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Abstract

Quantum computing holds transformative potential, but its adoption is hindered by the complexity of generating efficient, hardware-specific code.
This work presents a modular, extensible compiler framework that bridges high-level quantum languages with diverse hardware architectures.
The framework consists of three modules: a front-end for parsing quantum code into a hardware-agnostic intermediate representation (IR), an
optimization module for enhancing quantum circuits through gate synthesis, qubit routing, and error mitigation, and a back-end for generating
hardware-specific instructions. Major contributions include a hardware-agnostic IR for cross-platform compatibility, optimization techniques to
reduce gate complexity and noise, and hardware-specific adaptations to improve execution fidelity. A practical demonstration optimizes quantum
circuits, highlighting the impact of hardware constraints. Comparative analysis of IBM Quantum and IonQ platforms underscores the role of qubit
connectivity and noise resilience in algorithmic performance. This scalable framework enhances quantum software development and efficient
hardware utilization.
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1. Introduction

Quantum computing operates on principles vastly different
from classical computing, with qubits exploiting quantum phe-

∗Corresponding author Tel. No: +234-810-738-1867.

Email address: g.james@topfaith.edu.ng (G. G. James )

nomena such as superposition and entanglement. As the field
advances, there is a growing demand for efficient compilation
techniques that can abstract the complexities of quantum hard-
ware and enable programmers to focus on high-level algorithm
design. This literature review examines key developments in
compiler techniques for quantum computing and explores how
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these approaches optimize code generation to align with the
specific features of quantum architectures.

The need for specialized compilers in quantum computing
arises from the fundamental differences between classical and
quantum computing models. Classical computers operate using
bits that represent binary states (0 or 1), while quantum com-
puters utilize qubits, which can exist in a superposition of both
states. Additionally, quantum gates, the operations performed
on qubits, differ significantly from classical logic gates in terms
of behavior and resource constraints [1]. Given these differ-
ences, compilers for quantum computers must not only trans-
late high-level code into low-level instructions but also account
for the quantum mechanical properties that govern quantum op-
erations [2].

Chong et al. [3] emphasized the co-design of quan-
tum algorithms and architectures, focusing on the intersec-
tion of compiler design and quantum hardware. Carbin et
al. explored quantum programming languages and quantum
circuit optimization, focusing on tools for automated verifica-
tion and compiler-level quantum circuit generation [4]. Ross
and Selinger worked on quantum gate synthesis and compi-
lation, creating optimized quantum circuits by leveraging the
properties of quantum gates [5]. Cross, an architect of the
Qiskit platform, focused on quantum compiler design to en-
able efficient quantum computation on IBM’s quantum proces-
sors [6]. Schuch examined quantum architectures and circuits,
especially focusing on quantum information theory and tensor
networks that inform compiler design [7].

Javadi-Abhari et al. [8] focused on quantum circuit opti-
mization and compilation, working closely with Qiskit on com-
piler optimizations for quantum hardware. Sheldon et al. [9]
explored quantum error mitigation and optimization, which are
critical for quantum compilers dealing with real hardware con-
straints. Fowler et al. [10] research in quantum error correction,
particularly surface codes, has had significant implications for
compiler design, focusing on how quantum code can be opti-
mized for fault-tolerant quantum architectures.

Compiler-assisted code generation for quantum computing
is a burgeoning area aimed at optimizing and automating the
process of writing code for quantum processors, which differ
significantly from classical architectures [11]. Quantum com-
puting introduces unique challenges due to its probabilistic na-
ture, the superposition of states, and entanglement. Compiler
techniques in this domain focus on leveraging these properties
while optimizing performance and reducing errors [12].

Quantum computing, a revolutionary paradigm in computa-
tion, promises unprecedented capabilities for solving complex
problems beyond the reach of classical systems [13]. How-
ever, the unique principles of quantum mechanics that under-
pin quantum computing—such as superposition, entanglement,
and interference—introduce significant challenges in program-
ming and code generation [14]. Unlike classical computing,
where well-established compiler frameworks efficiently trans-
late high-level code into machine instructions, quantum com-
puting requires novel approaches to address its fundamentally
different architectural and operational constraints [15].

One major challenge in generating efficient code for quan-

tum computing lies in the limitations of existing compiler
frameworks [16]. Classical compilers, such as GCC and
LLVM, have evolved over decades to optimize code for de-
terministic, binary architectures [17]. While these frameworks
offer valuable insights, they fall short when applied to quan-
tum systems due to the probabilistic nature of quantum opera-
tions and the physical constraints of qubits [18]. Recent efforts
to develop quantum-specific compilers, such as t|ket>, Quilc,
and Qiskit’s transpiler, have laid the groundwork for quantum
code generation [19–21]. However, these tools often lack ro-
bust optimization strategies for diverse hardware architectures,
highlighting the need for a more comprehensive and adaptive
approach [22].

A key factor complicating quantum code generation is the
unique requirements of quantum architectures [23]. Qubits, the
fundamental units of quantum information, exhibit hardware-
dependent constraints, including limited connectivity, suscepti-
bility to noise, and variations in gate fidelity [24]. For instance,
superconducting qubits may have fixed couplings that restrict
two-qubit gate operations to specific pairs, necessitating qubit
routing strategies [25]. Additionally, the finite coherence times
of qubits impose strict limitations on circuit depth, while error
rates vary significantly across devices [26]. These factors de-
mand compilers that can perform sophisticated hardware-aware
optimizations to ensure efficient and reliable quantum program
execution [27].

Furthermore, quantum programming languages and
paradigms present their own set of challenges and opportu-
nities [28]. Languages such as Qiskit, Cirq, and Q# provide
abstractions to design and simulate quantum circuits, yet
they differ significantly in syntax, capabilities, and target
backends [29]. For example, Qiskit emphasizes modularity
and interoperability with IBM Quantum hardware, while Cirq
is tailored for Google’s quantum processors and hybrid work-
flows [30]. Meanwhile, Q# focuses on a high-level functional
programming approach, facilitating algorithm development
[31]. These languages underscore the need for a compiler
framework that bridges the gap between diverse programming
paradigms and heterogeneous quantum architectures, enabling
seamless translation and optimization across platforms [32].

In this context, this study explores a compiler-assisted code
generation approach tailored to quantum computing. By lever-
aging insights from classical compiler design and addressing
the specific challenges posed by quantum architectures, this
approach aims to optimize quantum program execution while
enhancing portability and scalability [33]. This work reviews
existing frameworks, examines architectural requirements, and
analyzes quantum programming paradigms to propose a novel
methodology for efficient and adaptive quantum code genera-
tion [34].

2. Key techniques and concepts of compiler quantum com-
puting

2.1. Quantum intermediate representations (QIR)
Quantum Intermediate Representation (QIR) serves as an

abstraction layer between quantum algorithms and the under-
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lying quantum hardware. It allows for the separation of algo-
rithmic descriptions from hardware-specific constraints. The
QIR facilitates optimizations at various stages of the compila-
tion process. Tools such as Microsoft’s QIR Alliance aim to
standardize intermediate representations to ensure compatibil-
ity across different quantum hardware backends [35]. The use
of QIR improves the portability of quantum programs and en-
ables advanced compiler optimizations.

2.2. Quantum circuit optimization

Quantum circuit optimization is a critical step in the com-
pilation process. Techniques such as gate cancellation, com-
mutation analysis, and template matching have been devel-
oped to minimize the number of quantum gates and reduce
the circuit depth [36]. These optimizations are essential for
improving the performance of quantum algorithms, especially
given the limited coherence times of qubits in current quan-
tum hardware. Optimization techniques for quantum circuits
are critical for enhancing the performance of quantum algo-
rithms on real quantum hardware. Quantum circuit optimiza-
tion is also a multi-faceted problem, particularly due to the
constraints of current quantum hardware, such as noise, lim-
ited qubits, and gate fidelity. Compiler-level optimizations can
make a significant difference in reducing the resources required
for quantum computations. Quantum circuit optimization tech-
niques implemented at the compiler level are essential for im-
proving the performance of quantum algorithms, particularly
on noisy intermediate-scale quantum (NISQ) devices [37–42].
Gate minimization, qubit overhead reduction, hardware-aware
optimization, gate-level parallelism, and error mitigation are
key strategies that can be deployed to extend the capabilities
of current quantum hardware. As quantum compilers evolve,
integrating these techniques will be crucial in making quan-
tum computing more practical and efficient. Optimization tech-
niques specific to quantum circuits that can be implemented
through compilers, as ascertained by Amy et al. [36] include:

2.2.1. Gate minimization
Gate minimization is crucial because the error rates of quan-

tum operations increase with the number of gates. The goal
is to reduce the overall number of quantum gates or replace
costly multi-qubit gates with simpler, less error-prone alterna-
tives [36]. Gate minimization techniques include:

1. Gate Fusion: The compiler can identify sequences of
gates that, when combined, lead to an equivalent but sim-
pler operation. For example, consecutive unitary opera-
tions might be merged into a single unitary matrix. This
is often done with single-qubit gates and controlled-NOT
(CNOT) gates [43].

2. Template Matching: Known gate patterns that can be
simplified are matched and replaced with their optimized
counterparts. This technique uses a library of prede-
fined ”templates” to reduce gates. Decomposition Op-
timization: Complex gates like Toffoli or other multi-
controlled gates can be decomposed into sequences of

more hardware-efficient gates like CNOTs and single-
qubit rotations. Optimal decompositions can lower the
number of operations, improving fidelity and speed [44].

2.3. Qubit Overhead Reduction
Reducing qubit overhead focuses on minimizing the num-

ber of qubits used in a quantum algorithm, which is crucial
given the limited qubit availability on current hardware [45].
Qubit overhead reduction has unique techniques, which are:

1. Qubit Reuse: By careful scheduling and analysis of qubit
lifetimes, the compiler can reuse qubits for different parts
of the computation. This is particularly effective when
parts of the computation are independent or sequential
[44].

2. Ancilla Qubit Reduction: Many quantum algorithms,
such as those involving arithmetic or error correction, re-
quire ancillary qubits (ancillas) for intermediate calcula-
tions. Compilers can optimize the use of ancilla qubits,
ensuring they are freed and reused as soon as possible
[41, 43].

3. Quantum Memory Management: Similar to classical
memory management, quantum memory management
techniques allow qubits to be released and reassigned
dynamically during computation. This helps reduce the
number of qubits required to implement a circuit [43].

2.4. Hardware-aware optimization
Quantum circuits must be tailored to the specific architec-

ture of the quantum hardware for optimal performance. Dif-
ferent quantum platforms (for example, superconducting qubits
and trapped ions) have unique physical constraints, such as con-
nectivity between qubits, gate fidelities, and error rates [46].
Techniques for hardware–aware optimization include:

1. Qubit Mapping and Routing: On quantum devices, not
all qubits can interact directly. Therefore, compilers must
map logical qubits in the algorithm to physical qubits on
the hardware, optimizing for connectivity. Techniques
like SWAP insertion allow qubits to be moved around the
hardware topology efficiently.

2. Noise-Aware Gate Scheduling: Given the variation in
gate fidelities and noise profiles between qubits, the com-
piler can schedule critical operations on the most reliable
qubits and use gates with the highest fidelity [47].

3. Calibration-Aware Gate Sequences: Different quantum
hardware may favor certain gate implementations. For
instance, on superconducting quantum computers, cer-
tain two-qubit gates (like CZ or iSWAP) may be more re-
liable than others. Compilers can tailor the gate sequence
to the hardware’s strengths.

2.5. Quantum architecture analysis
Studying qubit configurations, understanding hardware

constraints, and developing robust mapping strategies make it
possible to optimize quantum code for execution on diverse ar-
chitectures. These insights serve as a foundation for designing
a compiler that adapts to the unique properties of quantum sys-
tems, enhancing performance and reliability across platforms.
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2.6. Physical and logical qubit configurations
Quantum architectures vary significantly in their implemen-

tation of qubits and their associated control mechanisms. Below
is an overview of notable architectures:

1. IBM Quantum (Superconducting Qubits): IBM Quan-
tum uses superconducting qubits arranged in a fixed grid
topology. These qubits are controlled via microwave
pulses, and their connectivity is limited to nearest neigh-
bors, as defined by the coupling map. Logical qubits are
implemented through quantum error correction, requir-
ing multiple physical qubits to form a single logical qubit.

2. Rigetti Computing (Superconducting Qubits): Similar to
IBM, Rigetti employs superconducting qubits with a fo-
cus on scalable manufacturing. Rigetti architectures typ-
ically feature a lattice topology with limited connectivity
and are designed for high-speed gate operations.

3. IonQ (Trapped-Ion Qubits): IonQ leverages trapped-
ion technology, where ions are manipulated using laser
pulses. Unlike superconducting qubits, trapped-ion sys-
tems offer full connectivity between qubits, enabling di-
rect implementation of multi-qubit gates without addi-
tional routing. Logical qubits in IonQ systems also rely
on quantum error correction schemes.

2.7. Hardware-specific constraints
Quantum hardware imposes several constraints that signifi-

cantly impact the design and execution of quantum programs:

1. Gate Sets: Each quantum architecture supports a specific
set of native gates, which are directly implemented by the
hardware. For example:

(a) IBM Quantum: CX (CNOT), U1, U2, U3 gates.
(b) Rigetti: Parametric RX, RZ rotations, and con-

trolled gates.
(c) IonQ: Arbitrary single-qubit rotations and Mølmer–

Sørensen gates for entanglement.

Compilers must decompose higher-level gates into these
native gates to execute quantum circuits effectively.

2. Decoherence Times: Quantum systems are highly sus-
ceptible to noise, with decoherence times varying across
architectures. Superconducting qubits typically exhibit
coherence times in the range of microseconds, while
trapped-ion systems offer longer coherence times (mil-
liseconds). This impacts the permissible circuit depth and
necessitates error mitigation techniques.

3. Qubit Topology: The connectivity between qubits deter-
mines how multi-qubit gates can be implemented.

4. Superconducting qubits (IBM, Rigetti): Restricted con-
nectivity requiring qubit routing.

3. Methodology

The methodology for designing a compiler-assisted code
generation framework for quantum computing involves a sys-
tematic approach addressing the challenges of quantum-specific

requirements, hardware constraints, and optimization tech-
niques. The process begins with identifying the unique chal-
lenges in quantum computing, such as qubit connectivity, gate
fidelity, and error rates, by reviewing existing compiler frame-
works and quantum programming paradigms (e.g., Qiskit, Cirq,
Q#). A detailed analysis of quantum architectures, including
physical and logical qubit configurations, gate sets, decoher-
ence times, and qubit topology, helps establish a mapping be-
tween high-level operations and hardware-level instructions.

The framework’s design includes a modular architecture
with front-end, optimization, and back-end modules. Quantum-
specific optimizations, such as gate synthesis, qubit routing,
and error mitigation, are incorporated to improve performance
and reduce errors [48, 49]. A hardware-agnostic interme-
diate representation (IR) ensures compatibility with multiple
quantum backends [50–52]. The process also integrates static
and dynamic analysis techniques for resource estimation and
runtime optimization alongside circuit optimization strategies
like gate cancellation, commutation, and hardware-specific en-
hancements [53]. Validation through benchmark programs,
simulation, and hardware testing ensures correctness and ef-
ficiency. Iterative evaluation, user feedback, and comprehen-
sive documentation further refine the framework, supporting its
scalability, portability, and adoption within the quantum com-
puting community [54].

3.1. Mapping high-level quantum operations to hardware-level
instructions

A thorough review of existing literature on technology
stress, machine learning methodologies, and translating ab-
stract quantum algorithms into instructions compatible with tar-
get hardware involves several stages, each tailored to the unique
characteristics of the quantum architecture. Below is a step-
by-step illustration using an example algorithm: the Quantum
Fourier Transform (QFT), commonly used in quantum comput-
ing applications like phase estimation.

The QFT on nnn-qubits is defined by the unitary transfor-
mation:

| j⟩7→
1
√

2n

2n−1∑
k=0

e2πi. jk/2n
|k⟩. (1)

The circuit comprises:

1. Hadamard gates to create superpositions.
2. Controlled phase gates to entangle qubits and apply phase

shifts.
3. Swap gates to reverse the order of qubits for correct out-

put

3.1.1. Intermediate representation
In the Intermediate Representation step, the algorithm is

represented as a quantum circuit in terms of standard gates:
In this step, the algorithm is represented as a quantum circuit
in terms of standard gates in terms of Hadamard gate (H) on
each qubit, Controlled Rk gates (Rk = diag(1, e2πi/2k

)) between
qubits, and SWAP gates to reorder qubits.
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For a 3-qubit QFT, the circuit could be produced as follows:
Apply H on q0
Apply R2 between q0 and q1, R3 between q0 and q2
Apply H on q1, R2 between q1 and q2
Apply H on q2
SWAP q0 and q2

3.1.2. Gate decomposition
To make the circuit compatible with hardware, each gate is

decomposed into native gate operations. For example:
Hadamard Gate (H): Decomposed as:

H = RZ(π)RX(
π

2
), (2)

implementing single-qubit rotations in hardware.
Controlled Rk Gate: Decomposed into:

Rk =

{
CX RZ (θk) CX, f or IBM/Regetti.
MS (θk) , f or IonQ (Molmer − S orensen gate)

SWAP Gate for hardware restricted connectivity: the SWAP
gate is implemented using three CX gates:

S WAP = CX12CX21CX12 (3)

Given the physical qubit topology of the target hardware, in the
IBM Quantum, a linear topology may require inserting addi-
tional SWAP gates to connect non-adjacent qubits. Whilst, in
the IonQ, no additional routing is needed due to full connectiv-
ity.

For a 3-qubit QFT on IBM’s 5-qubit backend, logical qubits
q0, q1, and q2 might map to physical qubits Q0, Q2, and Q4,
requiring routing between Q0 and Q4.

After decomposition and routing, the algorithm is translated
into hardware instructions:

• IBM QASM (Quantum Assembly):

Perl

q[0] -> Q 0; q[1] -> Q 2; q[2] -> Q 4;

h Q 0;

cx Q 0, Q 2;

rz(pi/2) Q 2;

cx Q 0, Q 2;

...

swap Q 0, Q 4;

• IonQ API Call (Trapped-Ion):

lua

add gate (”MS”, qubits = [0, 1], theta = pi/4);

add gate(”RX”, qubit = 0, theta = pi/2);

..

However, the output of the 3-qubit Quantum Fourier Transform
(QFT) algorithm depends on the initial state of the quantum
system. Let’s assume the system starts in the computational
basis state |1⟩ = |001⟩.

After executing the QASM code on IBM hardware:

Table 1. Measurement probabilities for each basis state in the 3-qubit QFT
algorithm.
Basis State Probability

( 000⟩)
( 001⟩)
( 010⟩)
( 011⟩)
( 100⟩)
( 101⟩)
( 110⟩)
( 111⟩)

1. Initial state: |001⟩.
2. Transformation: The QFT maps |j⟩ to a superposition

state:

QFT (|001⟩) =
1
√

23

7∑
k=1

e2πi− j− k
8 |k⟩,

where j = 1.
Finding the state vector as:

1
√

8
(|0⟩) + e

ix
4 |1⟩+e

ix
2 |2⟩+e

3ix
4 4|3⟩+eix|4⟩+e

5ix
4 |5⟩+e

3ix
2 |6⟩+e

7ix
4 |7⟩).

3.1.3. Output probabilities
Measurement probabilities will reflect the amplitude of

each basis state. For |001⟩, probabilities are evenly distributed
among all states due to the uniform superposition created by
QFT or both implementations; the output is typically visual-
ized using a histogram of measurement probabilities. Each bar
corresponds to a basis state (e.g., |000⟩,|001⟩,. . . ,|111⟩⟩, and the
height represents the probability of observing that state.

• Measurement Results (Ideal Case):

– |000⟩:12.5%.

– |001⟩:12.5%.

– |010⟩:12.5%, and so on, for all 8 basis states.

• Noisy Case:

– Hardware imperfections may cause deviations, with
higher probabilities for some states due to noise or
routing errors (IBM) and fewer errors in IonQ due
to full connectivity.

The measurement probabilities for each basis state are summa-
rized in Table 1

The table summarizes the theoretical measurement proba-
bilities for the 3-qubit Quantum Fourier Transform (QFT) al-
gorithm when applied to the initial state |001⟩. Each basis state
has an equal probability of 1/2n = 0.125, reflecting the uniform
distribution created by the QFT. This uniformity is expected
because the QFT generates an equal superposition of all basis
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states, weighted by their respective phase factors. Table 1 high-
lights the core functionality of the QFT, demonstrating how the
input state is transformed into a balanced superposition, a criti-
cal property leveraged in quantum algorithms like Shor’s algo-
rithm. This theoretical distribution assumes an ideal quantum
computer with perfect fidelity, no noise, and infinite decoher-
ence times. Real-world hardware implementations deviate from
this due to practical constraints. The measurement results from
the IBM Quantum implementation, depicted in Figure 1, show
the impact of noise on the probability distribution.

Figure 2 represents the results of executing the QFT algo-
rithm on IBM Quantum hardware. The probabilities deviate
slightly from the theoretical uniform distribution due to the fol-
lowing factors. This figure shows that hardware noise, such as
gate errors and qubit decoherence, introduces randomness in
the output probabilities. With Qubit Connectivity, the need for
additional SWAP gates to route qubits in IBM’s linear topology
increases circuit depth, compounding errors. Gate fidelities and
qubit error rates vary across the hardware, impacting overall
performance. Figure one observes that while the probabilities
are close to uniform, certain basis states have slightly higher
or lower probabilities. This deviation highlights the challenges
of executing complex quantum circuits on near-term quantum
devices.

As illustrated in Figure 2, the IonQ hardware achieves a
nearly perfect uniform distribution, owing to its full connectiv-
ity and high fidelity.

Figure 2 displays the measurement probabilities for the
same QFT algorithm executed on IonQ hardware. The re-
sults closely match the theoretical uniform distribution due to
full connectivity, High Gate Fidelity, and Longer Decoherence
respectively. IonQ’s trapped-ion architecture eliminates the
need for additional SWAP gates, reducing circuit depth and
error accumulation. The native Mølmer–Sørensen (MS) gate
achieves high entanglement fidelity, preserving the ideal quan-
tum state during execution. Trapped-ion qubits have longer co-
herence times compared to superconducting qubits, ensuring
better preservation of quantum information. At this point, it
was observed that Figure 2 demonstrates a minimal deviation
from the theoretical distribution, showcasing the advantage of
IonQ’s architecture for implementing complex quantum algo-
rithms like the QFT.

3.1.4. Comparative analysis
1. Uniformity:

(a) The IonQ implementation achieves a closer ap-
proximation to the theoretical uniform distribution
compared to IBM Quantum.

(b) This highlights the importance of hardware archi-
tecture and connectivity in determining algorithmic
fidelity.

2. Noise impact
(a) The IBM Quantum histogram shows more pro-

nounced deviations, underscoring the limitations
of superconducting qubits, particularly in handling
routing and gate errors.

3. Scalability:

(a) As the number of qubits increases, the IBM Quan-
tum implementation would face significant chal-
lenges due to increased routing complexity, while
IonQ’s full connectivity provides a clear advantage
for scalability.

Table 2 summarizes the comparative strengths and limitations
of the two implementations, emphasizing the impact of hard-
ware design on algorithm performance.

4. Quantum code generation compiler framework

The proposed model is presented in Figure 3:
The proposed framework for quantum code generation is

designed with three primary modules: the Front-End Module,
Optimization Module, and Back-End Module. Each module
serves a specific purpose to ensure efficient and adaptable quan-
tum code compilation. The Front-End Module is responsible
for parsing and translating high-level quantum programming
languages such as Qiskit, Cirq, and Q# into an intermediate
representation (IR). This module includes language parsers to
support multiple quantum languages, syntax and semantic vali-
dation for quantum code, and the generation of an abstract syn-
tax tree (AST) that is subsequently converted into IR.

The Optimization Module focuses on quantum-specific op-
timizations to enhance performance and reduce hardware er-
rors. It includes gate synthesis, which minimizes the total num-
ber of gates and ensures compatibility with native gate sets sup-
ported by the target hardware (e.g., CX gates for IBM Quantum
or MS gates for IonQ). Additionally, it handles qubit routing by
optimizing qubit connectivity through SWAP insertion or map-
ping algorithms, such as the SABRE algorithm, particularly for
linear architectures. Error mitigation techniques are also in-
corporated, using device calibration data (e.g., gate error rates
and decoherence times) to support methods like zero-noise ex-
trapolation and probabilistic error cancellation. The Back-End
Module translates the optimized IR into hardware-specific in-
structions and executes the code on the target quantum back-
end. This module supports backends for IBM Quantum, IonQ,
Rigetti, and other platforms. It handles hardware-specific gate
decomposition scheduling and integrates with quantum hard-
ware APIs for execution and measurement retrieval.

A key feature of the framework is its hardware-agnostic in-
termediate representation (IR), which serves as a unified ab-
straction layer between high-level languages and hardware-
specific instructions. The IR supports a broad set of quan-
tum operations, abstracts hardware constraints like connectiv-
ity and native gate sets, and ensures compatibility with multiple
backends by translating IR to hardware-specific instructions.
For example, the IR workflow involves translating high-level
code written in languages like Qiskit or Cirq into a hardware-
agnostic representation of gates, qubits, and measurements,
which is then converted into hardware-specific instructions tai-
lored for the target backend.

The implementation workflow begins with the Front-End
Module, where high-level quantum code is parsed and con-
verted into IR. This IR is then passed to the Optimization Mod-
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Figure 1. Histogram of measurement probabilities for the IBM Quantum implementation of the 3-qubit QFT algorithm.

Figure 2. Histogram of measurement probabilities for the IonQ implementation of the 3-qubit QFT algorithm.

ule, where gate synthesis, qubit routing, and error mitigation
are applied to produce an optimized IR. Finally, the Back-End
Module translates the optimized IR into hardware-specific in-
structions, executes the code on the quantum backend, and re-
trieves measurement results.

This framework offers several benefits. Its modularity al-
lows for the seamless addition of new front-end languages, op-

timization techniques, and back-end hardware. It is extensible,
supporting advancements in quantum programming and hard-
ware capabilities. The hardware-agnostic design ensures cross-
platform compatibility, enabling developers to target multiple
quantum devices with minimal code changes. Additionally, the
optimization techniques improve execution fidelity and reduce
resource requirements. Overall, this framework provides a scal-
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Table 2. Comparative analysis of IBM quantum and IonQ implementations.
Aspect IBM quantum IonQ
Uniformity Deviations from theoretical uniform distribution due

to noise, gate errors, and routing issues.
Closely matches theoretical uniform distribution,
benefiting from full connectivity and high fidelity.

Noise
Impact

More pronounced due to limited connectivity, re-
quiring SWAP gates and deeper circuits.

Minimal impact as full connectivity eliminates the
need for SWAP gates, reducing circuit depth.

Scalability Faces challenges as qubit count increases due to
routing complexity and cumulative errors.

Scales are better due to full connectivity and reduced
circuit depth, maintaining high fidelity.

Figure 3. A modular and extensible compiler framework for quantum code generation.

able and adaptable solution for efficient quantum code genera-
tion, addressing the unique challenges posed by quantum com-
puting.

4.1. Optimization strategies
Consider the following quantum circuit, written for a device

with limited qubit connectivity. To show the initial circuit, there
is a need to print or visualize the actual quantum circuit object,
typically using a quantum computing framework like Qiskit.
When working with Qiskit, it is pertinent to define and visualize
the quantum circuit as follows:

from qiskit import QuantumCircuit
# Define a quantum circuit with 3 qubits
qc = QuantumCircuit(3)
# Apply some gates
qc.h(0) # Hadamard on qubit 0
qc.cx(0, 1) # CNOT from qubit 0 to 1
qc.cx(1, 2) # CNOT from qubit 1 to 2
qc.cx(0, 1) # CNOT from qubit 0 to 1 (repeated)
qc.z(1) # Z gate on qubit 1
qc.measure all() # Measure all qubits

print(”Initial Circuit:”)
print(qc)
Figure 4 represents a quantum circuit with 3 qubits, and

some gates applied to them This circuit includes redundant
gates non-optimal routing and does not exploit hardware-
specific native gates.

To simplify the redundant gates and commuting operations,
the second CX(0,1) gate cancels with the first because apply-
ing two consecutive CX gates on the same qubits is equivalent
to the identity operation. After the gate cancellation, the opti-
mized circuit is obtained from the algorithm:

qc optimized = QuantumCircuit(3)
qc optimized.h(0) # Hadamard on qubit 0
qc.cx(0, 1) # CNOT from qubit 0 to 1
qc.cx(1, 2) # CNOT from qubit 1 to 2
qc.z(1) # Z gate on qubit 1
qc.measure all() # Measure all qubits
print(”Optimized Circuit (Gate Cancellation):”)
print(qc optimized)
Suppose the hardware has limited linear connectivity (q[0]

↔ q[1]↔ q[2]). For this topology:
8
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Figure 4. Initial circuit.

1. A CX(1, 2) is feasible, but a CX(0, 2) would require a
SWAP operation.

2. Qubit mapping can minimize SWAP gates by allocating
logical qubits to match hardware topology.

• Using Qiskit’s transpiler:

from qiskit import transpile

# Transpile the circuit for a linear hardware topology

backend = FakeLinearLattice() # Replace with actual
backend or topology

optimized routed circuit = transpile(qc optimized, back-
end=backend)

print(”Optimized Circuit (Qubit Routing):”)

print(optimized routed circuit)

Most quantum devices support specific native gate sets or
pulse-level programming for higher fidelity. IBM Quan-
tum devices use CX gates and single-qubit rotations as
native gates. IonQ devices natively support multi-qubit
Mølmer–Sørensen (MS) gates, which can replace a se-
ries of CX gates.

• Using pulse-level programming (for IBM Quantum):
from qiskit.pulse import Schedule, DriveChannel, Gaus-
sian

# Create a pulse schedule for a single-qubit gate

schedule = Schedule()

drive channel = DriveChannel(0)

pulse = Gaussian(duration=128, amp=0.1, sigma=16)

schedule += pulse(drive channel)

print(”Pulse-Level Schedule:”)

print(schedule)

After applying all the above optimizations:

1. Gate cancellation reduces unnecessary operations.
2. Qubit allocation and routing minimize communica-

tion overhead.

Figure 5. Optimized circuit.

3. Hardware-specific optimizations leverage native
gates or pulse-level programming to enhance fi-
delity.

The final optimized circuit and/or schedule was produced for
execution on the target quantum hardware. These techniques
ensure better performance and higher reliability of quantum
computations.

To visualize the output of the code
print(optimized routed circuit.draw(”text”)), the result is
typically a textual representation of the quantum circuit.

In this work, we used a Python environment with Qiskit
to simulate quantum circuits by running the code opti-
mized routed circuit. Draw (”text”) the quantum circuit in a
text-based format was printed as presented in Figure 5. This
textual representation of the quantum circuit shows the qubits
and gates in a readable form, with each gate (like H, CX, X)
represented on the respective qubit lines.

4.2. Discussion

This work focuses on developing a compiler-assisted code
generation framework for quantum computing, addressing the
challenges posed by the unique properties of quantum hard-
ware. The framework is designed to optimize the translation of
high-level quantum algorithms into hardware-specific instruc-
tions, ensuring efficient and reliable execution on various quan-
tum devices. By leveraging quantum-specific optimizations,
the framework enhances the performance and fidelity of quan-
tum computations while supporting scalability and adaptability
across diverse hardware platforms. The framework comprises
three key modules: a front-end, an optimization module, and
a back-end. The front end processes high-level quantum pro-
gramming languages such as Qiskit, Cirq, and Q#, converting
them into a hardware-agnostic intermediate representation (IR).
This IR serves as a unified abstraction layer, enabling compati-
bility with multiple quantum backends. The optimization mod-
ule applies quantum-specific techniques, including gate synthe-
sis to reduce gate complexity, qubit routing to minimize com-
munication overhead, and error mitigation strategies to address

9
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noise and hardware imperfections. The back-end translates the
optimized IR into hardware-specific instructions tailored for
platforms like IBM Quantum, IonQ, and Rigetti. A practical
example illustrates the effectiveness of the framework by opti-
mizing a quantum circuit through techniques such as gate can-
cellation, commutation, and hardware-aware routing. The pro-
cess highlights the reduction in gate complexity and communi-
cation overhead, leading to improved execution fidelity. Visu-
alization of the initial and optimized circuits provides insights
into the transformations, emphasizing the framework’s capabil-
ity to adapt algorithms to hardware constraints effectively.

Comparative analysis of implementations on IBM Quantum
and IonQ devices demonstrates the significance of hardware-
specific optimizations. IonQ’s full qubit connectivity offers
advantages in scalability and uniformity, while IBM Quantum
faces challenges due to increased routing complexity and noise
in superconducting qubits. These findings underscore the crit-
ical role of hardware-aware compilation in achieving reliable
quantum computations. The work presents a modular, extensi-
ble, and hardware-agnostic framework that addresses key chal-
lenges in quantum code generation. By bridging the gap be-
tween high-level programming and hardware-specific execu-
tion, the framework provides a scalable solution for develop-
ing efficient quantum applications, paving the way for advance-
ments in quantum computing.

4.2.1. Discussions of practical implementation
The proposed compiler-assisted code generation framework

was implemented using Qiskit, an open-source quantum com-
puting framework, within a Python environment. The frame-
work was designed to translate high-level quantum programs
into hardware-specific instructions, ensuring efficient execution
across multiple quantum platforms, including IBM Quantum
and IonQ. Taking advantage of gate synthesis, qubit routing,
and error mitigation, the framework improved execution fidelity
and scalability. The modular architecture allowed seamless
adaptation to different quantum processors, ensuring efficient
and hardware-aware quantum computation. The results demon-
strate that hardware-aware optimizations play a crucial role in
enhancing the performance of quantum algorithms on current
quantum hardware.

5. Conclusion

This work presents a comprehensive approach to addressing
the challenges of quantum code generation through a modular
and extensible compiler framework. By leveraging quantum-
specific optimizations such as gate synthesis, qubit routing,
and error mitigation, the framework effectively adapts quan-
tum algorithms to the unique constraints of various quantum
hardware architectures. The use of a hardware-agnostic inter-
mediate representation (IR) ensures compatibility across mul-
tiple backends, facilitating scalable and platform-independent
quantum application development. The practical implementa-
tion of circuit optimization demonstrates the framework’s abil-
ity to minimize gate complexity, reduce communication over-

head, and enhance execution fidelity. Comparative analysis fur-
ther highlights the impact of hardware-specific properties, such
as qubit connectivity and gate fidelity, on algorithmic perfor-
mance. Devices like IonQ, with their full connectivity, show-
case superior scalability, while superconducting platforms like
IBM Quantum face routing and noise challenges that demand
more sophisticated compilation techniques. In conclusion, this
framework bridges the gap between high-level quantum pro-
gramming and hardware-specific execution, providing a robust
solution for efficient quantum computation. Its modular design
ensures adaptability to evolving quantum hardware and pro-
gramming paradigms, making it a valuable tool for advancing
the development of reliable and scalable quantum applications.
By addressing key challenges in quantum computing, this work
lays the foundation for future innovations in quantum software
and hardware integration.

Data availability

We do not have any research data outside the submitted
manuscript file.
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[32] T. Häner, D. S. Steiger, M. Smelyanskiy & M. Troyer, “High-performance
emulation of quantum circuits”, in Proceedings of the International Con-
ference for High-Performance Computing, Networking, Storage and
Analysis (SC), Denver, CO, USA, Nov. 2016, pp. 866–874. https://
ieeexplore.ieee.org/abstract/document/7877152.

[33] M. Zhang, J. Wang & J. Lai, ”Performance evaluation of quantum com-
puting processors based on quantum assembly language”, 9th Interna-
tional Conference on Cloud Computing and Big Data Analytics (ICC-
CBDA), 2024. https://ieeexplore.ieee.org/abstract/document/10569330/.

[34] A. Cowtan, S. T. Dill, R. Duncan, A. Krajenbrink, W. Simmons &
S. Sivarajah, “On the qubit routing problem”, in Proceedings of the
14th International Conference on Quantum Physics and Logic (QPL),
Nijmegen, Netherlands, Jul. 2017, pp. 5–19. https://drops.dagstuhl.de/
entities/document/10.4230/LIPIcs.TQC.2019.5.
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