-frequency signal coupled to a weakly driven
nonlinear system.

The Fourier spectrum of the output signal is typically used
to calculate the response amplitude Q. This is because any pe-
riodic function can be approximated by the sum of its Fourier
components. The response amplitude Q is therefore expressed
in terms of the Fourier sine component Qs and cosine compo-
nent Qc as

Qs =
2

nT

∫ nT

0
x(t) sinωtdt

Qc =
2

nT

∫ nT

0
x(t) cosωtdt, (14)

so that the amplitude, A and phase shift Φ are then computed
from Equation (14) a

A =
√

Q2
s + Q2

c (15)

Φ = tan−1
(

Qs

Qc

)
,
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Figure 1. Resonance Curves (Response amplitude Q versus amplitude
of the HF signal, g) for different values of arbitrary real fractional or-
ders, λ1 = [1.0, 0.9, 0.8, 0.6]. Other system parameters are set as: λ2 =

1.0, µ = 0.20, α = 0.5, β = 0.02, ω = 0.2, Ω = 50ω and f = 1.0.

so that the response factor Q is thus computed from

Q =
A
f
=

√
Q2

s + Q2
c

f
. (16)

To generate the numerical results, Equation (13) was solved
with zero initial conditions (x(0) = y(0) = 0). This choice is
usually sufficient for the numerical integration of FDEs. The
damping coefficients (α, β) are chosen within regimes that en-
sure the system remains in periodic oscillation, as resonance
cannot be explored in a chaotic state. Additionally, the non-
integer orders are constrained (λ2 = 1, λ1 ≤ 1) to investigate
the effect of fractional-order damping coefficients.

4. Results and discussion

The possibility of controlling and inducing nonlinear reso-
nance phenomena through system components such as HF sig-
nal parameters, LF signal parameters, and damping coefficients
has been established in the integer-order model of brain waves
[52]. In this research, the major advantage of fractional-order
systems is utilised to control the observed resonances. This is
achieved by varying the order of the damping from an integer
value to a fractional value. Figure 1 illustrates the effect of
fractional-order damping λ1 = [1, 0.9, 0.8, 0.6] on the resonant
state at µ = 0.2. It can be observed that λ1 reduces the value of
the high frequency at which the maximum amplitude occurs,
gVR. This observation remains consistent for two fractional-
order states, λ1 = 0.9 and λ1 = 0.8, across four different val-
ues of the damping strength µ, as shown in Figure 2(a)-(d) for
µ = 0.15, 0.2, 0.25, and 0.3, respectively.

The controlling effect of fractional-order damping on the
maximum response amplitude, Qmax, and the HF amplitude cor-
responding to VR, gVR, is also observed in Figure 3, which

Figure 2. Resonance Curves (Response amplitude, Q versus amplitude
of the HF signal, g) for two values of arbitrary fractional orders, λ1 =

[0.9, 0.8] for (a) µ = 0.15; (b) µ = 0.20; (c) µ = 0.25; and (d) µ = 0.30.
Other system parameters are set as: λ2 = 1.0, α = 0.5, β = 0.02, ω =
0.2, Ω = 50ω and f = 1.0.

depicts the variation of response amplitude Q with HF am-
plitude g for four values of the fractional-order damping co-
efficient, λ1 = [1, 0.9, 0.8, 0.6], at a constant damping coeffi-
cient, β = 0.03. Clearly, the observed effect of the fractional-
order damping coefficient remains consistent for different val-
ues of damping nonlinearity, as shown in Figure 4(a)-(d) for
β = 0.018, 0.021, 0.025, and 0.03, respectively.

The fractional-order damping coefficient, λ1, significantly
lowers gVR and enhances the observed VR by slightly increas-
ing the maximum response amplitude, Qmax, for each of the
four values of β considered. The role of the fractional-order
coefficient remains unchanged when varying the value of the
other damping coefficient, α, as shown in Figures 5 and 6. Fig-
ure 5 illustrates the dependence of the response amplitude on
the HF amplitude, g, for different values of the fractional-order
coefficient, λ1 = [1, 0.9, 0.8, 0.6].

The maximum response occurs at a lower HF amplitude, g,
with the possibility of enhancement through the reduction of
the fractional-order damping coefficient. This trend is also ob-
served for four values of the nonlinear coefficient, α, as shown
in Figure 6(a) for α = 0.20; Figure 6(b) for α = 0.30; Figure
6(c) for α = 0.40; and Figure 6(d) for α = 0.50. Addition-
ally, there is a clear enhancement as α increases from 0.2 to
0.4, as reflected in the maximum response amplitude in Figures
6(a)-(d). The enhancement observed with increasing α has been
previously discussed in Ref. [52].

In these results, the effect of fractional-order damping in
controlling the vibrational resonant amplitude, gVR, is consis-
tent across all system parameters considered. Additionally, the
possibility of enhancement and suppression through the mod-
ulation of the fractional order can be confirmed for different
parameters. Therefore, for appropriate values of system param-
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Figure 3. Resonance Curves (Response amplitude Q versus amplitude
of the HF signal, g) for different values of arbitrary real fractional or-
ders, λ1 = [1.0, 0.9, 0.8, 0.6]. Other system parameters are set as: λ2 =

1.0, µ = 0.2, α = 0.5, β = 0.03, ω = 0.2, Ω = 50ω and f = 1.0.

Figure 4. Resonance Curves (Response amplitude, Q versus amplitude
of the HF signal, g) for two values of arbitrary real fractional orders,
λ1 = [0.9, 0.8] for (a) β = 0.018; (b) β = 0.020; (c) β = 0.025; and (d)
β = 0.03. Other system parameters are set as: λ2 = 1.0, µ = 0.2, α =
0.5, ω = 0.2, Ω = 50ω and f = 1.0.

eters, the fractional order can be adjusted to enhance the system
response.

Generally, in the fractional-order damped biophysical sys-
tem, only single resonance peaks were observed for all values
of fractional-order damping with λ1 ≤ 1, as shown in Figures 1
– 6. The non-integer order has the capacity to reduce the value
of the HF amplitude at which VR occurs in the integer-order
system.

Fractional-order damping is related to the decay rate of ex-
cited enzyme molecules, which affects enzyme-substrate inter-

Figure 5. Response amplitude Q versus HF signal amplitude, g) for
different fractional orders, λ1 = [1.0, 0.9, 0.8, 0.6]. Other system pa-
rameters are set as: λ2 = 1.0, α = 0.5, µ = 0.2, β = 0.02, ω = 0.2, Ω =
50ω and f = 2.0.

Figure 6. Resonance Curves (Response amplitude, Q versus amplitude
of the HF signal, g) for two values of arbitrary fractional orders, λ1 =

[0.9, 0.8] for (a) α = 0.2; (b) α = 0.3; (c) α = 0.4; and (d) α = 0.5.
Other system parameters are set as: λ2 = 1.0, µ = 0.2, β = 0.02, ω =
0.2, Ω = 50ω and f = 2.0.

actions in brain wave activity in real biological systems. At
resonance, the enzyme-substrate reaction is amplified, leading
to increased brain wave activity. Consequently, modulating
the fractional-order damping regulates energy transfer during
molecular interactions by influencing enzyme excitation pro-
cesses.
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5. Conclusion

In this research, the role of fractional-order damping in
observed vibrational resonances was studied using numerical
methods. The response amplitude Q was used to characterise
VR, as it defines an amplification factor that indicates the influ-
ence of the HF signal on the oscillator. The fractional-order
damping modifies both the maximum peak of the response
curves, Qmax, and the response amplitude at which VR oc-
curs, gVR, thereby effectively controlling the single-peak reso-
nance behaviour of the system. Compared with vibrational res-
onance in ordinary integer-order systems, the new results ob-
tained in the fractional-order system confirm the contributory
role of fractional-order damping.

This research concludes that fractional-order damping plays
a contributory role in the observed resonances. At resonance,
the enzyme-substrate reaction is amplified, leading to increased
brain wave activity. Increased brain wave activity resulting
from the enzyme-substrate reaction may be linked to inherent
energy transfers due to changes in the rate of decay induced by
fractional-order modulation at resonance. Consequently, sig-
nificant behavioural changes in brain wave activity could be ob-
served due to inherent variations in the rate of enzyme-substrate
decay, even in the absence of changes in the number of enzyme-
substrate carriers. Fractional derivatives can be utilised to en-
hance the performance of population models.

This research demonstrated the capability of fractional cal-
culus to capture the nonlocal and frequency-dependent inherent
behaviour of biophysical systems, which has key applications
in physiological signal analysis. Specifically, the findings pro-
vided enhanced insights into the underlying dynamics of the
FDE model of the enzyme-substrate reaction in brain wave sig-
nals, explaining regions of enhanced resonance and control that
are not available within the classical integer-order approach.
The achieved control can be leveraged to improve stability and
robustness, particularly in applications requiring modulation of
resonance responses in cardiology and neuroscience, such as
heart rate variability, EEG signals, and other bio-signals. This
approach could also be extended to study other biophysical sys-
tems or improve medical imaging techniques.

Experimental studies of VR have been conducted in other
physical systems, particularly in electronic circuits. Conse-
quently, experimental studies implementing the techniques of
vibrational resonance in a fractional-order biophysical system,
based on the dielectric properties of biological materials and
the action of enzymes, should be carried out to complement the
theoretical framework established in this study.

Data availability

No data was used for the research described in the article.
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