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Abstract

Corynebacterium diphtheriae is a respiratory pathogen. Diphtheria was a major source of disease and mortality, particularly in children under five
years of age and those over forty years of age. However, due to the lack of vaccinations, the disease is still widespread in several countries, partic-
ularly after the COVID-19 pandemic. In light of the above reason, we propose a deterministic mathematical model to characterize the dynamics
of diphtheria transmission, evaluating the effects of awareness and surveillance that other authors have not considered. The boundedness and
positivity of the solution have been established. In addition, it has been investigated that if Rc < 1, the model shows a diphtheria-free equilibrium
that is stable both locally and globally. According to the theoretical study, there is a distinct positive endemic equilibrium, and the corresponding
control reproduction number is greater than one. The endemic equilibrium has also been shown to be globally asymptotically stable when the
disease induces mortality, vaccination, booster vaccination, and isolation are zero. Both the diphtheria-free and the endemic equilibrium global
stability are numerically justified. Model fitting and parameter estimation are obtained using the least-squares method. Numerical simulation
reveals that the development of surveillance and awareness is effective in curtailing the spread of diphtheria infection. Finally, the theoretical and
numerical result shows that with surveillance and awareness, the disease can be eradicated in the population in less than ten years.
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1. Introduction

Human evolution has been coping with infectious diseases
for decades. The mechanism of transmission is known for
most diseases [1]. Characterized as “The Strangling Angel of
Children”. Corynebacterium diphtheria, recognized to cause
the highly contagious and potentially fatal bacterial diseases
known as endemic and epidemic diphtheria disease (Museum
of Healthcare) [2]. Due to the exotoxin it creates, it causes res-
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piratory blockages that are accompanied by coughing or sneez-
ing. It is also characterized by difficulties breathing, problems
with heart rhythm, heart failure, and even death [3]. Because it
is transferred by respiratory droplets, diphtheria is highly con-
tagious, particularly in crowded and unsanitary settings. Glob-
ally, 5,000 cases of diphtheria were reported per year [4].

After being exposed to the bacteria, the symptoms often ap-
pear two to five days later. Fever, enlarged neck glands, weak-
ness, and sore throat are some of the infection’s external symp-
toms. Dead tissue in the respiratory system can cover tissues
in the nose, tonsils, and throat in two to three days, creating a
thick, gray layer that makes breathing and swallowing difficult

1

https://nsps.org.ng
https://creativecommons.org/licenses/by/4.0


Andrawus et al. / J. Nig. Soc. Phys. Sci. 7 (2025) 2618 2

[5]. Lack of vaccine coverage is the main factor influencing
the fatality rate from diphtheria, which has been found to range
between 5 and 10% worldwide. Adults over 40 and children
under five may have up to 20% higher mortality rates; however,
among immunocompromised individuals and a large number of
unvaccinated, unaware people without an adequate system for
monitoring, cases may be high among those over 40 in nations
with lower diphtheria prevalence [5]. It is well acknowledged
that vaccination is the most efficient way to prevent diphthe-
ria. The diphtheria vaccination, which is frequently given in
conjunction with the pertussis and tetanus (DPT) vaccine, has
been crucial in lowering the disease’s prevalence throughout the
world [6].

Public health professionals must educate people and com-
munities about disease awareness and monitoring as an extra
precaution to maintain protection following the early recom-
mendation of a booster shot during adolescence or maturity.
Over the past 37 years, vaccination rates have dramatically in-
creased in affluent nations; nonetheless, high rates of diphtheria
persist in many nations with inadequate access to healthcare
and immunizations [7, 8].

In the past, Nigeria has had few outbreaks of diphtheria; the
most notable one occurred in 2011, when 98 cases were doc-
umented, with 21% of those infections leading to later fatality
[9]. Nigeria is now ranked sixth in terms of population, with
approximately 42.54% of its population under the age of 14 be-
ing afflicted [10]. The nation is more susceptible to the disease
because, according to Ref. [11], just 41.7% of children un-
der the age of 15 had received all recommended vaccinations,
even though the antitoxin vaccine was available in the nation.
A study by Ref. [12] developed an optimal control of the diph-
theria epidemic model with prevention and treatment. Their
optimal control analysis shows that vaccination, treatment, and
quarantine can be efficiently controlled to control the spread of
the diphtheria outbreak. Ref. [13] proposed a mathematical
model incorporating vaccination parameters in the susceptible
compartment for the instance of a diphtheria outbreak. Their re-
sults show that the vaccination is helpful in stopping the spread
of diphtheria, but it is just meant to be a preventative measure.

The results of Ref. [12], using parameters from Ref. [14]
indicated that the dynamics of the model are influenced by the
natural immunity rate of the exposed population and the full
coverage of basic immunizations. A study by Ref. [15] pro-
posed a mathematical model to simulate the dynamic interac-
tion between two fictitious C. diphtheriae strains in a host pop-
ulation with varying levels of immunity. They concluded that
if the interaction between strains is taken into consideration,
the use of toxoid vaccinations could result in the eradication of
sickness. A study by Ref. [16] proposed a deterministic math-
ematical model for optimal control of diphtheria disease with a
booster vaccination. Their result indicated that treating asymp-
tomatic infected individuals, disinfecting the environment, and
immunizing the population as a whole are the most effective
combinations.

The most recent outbreak occurred in 2023, following the
general breakouts in 2018. According to the most current re-
port from the Nigeria Centre for Disease Control (NCDC), there

has been an increase in suspected cases (733), 89 deaths, and a
case fatality rate (CFR) of 12.3% that affects children aged 5
to 18 [5]. Nigeria’s current diphtheria outbreak is a major pub-
lic health threat to the neighboring countries and the world in
general, being the most populous nation in Africa. Vaccination
coverage of at least 90% has been known to give protection to
about 60% of the population at risk. However, there is limited
coverage of vaccination in the country, [3].

There have been studies on the diphtheria model; [5, 17–19]
provided a model for the transmission of the disease by taking
into account asymptomatic infectious, full national-acquired
immunity, and partial natural-acquired immunity of carriers, in-
dividuals with full vaccine-induced immunity, and individuals
with partial vaccine-induced immunity; other studies examined
the global stability and parameter estimation [20, 21]. The con-
struction and development of a model for the spread of diphthe-
ria that takes into account handwashing practices, quarantine
for both exposed and infected individuals, progression for vac-
cinated exposed individuals, and transmission through contact
with an exposed or infected person [22].

Ref. [23] studied mathematical analysis of diphtheria trans-
mission and control with a focus on the effectiveness of diph-
theria antitoxins; Recognizing the pattern of the Nigerian diph-
theria outbreak between 1941 and 2023 [3]. In order to de-
velop efficient methods for managing and averting diphtheria
outbreaks, Ref. [24] recently carried out an analysis on trans-
mission dynamics; Ref. [2], evaluating the effect of booster
vaccination on the spread of diphtheria, which also has limita-
tions in terms of data availability for additional measures; In
order to describe the SEIR model, Ref. [14] took into account
the rate of natural immunity of those exposed to diphtheria.
The authors’ consideration of the model’s fundamental features
emphasizes the significance of vaccination coverage, declining
immunity, and disease vulnerability in the spread of diphthe-
ria. Additionally, the models indicated that a combination of
therapy, immunization, and contact tracing may be useful in
controlling diphtheria epidemics. In many regions of the world,
diphtheria remained a serious public health concern even after
effective vaccinations became available. Based on these consid-
erations, the goal of this work is to investigate the significance
and awareness of the transmission dynamics of diphtheria by
mathematical model analysis.

For many years, mathematical models have been used to
study the dynamics of epidemic disease. In recent years, the use
of mathematics in epidemiology has expanded significantly. A
model can predict if a disease will spread through the popula-
tion or die out by predicting model variables, production num-
ber, transmission rate, and other characteristics. Additionally,
a model can calculate the impact of an intervention and give
public administrators the essential direction for future disease
eradication efforts [25]. In light of the context in Ref. [22] and
the previously described discussions, the goal of this study is
to provide a comprehensive model for diphtheria that includes
both symptomatic and asymptomatic infectious diseases [25],
as well as different control methods.

Our study offers a strong method for preventing the spread
of diphtheria by raising awareness and using effective surveil-
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lance techniques as recommended by Ref. [26]. The goal of
these tactics is to decrease contact between asymptomatic in-
fected people and those who have received vaccinations. In
order to raise public awareness and prevent infection through
increased awareness efforts, this includes extensive educational
initiatives, awareness campaigns, and surveillance programs
aimed at educating the public about the significant hazards of
diphtheria. In order to reduce the spread of the disease over-
all, this involves encouraging the use of available vaccines, rec-
ommending afflicted individuals to seek medical attention, and
stressing the need to avoid close contact with infected indi-
viduals through knowledge, good hygiene, and public health
surveillance. This research aims to use mathematical model
analysis to the significance of awareness and surveillance on the
dynamics of diphtheria transmission.transmission of illness.

The paper is organized as follows, the introduction and rel-
evant literature are covered in section 1, model formulation is
covered in section 2, analysis of the model covered in section
3, numerical simulations and a discussion of the simulated fig-
ures are covered in section 4, and the conclusion is covered in
section 5.

2. Model description

To unriddle the mechanism of diphtheria transmission in the
human population, we divide the entire population into differ-
ent compartments based on the status of the disease. The model
of the total population is subdivided into eight compartments,
which include Susceptible individuals (S), Exposed aware indi-
viduals (Ea), Exposed unaware individuals (Eu), Symptomatic
individuals (I), Asymptomatic individuals (A), Individuals un-
der surveillance (P), Isolated individuals (J), Recovered and
immunized individuals (R). A series of differential equations
that take into account a number of parameters, including in-
fection rates, control measures, and recovery rates, including
awareness, surveillance, vaccination, treatment, exposure, la-
tency, isolation, recovery, and progression rates, define the
mathematical model. In Susceptible compartment (S): (λ),
which indicates the emergence of susceptible, i.e., aware and
unaware individuals, causes the rate of susceptible individu-
als to increase, while (µ), which represents the natural death
rate, causes this number to decrease. The “S” compartment
represents the number of susceptible individuals. meanwhile,
there is a reduction caused by a1λ, which accounts for indi-
viduals aware of the disease but contracted the disease through
person-to-person contact, and (1 − a1)λ, reflecting those con-
tracting the virus unaware of where λ = β(1−θ)(A+ηI)

N and N =
S + Ea + Eu + I + A + P + J + R. Compartment (Ea): The
“Ea” compartment represents the aware individuals of the virus
who were kept under surveillance and vaccinated against the
disease. The number also decreases due to the natural death
rate, represented by µ. Compartment “Eu”: Unaware people
who are catching the virus from asymptomatic infected contacts
and those who have been infected by coming into contact with
symptomatic people make up the “Eu” compartment. The nat-
ural death rate, denoted by µ, can likewise be used to decrease
the population in this area.

Compartment (I): “I” symptomatic individual increases
through the progression from the exposed, unaware compart-
ment with the progressive rate σ1, and it reduces due to induced
and natural death. (µ + δ1) Compartment (A): Corresponding
to asymptomatic infected individuals, unaware of the disease,
who progress from the main population, natural mortality also
occurs due to diphtheria-induced death rate (µ + δ2), This com-
partment is more dangerous in the transmission of the disease.
They live in a society without anyone’s notice, even though they
don’t know that they are infected, and some of them are recog-
nized by testing through awareness. Compartment (P): The “P”
compartment comprises aware individuals under surveillance
of the disease with the surveillance rate ϕ. This compartment
sees a reduction due to the Natural death rate, µ. Compartment
(J); This compartment represents the isolated hospitalized indi-
vidual; the number here increases due to γ1, γ2, γ3 accounting
for symptomatic, asymptomatic, and individuals under surveil-
lance, respectively. The isolated individuals reduced the death
rate at (µ+ δ3). Compartment (R): With a ν and χ recovery rate
from diphtheria and immunization, “R” is recruited. Specifi-
cally, the recovery rate and post-vaccination rate, respectively,
and all classes decrease as a result of the natural death rate,
which is µ. The flow between the compartments is described
in the figure below. Figure 1 shows the schematic diagram of
diphtheria as described using the assumptions above and equa-
tion (1) shows the appropriate model equations that are derived
from Figure 1. Table 1 provides the interpretations of the vari-
ables and parameters.

dS
dt
= π − a1λS − (1 − a1) λS − µS ,

dEa

dt
= a1λS + a2Eu − (ψ + µ)Ea,

dEu

dt
= (1 − a1) λS − (µ + a2 + σ1 + σ2)Eu,

dI
dt
= σ1Eu − (µ + δ1 + γ1)I,

dA
dt
= σ2Eu − (µ + δ2 + γ2)A,

dP
dt
= ψEa − (µ + γ3 + ν)P,

dJ
dt
= γ1I + γ2A + γ3P − (χ + µ + δ3)J,

dR
dt
= χJ + νP − µR,

(1)

where

λ =
β(1 − θ) (A + ηI)

N
. (2)

3. Basic properties of the model

This section gives the positivity and boundedness of solu-
tions, computation of the basic reproduction number, and all the
classical analysis of the system of the model (1).
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Figure 1: Schematized diagram of diphtheria.

Table 1: Variable and parameter of system equation (1).

Variable Description
N Total population
S Susceptible individuals
Ea, Eu Exposed aware and unaware individuals
I, A Symptomatic and Asymptomatic infectious

individuals
P Individuals under Surveillance
J Isolated individuals
R Recovered individuals
Parameter
π Recruitment rate
a1, a2 Awareness rates
µ Natural death rate
β effective risk rate
ψ Surveillance rate
γ1, γ2, γ3 Rates of isolation
σ1, σ2 Rates of Progression
δ1, δ2, δ3 Diphtheria induced death rates
ν Post-vaccination rates
θ Personal hygiene
λ Force of infection
χ Recovery rate
η Less infectiousness modification parameter

of symptomatic individuals

3.1. Solutions uniqueness and existence

The uniqueness and existence of the solution of model (1)
will be tested to ascertain whether the solution exists, and if
confirmed to exist, then it is necessary to show that the solution
of model (1) is unique. Using the Lipschitz Criteria, we have
the solutions of equilibrium as follows:

u1 = π − a1λS − (1 − a1)λS − µS ,

u2 = a1λS + a2E2 − (µ + ψ)Ea,

u3 = (1 − a1)λS − (a2 + σ1 + σ2 + µ)Eu,

u4 = σ1Eu − (µ + δ1 + γ1),
u5 = σ2Ea − (γ2 + µ + δ2)A,
u6 = ψEa − (µ + γ3 + ν)P,
u7 = γ1I + γ2A + γ3P − (χ + µ + δ3)J,

u8 = χJ + νP − µR. (3)

The above equation (3) shows that the system of equations (1)
exists using this method. We therefore need to show the unique-
ness of the system in the region or an interval containing the so-
lution sets. The boundedness of the solution of model (1) will
be checked in a region 0 < P < R in which its partial derivatives
are within δ1 < P < R, whereby δ1 and R are constants greater
than zero.

Theorem 3.1. The region 0 < P < R in Ω contains a unique
solution for model (1), given that

dui

dt j
= 1, 2, 3, 4, 5, 6, 7, 8. (4)

The region Ω is continuous and bounded.

Proof. By partially differentiating ui in relation to each state
variable in (1), we obtain:∣∣∣∣∣∂u1

∂S

∣∣∣∣∣ =
∣∣∣∣∣∣−

(
a1β(1 − θ)(A + ηI)

N

)
−(1 − a1)

(
β(1 − θ)(A + ηI)

N

)
− µ

∣∣∣∣∣∣ < ∞∣∣∣∣∣ ∂u1

∂Ea

∣∣∣∣∣ = ∣∣∣∣∣ ∂u1

∂Eu

∣∣∣∣∣ = ∣∣∣∣∣∂u1

∂P

∣∣∣∣∣ = ∣∣∣∣∣∂u1

∂J

∣∣∣∣∣ = ∣∣∣∣∣∂u1

∂R

∣∣∣∣∣ = 0 < ∞,∣∣∣∣∣∂u1

∂I

∣∣∣∣∣ = ∣∣∣∣∣−a1β(1 − θ)
N

ηS −
η(1 − a1)(β(1 − θ))

N
S
∣∣∣∣∣ < ∞,∣∣∣∣∣∂u1

∂A

∣∣∣∣∣ = ∣∣∣∣∣−a1β(1 − θ)
N

S −
(1 − a1)(β(1 − θ))

N
S
∣∣∣∣∣ < ∞. (5)

As seen in equation (5), similarly, the same thing can be
done for u2, u3, u4, u5, u6, u7, and u8, therefore, since all par-
tial derivatives are less than infinity, model (1) exists and has a
unique solution in Ω.

Proving the existence of a solution for a system (like a dif-
ferential equation or a set of equations) is crucial because it
demonstrates that a solution is possible under the given condi-
tions. It ensures that the assumptions made about the system are
consistent and that a solution can be found, if it exists. More-
over, proving existence can pave the way for understanding the
system’s behaviour and finding unique solutions, which is fun-
damental in many fields.

3.2. Boundedness and positivity of solution

The positivity and boundedness of the system (1) must be
demonstrated in this subsection. For the model (1), let Ω be a
biologically viable appropriate zone that is specified by:

Ω = (S , Ea, Eu, I, A, P, J,R) ∈ R8
+ : N ≤

π

µ
. (6)

Theorem 3.2. Suppose that the model’s initial values are as
follows:
{S (0), Ea(0), Eu(0), I(0), A(0), P(0), J(0), R(0) ≥ 0} ∈ Ω.
Consequently, for any t > 0, the solution set {S (t), Ea(t), Eu(t),
I(t), A(t), P(t), J(t), R(t)} of model (1) is positive.
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Proof. In order to show that S (0) > 0, Ea(0) > 0, Eu(0) > 0,
I(0) > 0, A(0) > 0, P(t) > 0, J(t) > 0, and R(t) > 0 are
not negative, it is necessary to show that the solution variables
S (t), Ea(t), Eu(t), I(t), A(t), P(t), J(t),R(t) of model (1) conform
to the initial conditions. Let t1 = sup(t > 0). uϵ[0, 1], I(u) ≥ 0,
A(u) ≥ 0, P(u) ≥ 0, S (u) ≥ 0, Ea(u) ≥ 0, Eu(u) ≥ 0, R(u) ≥ 0.,
J(u) ≥ 0, and J(u) ≥ 0 In order to guarantee the existence of t1,
the aforementioned initial conditions additionally guarantee the
continuity of all functions S , Ea, Eu, I, A, P, J,R. The solution
of model (1) is positive if t1 = 0. There is at least one solu-
tion S (t), Ea(t), Eu(t), I(t), A(t), P(t), J(t),R(t) that equals zero
at value t1 if t1 < ∞, that is, t1, is finite. Considering that t1 is
a supremum by definition. Assuming that S (t1) = 0, from the
model’s first equation (1).

dS (t)
dt
= π − a1λS − (1 − a1)λS − µS (t). (7)

We know that for all t ∈ [0, t1], π − a1λS ≥ 0. It follows
that:

dS (t)
dt
+ (λ + µ)S ≥ 0, (8)

therefore, the integrating factor of equation (8) is given as:

IF = e
∫

(λ+µ)dt = e(λ+µ)t, (9)

using equation (9) to integrate equation (8), gives:

S (t)e(λ+µ)t − S (o)e(λ+µ)0, (10)

therefore, equation (10) can be written as:

S (t)e(λ+µ)t − S (0) ≥ 0, (11)

equation (11) becomes

S (t)e(λ+µ)t ≥ S (0), (12)

therefore, equation (12) becomes:

S (t) ≥ S (0)e−(λ+µ)t. (13)

Therefore, considering the result in equation (13), it is easy
to say that they are in conflict with the fact that S (t1) = 0. In
the remaining instances, S (t1) = 0, Ea(t1) = 0, Eu(t1) = 0,
I(t1) = 0, and A(t1) = 0. J(t1) = 0, P(t1) = 0 and the identical
contradiction results from R(t1) = 0. Consequently, for all t >
0, S (t) > 0, Ea(t) > 0, Eu(t) > 0, I(t) > 0, A(t) > 0, P(t) > 0,
J(t) > 0, and R(t) > 0.

Epidemiological implication of Theorem 3.2: Proving the
positivity of solutions in a mathematical model is crucial be-
cause it ensures the model’s results are physically meaningful
and accurate in representing real-world phenomena. In many
applications, such as epidemiology or biology, negative quanti-
ties would be nonsensical, so positivity guarantees the model’s
output aligns with reality.

Theorem 3.3. The model defined by equation (1) has
a closed physiologically viable region Ω. Since Ω =

(S , Ea, Eu, I, A, P, J,R) ∈ R8
+ : N ≤ π

µ
, Ω is positively invariant

and attracts all of the model’s positive solutions.

Proof. The fact that any solutions on Ω do not depart Ω must
be demonstrated. Consequently, the rate at which the entire
population is changing is provided by:

dN
dt
= π − µN − δ1I − δ2A − δ3J, (14)

using the comparison Theorem results on equation (14), we
have

dN
dt
= π − µN. (15)

Using (15) and the integrating factor technique results in

N(t) ≤
π

µ
+

[
N(0) −

π

µ

]
e−µt,∀t ≥ 0. (16)

According to equation (16), is positively invariant and attracts
all positive solutions of the system (1) because t, N(t) N(0), N(t)
≤ π

µ
, and as t, N(t) π

µ
.

3.3. Existence of equilibrium

At each equilibrium, let (S ∗, E∗a, E
∗
u, I
∗, A∗ , P∗, J∗,R∗) rep-

resent the solution of the system (1). We set the rate of change
to zero at equilibrium. That is, setting all of the equations in the
system (1) to zero and doing so in terms of λ at the same time.

S =
π

λ + µ
,

Ea =
a1πλ

k1(λ + µ)
+

a2(1 − a1)πλ
k2(λ + µ)

,

Eu =
(1 − a1)πλ
k2(λ + µ)

,

I =
σ1(1 − a1)πλ
k2k3(λ + µ)

,

A =
σ2(1 − a1)πλ
k2k4(λ + µ)

,

P =
ψ

k5

a1πλ + a2(1 − a1)πλ
k1k2(λ + µ)

,

J =
γ1(σ1(1 − a1)πλ + γ2σ2(1 − a1)πλ + γ3Ψ

k1k2k3k4k5k6(λ + µ)
,

(17)

where Ψ = ψ(a1πλ + a2(1 − a1)πλ) and

k1 = µ + ψ,

k2 = a2 + σ1 + σ2 + µ,

k3 = µ + δ1 + γ1,

k4 = γ2 + µ + δ2,

k5 = µ + γ3 + ν,

k6 = χ + µ + δ3.

(18)
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3.4. Disease free-equilibrium
A disease-free equilibrium is reached in the model system

(1) when infectious classes are zero. By putting the right-hand
sides of each equation in system (1) to zero, the disease-free
equilibrium can be determined. Equations solved yield the
disease-free equilibrium in equation (19)

Ω0 = (S 0, E0
a, E

0
u, I

0, A0, P0, J0,R0)

=

(
π

µ
, 0, 0, 0, 0, 0, 0, 0

)
.

(19)

3.5. Basic reproduction number
The following subsection uses the next generation matrix

operator method, as described by, to determine the local stabil-
ity of Ω0 using the idea in Refs. [24, 27–34]. The production
number is obtained by using the matrices F and V for the new
infection terms and the remaining transfer terms.

F =



0 0 a1η β (1 − θ) a1β (1 − θ) 0 0

0 0 (1 − a1) η β (1 − θ) (1 − a1) β (1 − θ) 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

(20)

and

V =



k1 −a2 0 0 0 0

0 k2 0 0 0 0

0 −σ1 k3 0 0 0

0 −σ2 0 k4 0 0

−ψ 0 0 0 k5 0

0 0 −γ1 −γ2 −γ3 k6


. (21)

Next, the inverse of V in equation (21) is calculated as

V−1 =



1
k1

a2
k1k2

0 0 0 0

0 1
k2

0 0 0 0

0 σ1
k2k3

1
k3

0 0 0

0 σ2
k2k4

0 1
k4

0 0
ψ

k1k5

a2ψ
k1k2k5

0 0 1
k5

0
γ3ψ

k1k5k6
Υ

γ1
k3k6

γ2
k4k6

γ3
k5k6

1
k6


, (22)

where Υ = γ1σ1k1k4k5+γ2σ2k1k3k5+γ3ψσ2k3k4
k1k2k3k4k5k6

. Multiplying equation
(20) with equation (22), that is FV−1 and considering the domi-
nant eigenvalues, gives the effective reproduction number of the
model (1):

ρ
(
FV−1

)
= Re f =

(1 − a1) η β (1 − θ)σ1

k2k3

+
(1 − a1) β (1 − θ)σ2

k2k4
, (23)

where (Rc) is the effective reproductive number associated with
asymptomatic infectious and symptomatic infectious individu-
als as given in equation (23). That is when there is an absence
of measure to control the disease (a1 = a2 = γ1 = γ2 = γ3 =

θ = 0),(21) reduces to the basic reproduction number (R0) given
by:

R0 =
(1 − a1) η βσ1

k∗2k∗3
+

(1 − a1) βσ2

k∗2k∗4
, (24)

where

k∗2 = a2 + σ1 + σ2 + µ,

k∗3 = µ + δ1 + γ1,

k∗4 = γ2 + µ + δ2.

(25)

Epidemiological Interpretation of Re f : The number of new
infections caused by diphtheria-infected individuals in a com-
munity of susceptible and immunized persons is known as the
effective reproduction number Re f . In a specific sense, it is the
quantity generated by an infected person in a community in the
presence of controls. Hence, using Theorem 2 in Ref. [31], we
claim the following result.

Theorem 3.4. The DEF of model (equation) (1) (disease-free
equilibrium) is LAS (locally asymptotically stable) if the ef-
fective reproduction number is less than or equal to one (1)
(Re f ≤ 1).

3.6. Global stability of the disease-free equilibrium

In this subsection, we proved the global asymptotic stabil-
ity (GAS ) of DFE using the linear Lyapunov function, as ex-
pressed in Refs. [35–37].

Theorem 3.5. The disease-free equilibrium (Ω0) of model
(equation) (1) is globally asymptotically stable in Ω if Rc ≤ 1.

Proof. Let equation (26) be a linear Lyapunov function:

L = B1Ea + B2Eu + B3I + B4A, (26)

it is evident that L > 0, except at disease free equilibrium.
Differentiating L with respect to time, yields

L̇ = B1Ėa + B2Ėu + B3 İ + B4Ȧ. (27)

Substituting the values of the state variables concerned of sys-
tem (1) into equation (27), we have

L̇ = B1

(
α1β(1 − θ(A + ηI))S

N

)
+ B1 (α2Eu − (ψ + µ)Ea)

+ B2

(
(1 − α1)β(1 − θ(A + ηI))S

N

)
− B2k2Eu + B3 (σ1Eu − k3I)

+ B4 (σ2Eu − k4A) ,

(28)

6
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expanding equation (28), we got

L̇ = B1
α1β(1 − θ(A + ηI))S

N
+ B1α2Eu − B1(ψ + µ)Ea

+ B2
(1 − α1)β(1 − θ(A + ηI))S

N
− B2k2Eu + B3σ1Eu

− B3k3I + B4σ2Eu − B4k4A. (29)

Collecting the like terms of equation (29) in terms of the state
variables and with in mind that at disease-free equilibrium S 0 ≤

N0, equation (29) becomes

L̇ ≤ − B1(ψ + µ)Ea

+ (B1α2 − B2k2 + B3σ1 + B4σ2) Eu

+ (B1α1β(1 − θ)η) I

+ (B2(1 − α1)β(1 − θ)η − B3k3) I

+ (B1α1β(1 − θ)) A

+ (B2(1 − α1)β(1 − θ) − B4k4) A.

(30)

Obviously from equation (30), it is not hard to say that B1 = 0
and let

B2 = k3k4, (31)

so that

B3 = (1 − α1)β(1 − θ)ηk4,

B4 = (1 − α1)β(1 − θ)k3.
(32)

Substituting the values of all four positive constants into the
equation (30), we realized

L̇ ≤ (σ1(1 − α1)β(1 − θ)ηk4) Eu

+ (σ2(1 − α1)β(1 − θ)k3 − k2k3k4) Eu.
(33)

Simplifying equation (33), becomes

L̇ ≤ k2k3k4

(
σ1(1 − α1)β(1 − θ)ηk4

k2k3

)
Eu

+ k2k3k4

(
σ2(1 − α1)β(1 − θ)

k2k4
− 1

)
Eu,

(34)

equation (34) can also be written as

L̇ ≤ k2k3k4

(
Re f − 1

)
Eu. (35)

Therefore, using Lassale’s invariant principle, we conclude
that L is a Lyapunov function. Since all requirements of a Lya-
punov function are met, we deduce that DFE is GAS ifRe f ≤ 1.
The implication of the Theorem (3.5) is that the spread of the
disease can be controlled in a community regardless of the num-
ber of people who are unconscious of it, as long as the effective
number of reproduction is less than or equal to unity (Re f ≤ 1).

3.7. Endemic equilibrium point global asymptotic stability

Let

⊗∗∗ = {(S ∗∗, E∗∗a , E
∗∗
u , A

∗∗, P∗∗, J∗∗,R∗∗) ∈ E∗∗}, (36)

be a well stable manifold of E∗∗. Settingω = 0 for a special case
means that, when there are no cases of reversion of unaware
individuals in the society, the number of aware and vaccinated
individuals will increase, leading to endemicity in the society,
as long as the effective number of reproductions is greater than
unity (that is, Re f > 1).

Theorem 3.6. Model (1)’s EEP (Endemic equilibrium point) is
a GAS (globally asymptotically stable) inDwhenever Re f > 1.

Proof. We start by building a Goh-Volterra type Lyapunov
function, which is provided by:

F =

(
S − S ∗∗ − S ∗∗ln

S
S ∗∗

)
+

(
Ea − E∗∗a − E∗∗a ln

Ea

E∗∗a

)
+

(
Eu − E∗∗u − E∗∗u ln

Eu

E∗∗u

)
+ B1

(
A − A∗∗ − A∗∗ln

A
A∗∗

)
+ B2

(
P − P∗∗ − P∗∗ln

P
P∗∗

)
+ B3

(
J − J∗∗ − J∗∗ln

J
J∗∗

)
+ B4

(
R − R∗∗ − R∗∗ln

R
R∗∗

)
.

(37)

When we differentiate equation (37) in relation to time, we ob-
tain:

Ḟ =

(
1 −

S ∗∗

S

)
Ṡ +

(
1 −

E∗∗a
Ea

)
Ėa

+

(
1 −

E∗∗u
Eu

)
Ėu + B1

(
1 −

A∗∗

A

)
Ȧ

+ B2

(
1 −

P∗∗

P

)
Ṗ + B3

(
1 −

J∗∗

J

)
J̇

+ B4

(
1 −

R∗∗

R

)
Ṙ.

(38)

By changing the model equation in question from equation (1)

7
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to equation (38), we can differentiate (37) in relation to time.

Ḟ =

(
1 −

S ∗∗

S

)
(π − a1λS − (1 − a1)λS − µS )

+

(
1 −

E∗∗a
Ea

)
(a1λS − k1Ea)

+

(
1 −

E∗∗u
Eu

)
(1 − a1)λS − k2Eu)

+

(
1 −

A∗∗

A

)
B1 (σ2Eu − k4A)

+

(
1 −

P∗∗

P

)
B2 (ψ2Ea − k5P)

+

(
1 −

J∗∗

J

)
B3 (γ3P − k6J)

+

(
1 −

R∗∗

R

)
B4 (χJ − µR) ,

(39)

where

β̄ = β
1
N
, (40)

in order to provide the force of infection by

λ̄ = β̄(Ap + ηAS ). (41)

When π from (41) is substituted into (39), it yields

Ḟ = a1λS ∗∗ + (1 − a1)λS ∗∗ + µS ∗∗ − µS

−
a1λS ∗∗

2

S
−

(1 − a1)λS ∗∗
2

S
−
µS ∗∗

2

S
+ a1λS ∗∗ + (1 − a1)λS ∗∗ + µS ∗∗,

−
a1λS E∗∗u

E
+ K1E∗∗a −

(1 − a1)λS E∗∗u
Eu

+ k2E∗∗u −
k2k4A
σ2

−
k2EuA∗∗

A
+

k2k4A∗∗

σ2

−
k1EaP∗∗

P
+

k1k5P∗∗

ψ
−

k1k5J∗∗P
ψJ

,

+
k1k5k6J∗∗

ψγ3
+

k1k5k6µR
ψγ3ψ

−
k1k5k6JR∗∗J

ψγ3R
+

k1k5k6µR∗∗

ψγ3χ
.

(42)

After simplifying and changing the relations in equation (41) to
equation (42), we have:

Ḟ ≤ µS ∗∗
(
2 −

S
S ∗∗
−

S ∗∗

S

)
+ a1λS ∗∗

(
6 −

S ∗∗

S
−

S E∗∗a
S ∗∗E

−
EaP∗∗

E∗∗P
−

PJ∗∗

P∗∗J
+

R
R∗∗
−

JR∗∗

R

)
+ λS ∗∗(1 − a1)

(
4 −

S ∗∗

S
−

S E∗∗u
S ∗∗Eu

−
A

A∗∗
−

A∗∗Eu

E∗∗u

)
.

(43)

Given that the geometric mean is smaller than the arithmetic
mean, we then have(

2 −
S

S ∗∗
−

S ∗∗

S

)
≤ 0,

Table 2: parameter values of the proposed model (1).

Denotation
of parameter

Values Unit Reference

µ 0.01865 per year Ref. [18]
π 1000 persons per year Assumed
β 0.221 per year Ref. [18]
a1, a2 (0, 1), (0, 1) per year Control

parameter
η 0.16 Dimensionless Estimated
ψ (0, 1) per year Control

parameter
γ1, γ2, γ3 0.6, 0.532, 0.5763 per year Estimated
σ1, σ2 0.09, 0.0899 per year Control

parameter
δ1, δ2, δ3 0.0231, 0.0321, 0.0653 per year Ref. [18]
ν (0, 1) per year Control

parameter
θ (0, 1) per year Control

parameter
χ 0.446 per year Ref. [18]

(6 −
S ∗∗

S
−

S E∗∗a
S ∗∗E

−
EaP∗∗

EaP
−

PJ∗∗

P∗∗J
+

R
R∗∗
−

JR∗∗

R
≤ 0,(

4 −
S ∗∗

S
−

S E∗∗a
S ∗∗Ea

−
A

A∗∗
−

A∗∗Eu

E∗∗u

)
≤ 0. (44)

Since all of the variables in the model, including
S , Ea, Eu, I, A, P, J, and R, are at steady state (endemic steady
state), we thus have Ḟ ≤ 0 and Re f > 1. This may be replaced
into the concerned variable of (1) to provide. Thus, the endemic
equilibrium point is globally asymptotically stable (GAS ) ac-
cording to Lassalle’s invariant principle [38–42].

lim
t→∞

(S (t), Ea(t), Eu(t), I(t), A(t), P(t), J(t),R(t))

→ (S , Ea, Eu, I, A, P, J,R) .
(45)

Thus, the endemic equilibrium point is globally asymptoti-
cally stable (GAS ) according to Lassalle’s invariant principle
(Lasalle, 1976).

4. Numerical simulations

Here, we use the parameter values from Table 2 to show
how the state variables of the model 1 can be numerically sim-
ulated. The model (1)’s transmission dynamics are being thor-
oughly understood using a numerical simulation. Time-series
graphs are used to illustrate the compartment behaviour and the
influence of a few key parameters on the state variables.

4.1. Discussion of simulated figures

Figure 2(a) shows the influence of post-vaccination and
Surveillance rate over the population of individuals un-
der surveillance, where increasing the percentage of post-
vaccination shows a significant impact on the population of in-
dividuals under surveillance. Figure 2(b) shows the influence
of post-vaccination over the population of recovered individu-
als; increasing the percentage of post-vaccination individuals
shows little impact on the population of recovered individu-
als. Figure 2(c) shows the influence of Surveillance rate over

8
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Figure 2: Influence of post vaccination and Surveillance rate
over some selected infected compartments.

Figure 3: Influence of awareness through contact rate over some
selected infected compartments.

the population of exposed individuals, increasing the percent-
age of Surveillance shows to be very impactful on the popula-
tion of aware exposed individuals. Figure 2(d) shows the in-
fluence of Surveillance rate over the population of individuals
under surveillance, increasing the percentage of Surveillance
shows to be very impactful on the population of individuals un-
der surveillance.

Figure 3(a) shows the influence of awareness on contact
over the population of infectious individuals or symptomatic
individuals. Increasing the percentage of awareness on contact
shows a significant impact on the population of infectious indi-
viduals. Figure 3(b) shows the influence of awareness on con-
tact over the population of unaware latent individuals; increas-

Figure 4: Influence of awareness of unaware exposed over some
selected infected compartments.

Figure 5: Influence of isolation rate of symptomatic individuals
over some selected infected compartments.

ing the percentage of awareness on contact shows a significant
impact on the population of unaware latent individuals. Figure
3(c) shows the influence of awareness on contact over the pop-
ulation of aware latent individuals. Increasing the percentage
of awareness on contact shows a great impact on the population
of aware latent individuals. Figure 3(d) shows the influence
of awareness on contact over the population of asymptomatic
individuals; increasing the percentage of awareness on contact
shows a great impact on the population of asymptomatic indi-
viduals.

Figure 4(a) shows the influence of awareness of unaware la-

9
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Figure 6: Influence of isolation rate on asymptomatic individu-
als over some selected infected compartments.

Figure 7: Influence of personal hygiene rate over some selected
infected compartments.

tent over the population of aware latent individuals; increasing
the percentage of awareness of unaware latent shows a great im-
pact on the population of aware latent individuals. Figure 4(b)
shows the influence of awareness of un-aware latent over pop-
ulation of un-aware latent individuals, increasing the percent-
age of awareness of un-aware latent shows much impact on the
population of un-aware latent individuals. Figure 4(c) shows
the influence of awareness of un-aware latent over population
of infectious individuals or symptomatic individuals, increasing
the percentage of awareness of un-aware latent shows much im-
pact on the population of infectious individuals or symptomatic
individuals. Figure 4(d) shows the influence of awareness of
unaware latent overpopulation of asymptomatic individuals; in-

creasing the percentage of awareness of unaware latent shows
little impact on the population of asymptomatic individuals.

Figure 5(a) shows the influence of the isolation rate of
symptomatic individuals over the population of aware latent
individuals; increasing the isolation rate of symptomatic indi-
viduals shows a great impact on the population of aware latent
individuals. Figure 5(b) shows the influence of the isolation
rate of symptomatic individuals over the population of unaware
latent individuals. Increasing the isolation rate of symptomatic
individuals shows a significant impact on the population of un-
aware latent individuals. Figure 5(c) shows the influence of the
isolation rate of symptomatic individuals over the population
of infectious individuals or symptomatic individuals. Increas-
ing the isolation rate of symptomatic individuals shows a sig-
nificant impact on the population of infectious individuals or
symptomatic individuals. Figure 5(d) shows the influence of
an isolation rate of symptomatic individuals over the popula-
tion of asymptomatic individuals; increasing the isolation rate
of symptomatic individuals shows little impact on the popula-
tion of asymptomatic individuals.

Figure 6(a) shows the influence of the isolation rate of
asymptomatic individuals over the population of aware latent
individuals; increasing the isolation rate of asymptomatic indi-
viduals shows a great impact on the population of aware latent
individuals. Figure 6(b) shows the influence of the isolation rate
of asymptomatic individuals over the population of unaware la-
tent individuals. Increasing the isolation rate of asymptomatic
individuals shows a significant impact on the population of un-
aware latent individuals. Figure 6(c) shows the influence of the
isolation rate of asymptomatic individuals over the population
of infectious individuals or symptomatic individuals. Increas-
ing the isolation rate of asymptomatic individuals shows little
impact on the population of infectious individuals or symp-
tomatic individuals. Figure 6(d) shows the influence of the
isolation rate of asymptomatic individuals over the population
of asymptomatic individuals. Increasing the isolation rate of
asymptomatic individuals shows the impact on the population
of asymptomatic individuals.

Figure 7(a) shows the influence of personal hygiene rate
over the population of aware latent individuals; increasing the
percentage of personal hygiene rate shows a great impact on the
population of aware latent individuals. Figure 7(b) shows the
influence of personal hygiene rate over the population of un-
aware latent individuals; increasing the percentage of personal
hygiene rate shows a significant impact on the population of
unaware latent individuals. Figure 7(c) shows the influence of
personal hygiene rate over the population of infectious individ-
uals or symptomatic individuals; increasing the percentage of
personal hygiene rate shows little impact on the population of
infectious individuals or symptomatic individuals. Figure 7(d)
shows the influence of personal hygiene rate over the popula-
tion of asymptomatic individuals; increasing the percentage of
personal hygiene rate shows little impact on the population of
asymptomatic individuals.

10
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5. Conclusion

Our study offers a strong method for preventing the spread
of diphtheria by raising awareness and using effective surveil-
lance techniques as recommended by the Centre for Disease
Control (2025). In this work, to unriddle the mechanism of
diphtheria transmission in the human population, we divide
the entire population into different compartments based on the
status of the disease. The model has a total population (N),
which is subdivided into eight compartments, which include
Susceptible individuals (S ), Exposed aware individuals (Ea),
Exposed unaware individuals (Eu), Symptomatic individuals
(I), Asymptomatic individuals (A), Individuals under surveil-
lance (P), Isolated individuals (J), Recovered and immunized
individuals (R). The proposed model has been analysed, and
both equilibria have been extensively analysed; both are glob-
ally asymptotically stable. In the case of endemic equilibrium,
it has been shown that it is globally asymptotically stable when
the effective reproduction number is greater than unity, while
in the case of disease-free equilibrium, it has been shown that
it is globally asymptotically stable when the effective reproduc-
tion number is less than unity. Numerical simulation has cat-
egorically shown that surveillance and awareness play a vital
role in controlling diphtheria in the environment. It is therefore
recommended that surveillance and awareness should be done
in order to control diphtheria in our environment. Further re-
search needs to be done in order to complement this research,
especially when it comes to the effect of human mobility on the
spread of Diphtheria dynamics.

Data availability

All data used in this work can be found within the
manuscript.
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