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Abstract

We investigated the finite properties as well as the goodness of fit test for the cubic smoothing spline selection methods like the Generalized
Maximum Likelihood (GML), Generalized Cross-Validation (GCV) and Mallow CP criterion (MCP) estimators for time-series observation when
there is the presence of Autocorrelation in the error term of the model. The Monte-Carlo study considered 1,000 replication with six sample
sizes: 30; 60; 120; 240; 480 and 960, four degree of autocorrelations; 0.1; 0.3; 0.5; and 0.9 and three smoothing parameters; λGML= 0.07271685,
λGCV= 0.005146929, λMCP= 0.7095105. The cubic smoothing spline selection methods were also applied to a real-life dataset. The Predictive
mean square error, R-square and adjusted R-square criteria for assessing finite properties and goodness of fit among competing models discovered
that the performance of the estimators is affected by changes in the sample sizes and autocorrelation levels of the simulated and real-life data
set. The study concluded that the Generalized Cross-Validation estimator provides a better fit for Autocorrelated time series observation. It is
recommended that the GCV works well at the four autocorrelation levels and provides the best fit for time-series observations at all sample sizes
considered. This study can be applied to; non-parametric regression, non-parametric forecasting, spatial, survival and econometric observations.
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1. Introduction

A cubic spline is the most widely recognized example of the
smoothing spline regression model. It’s anything but a piece-
wise cubic function that interpolates a bunch of observation
focuses and ensures smoothness of the observations [1]. It is
piecewise third-degree polynomials that go through a core of
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Adams )

interests. It has a nonstop first and second subordinate with the
request for (d − 1) coherence, where d is the polynomial degree
[2]. The model with shortened force premise work b(t) changes
the factors ti and fit a model utilizing these changed factors,
which adds non-linearity to the model and empowers the splines
to fit smoother and adaptable non-straight cubic measures. It is
assumed that the variables (ti, yi)and (ti+1, yi+1) are connected
by a cubic polynomial S it = ait3 + bit2 + cit + di that is valid for
ti ≤ t ≤ tt+1 for i = 1, 2, . . . , n − 1[3]. The interpolation func-
tion is derived by firstly finding the coefficients ai, bi, ci, di,
for each of the cubic functions. For n points, there are n − 1
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cubic functions to find, and each cubic function requires four
coefficients. Therefore we have a total of 4(n − 1) unknowns,
which implies that 4(n − 1) independent equation coefficients
are required.
Firstly, cubic functions must intersect the observation on the
left and the right:

S i (ti) = yi, i = 1, 2, · · · , n − 1,
S i (ti+1) = yi+1, i = 1, 2, · · · , n − 1 (1)

Equation (1) produces 2(n − 1) conditions. Then, we need each
cubic function to join as easily with its neighbours as could be
expected, so we compel the splines to have consistent first and
second subsidiaries at the observations i = 1, 2, . . . , n − 1:

S
′

i (ti+1) = S
′

i+1 (ti+1) , i = 1, 2, · · · , n − 2,

S
′′

i (ti+1) = S
′′

i+1 (ti+1) , i = 1, 2, · · · , n − 2 (2)

Besides, S i(t) is figured by choosing to fit the additional con-
ditions being performed. A typical arrangement of definite im-
peratives accepts that the subsequent subsidiaries are zero at the
endpoints; this implies that the bend is a ”straight line” at the
endpoints, written as;

S
′′

1 (t1) = 0, S
′′

n−1 (tn) = 0 (3)

There exist a few studies on the goodness-of-fit test for non-
linear regression models in the literature; these current studies
can be grouped as a penalized smoothing, polynomial regres-
sion model and soothing spline test statistics, double coordina-
tions regression and nonparametric regression models. [4] pro-
posed another test estimation for testing uprightness of assault
of a mth demand polynomial backslide model. The test mea-
surement is;

∫
10

[
µ (n) λ(t)

]2dt, where µ(n)λ is the zthrequest
subsidiary of a zth request smoothing spline estimator for the
regression model µ and λ is its related smoothing parameter.
The huge example qualities of the test measurement are got-
ten from both the invalid and elective speculation. [5] portrays
a goodness-of-fit technique for testing the parametric capacity
for the regression model and the change in a parametric nonlin-
ear regression model. [6] proposed a likelihood and restricted
likelihood extent tests for decency of-attack of a nonlinear re-
gression using first-request Taylor assessment gauge around the
maximum likelihood estimator of the relapse boundary to harsh
the invalid and elective theory is shown nonparametrically us-
ing penalized splines. [7] applied bootstrap techniques that
are computationally productive to assess the achievement of
goodness-of-fit measurement and see that for the most part,
the power and type one error of the goodness-of-fit measure-
ments rely upon the model being scrutinized. [8] considered a
smoothing-based test estimation and surmised its invalid scat-
tering using a bootstrap philosophy to propose a goodness-of-
fit test for examining parametric covariance capacities against
general nonparametric choices for both irregularly noticed lon-
gitudinal perceptions and thickly noticed useful perception. [9]
offered a goodness-of-fit test for nonparametric regression mod-
els with straight smoother structure by noticing factual depen-
dence between the assessed error terms and the covariates using

the Hilbert-Schmidt Independence Criterion (HSIC). The boot-
strap is used to acquire p-values and show the fitting type one
error and power of the test execution through Monte-Carlo data
reenactment.
It is clear from the existing literature that the goodness-of-fit
of smoothing spline for time series observations have not been
investigated so far. This paper presents a goodness-of-fit test
for time series observations using three classical cubic spline
nonparametric regression functions.
In section two, the cubic smoothing spline was discussed, smooth-
ing spline selection parameters like Generalized Cross-Validation,
Generalized maximum Likelihood, Mallow’s C.P. criterion and
performance evaluation criteria were also addressed in this sec-
tion. The simulation result is given in section three, while sec-
tion four presented the real-life dataset result. Finally, a discus-
sion of findings and conclusion are presented in Section five.

2. Materials and Methods

2.1. Cubic Smoothing Spline
The spline smoothing model is written as;

yi = f (ti) + εi (4)

Where; yi is the response/dependent variable, f is an unknown
smoothing function, ti is the independent/predictor variable and
εi is zero mean autocorrelated stationary process [10].
The general cubic spline function is given as;

f (t) = at3 + bt2 + ct + d + ε (5)

where; a, b, c, and d is real number coefficients and a , 0, t is
the independent variable, ε is the error term and d. f . is k−d−1
(k is number of knots and d is the degree of the cubic spline)
The cubic smoothing spline estimate f̂ of the function, f is de-
fined to be the minimizer (over the class of twice differentiable
function) of;

S ( f ) =

n∑
i−1

(
yi − f̂ (ti)

)2
+ λ

∫ b

a

(
f̂
′′

(t)
)2

dt (6)

where;

1. λ > 0 is a smoothing parameter,
2. The initial part of the equation is the residual sum of the

square for the goodness of fit for the observation.
3. The subsequent term is a roughness penalty, which is

enormous when the incorporated second derivative of a
regression function f

′′

(t) is likewise huge
4. If λ approaches 0, then f (t) Simply interpolates the ob-

servations.
5. If λ is very large, then f (t) will be chosen so that f

′′

(t)
Is wherever 0, which suggests a by and large direct least-
squares fit the perceptions.

If f (t) values are fixed at f (t1) , . . . . , f (t2) the roughness∫ b
a

(
f̂
′′

(t)
)2

dt is minimized by a natural cubic spline, this solu-
tion is written as a basic function as;

f (t) = β0 + β1 f1 (t) + . . . + βn+3 fn+3 (t) (7)
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2.2. Selection of the smoothing parameter
The smoothing parameter in cubic spline smoothing is to

control the smoothness of the fitted curve, to estimate the op-
timal value of the smoothing parameter λ, three smoothing pa-
rameter selection criteria are considered and compared in this
study: Generalized Cross-Validation (GCV), Generalized Max-
imum Likelihood (GML) and Mallow Cp (MCP).
The generalized Cross-Validation (GCV) selection method was
suggested by [11, 12] as a substitution for Cross-Validation
(CV), which is the most famous technique for selecting the in-
tricacy of statistical models. The essential standard of cross-
validation is to leave the information that brings up each in turn
and choose the estimation of λ under which the rest of the in-
formation best predicts the missing focuses [13, 14]. To be ex-
act, let g−1

λ be the smoothing spline determined from all the
information sets aside from (ti, yi) utilizing the worth λ for the
smoothing boundary. The cross-approval decision of λ is then
the estimation of λ, which limits the Cross-Validation score, be;

CV(λ) =
1
n

∑
{yi − ĝ(ti)}2 (8)

Equation (8) is similar to the criterion for model estimation
in regression, generally [15]. Define a matrix A (λ) by;

Ai j (λ) = n−1g
(
ti, t j

)
(9)

CV (λ) =
1
n

n∑
i=1

{yi − ĝ(ti)}2

{1 − Aii(λ)}2
(10)

[12, 16, 17] also suggest the use of a related criterion, called
Generalized Cross-validation, obtained from (10) by replacing
Aii(λ) by its average value, n−1trA(λ), this gives the score.

GCV (λ) =
n−1RS S (λ)(

1 − n−1trA(λ)
)2 (11)

Where; RSS (λ) is the residual sum of squares,
∑
{yi − ĝ(ti)}2.

In their study [12] likewise give hypothetical contentions to
show that Generalized Cross-Validation ought to, asymptoti-
cally, pick an ideal estimation of λ in the sense of minimizing
the average squared error at the design points. The predicted
published practical examples bear out a good performance in
[18]. The summed-up Cross-validation technique is notable for
its optimal properties [19]. If there exists an n x n, the impact
matrix, with the property

f̂n, λ (t1)
f̂n, λ (t2)

.

.

.

f̂n, λ (tn)


= S (λ) y (12)

and

W0 (λ) =

∑n
k=1

(
ak jy j − yk

)2

(1 − akk)2 (13)

Generalized Cross-Validation is the adjusted form of Cross-
Validation, a traditional technique for estimating the smoothing
parameter. The GCV score is constructed by comparison to the
CV score obtained from the ordinary residuals by dividing them
by 1 − S (λ))ii. The accepted format of GCV is to replace the
notation 1 − (S (λ)) in Cross-Validation with the mean score
1 − n−1 trace S (λ)Thus, by adding the squared residual and
notation {1 − n−1 trace S (λ)}2, by the already known ordinary
cross-validation, the GCV smoothing method is written mathe-
matically as;

GCV(λ) =
1
n

∑n
k=1 {y − fk (x1)}2{

1 − n−1trace (Sλ)
}2 (14)

GCV(λ) =
n−1‖(I − Sλ) y‖2[

n−1trace (I − Sλ)
]2 (15)

where; n is the dataset (xi, yi), λ refers to the smoothing
parameters and S (λ) is the ith diagonal member of a smoother
matrix
Generalized Maximum Likelihood (GML) selection method;
[20] proposed the GML technique for correlated data with one
smoothing parameter. In a bivariate model, two smoothing pa-
rameters should be assessed simultaneously along with the co-
variance boundaries. Following a comparative determination,
GML is given as;

GML (λ) =
yIW (I − S (λ))[

det+W (I − S (λ) )
] 1

n−m

(16)

det+ (I − S (λ)) is the product of the n− m nonzero eigenvalues
of (I − − S (λ)) .
λ is Smoothing parameter, W is the correlation structure, S (λ)
is the diagonal element of the smoother matrix, n is n1 + n2
pairs of measurements/observations and m are the number of
zero eigenvalues.
Mallow’s C.P. Criterion (MCP) selection method was devel-
oped by [21] to estimate the fit of a regression model dependent
on Ordinary Least Square. It is applied to a model choice situ-
ation where explanatory variables can predict a few results and
locate the best model associated with subset independent vari-
ables. The more modest the estimation of the Cp, the generally
exact it is, the Cp is written numerically as;

MCP (λ) =
‖(Sλ − I)y‖2

tr (I − Sλ)
(17)

where; n is the measurements or observations, λ is the smooth-
ing parameters and S (λ) is the ith diagonal member of the smoother
matrix. The assumption underlying the application of the Gen-
eralized Cross-Validation (GCV), Generalized Maximum Like-
lihood (GML) and Mallow’s CP criterion (MCP), the observa-
tions must be well represented by the model.

2.3. Simulation Study

In this section, a simulation study is performed to assess the per-
formance of the three cubic smoothing spline estimator, namely
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Generalized Cross-Validation (GCV), Generalized Maximum
Likelihood (GML) and Mallow’s CP criterion (MCP) when au-
tocorrelation is present in the error term. Before the results
were computed, datasets for the different simulation combina-
tions are generated using codes written in the [22]. The data
generation procedure, with accompanying explanation is pre-
sented in Table 1.
In the data generation process, n = 30, 60, 120, 240, 480 and
960, nrepl.= 1000 and ρ= 0.1, 0.3, 0.5 and 0.9, λGML = 0.07271685,
λGCV = 0.005146929, λMCP = 0.7095105. In this study, a non-
parametric smoothing function was used to generate the data
under different conditions. The function is given as;

y (xi) = 5S in
(
π

xi

)
+ εxi (18)

Where; xi = i−0.5
n ,π= 1800, εx ∼ N

(
0, ρW−1

)
, a first-order

Autoregressive process with mean 0, standard deviation is 0.8
and Autocorrelation levels ρ = 0.1, 0.3, 0.5 and 0.9 with 95%
confidence interval.

2.4. Performance Evaluation Criteria
A comparative analysis was performed made to test the perfor-
mance and goodness-of-fit test of the three cubic spline esti-
mation methods (i.e. Generalized Crossed Validation (GCV),
Generalized Maximum Likelihood (GML) and Mallow CP Cri-
terion (MCP) in the presence of autocorrelation error. The Pre-
dictive Mean squared prediction error of a smoothing or Curve
fitting procedure according to [22, 23, 24] is the normal worth
of the square distinction between the fitted value suggested by
the predictive function f̂ (xi) and the value of the observed func-
tion f (xi). It is utilized to assess the performance and nature
of explanatory variables or Smoothing techniques like Cross-
Validation, Generalized Cross-Validation, Generalized Maxi-
mum Likelihood and so forth. The Predictive Mean Square
Error (PMSE) is written mathematically as;

PMS E (λ) = E

 n∑
i=1

(
f (xi) − f̂ (xi)

)2 (19)

PMS E (λ) =
1
n

n∑
i = 1

(
f (xi) − f̂ (xi)

)2
(20)

PMS E (λ) =

n∑
i=1

(
E

[
f̂ (xi)

]
− f (xi)

)2
=

n∑
i=1

var
[
f̂ (xi)

]
(21)

The Predictive Mean Square Error is usually grouped into two
parts; the first part is the sum of square biases of the fitted ob-
servations, while the second is the total of variances of the fitted
observations.

Where; f (xi) is the observed value and f̂ (xi) is the fit-
ted/predicted/estimated value.
Based on each estimate of the parameter, the methods were
ranked according to their performance at the criterion. The
evaluation of methods was concluded at two levels using in-
dividual measures and the totality based on the standard. For
the first level, the ranks were added for each technique and the

whole method. Then the methods of estimation were ranked
by this total. The smoothing procedure with the least capacity
was adjudged the most preferred method and the one with the
largest sum the least preferred.
These ranks were added together over all the criteria to know
how each estimator performs in each parameter in the model.
The best estimator in terms of the model was identified by fur-
ther adding all the ranks over the model’s parameters. An esti-
mator is ranked as the best if it has a minimum sum of levels.
Here the groups’ total was used, which will give identical re-
sults in terms of ranks if the mean levels had been used. But
the consequences might be different if the median of the groups
had been used. The disadvantage of the median is that if further
work were to be done on these ranks, the mathematical pro-
cedure would be at least slightly more complex than with the
mean.
The goodness of fit of the smoothing methods explains how
well the methods fit the simulated and real-life data. It also
summarizes the differences between the observed value and es-
timated/predicted values. The Adjusted R-square was used to
determine the best-fit smoothing methods. It is written mathe-
matically as;

Ad justed R−S quare =

(
1 −

(1 − Rsquare) × (n − 1)
n − p

)
(22)

Where; n = number of observations and p = number of pa-
rameters

3. Simulation Result

Table 2 presents the summary fit result of the cubic spline
regression model and the model performance criteria, namely;
the predictive mean square error (PMSE), multiple and adjusted
R-square based on six small sizes (T = 30, 60, 120, 240, 480
and 960) and autocorrelation level (ρ = 0.1). It was revealed
from the result that all the coefficients of the smoothing meth-
ods’ parameters were significant at (P-value <0.001, <0.01 and
< 0.05).
The adjusted R-Square result indicated that GCV had the high-
est values at all sample size levels (T = 30, 60, 120, 240, 480
and 960) and ρ=0.1 with adjusted R-squares of; 0.9963, 0.9979,
0.9971, 0.9992, 0.9986 and 0.9804 respectively. It can be in-
ferred from the result above that; the GCV smoothing method
provides the best fit to the time-series observations at time se-
ries size of (T = 30, 60, 120, 240, 480 and 960) and ρ=0.1.
Tables 3, 4 and 5 show the predictive mean square error (PMSE),
R-Square and Adjusted R-square simulation results of GCV,
GML and MCP for autocorrelation levels 0.3, 0.5 and 0.9 for
sample sizes; 30, 60, 120, 240, 480 and 960. The result in-
dicated that the adjusted R-square value for GCV was greater
than GML and MCP’s value; this is an indication that the cu-
bic smoothing spline chosen by Generalized Cross-Validation
possesses the best fit model.

Figures 1 to 6 clearly show the comparisons of the behaviours
of the cubic smoothing spline selected by GCV, GML and MCP
for sample sizes 30, 60, 120, 240, 480 and 960, respectively. It
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Table 1. Data generation process with explanations
Steps Explanation

Step 1: Obtain n, nrepl. and ρ The sample size of the simulated dataset,
number of
replication of n and autocorrelation levels
respectively

Step 2: Decide on Xi, and Y i, Read the simulated sample data (xi, yi) for
i = 1 − T and each i′s

Step 3: Produce, λt, and f (λ) Determine the Pre-selected smoothing pa-
rameters λ1 , . . . , λt, calculate the re-
spective set of smoothing Spline estimates
f (λ) =

{
f̂λ1 , . . . , f̂λt

}
Step 4: Fit the values of f (xi) and

f̂ (xi)
For the given λ, σ and T use the data in 1
above to fit a curve and the estimate ahead
by linear extension f (xi) and f̂ (xi)

Step 5: Compute, GCV, GML and
MCP

Compute values of the coefficients of GCV,
GML and MCP

Step 6: Generate the PMSE values Obtain the predictive mean
square error PMS E ( f̂λ) =∑t

i = 1

[(
f
(
x) − f̂ (xi)

))2
]

for these points
sum up all the PMSEs to get the corre-
sponding GCV, GML and MCP scores for
the given values of n, λ and ρ.

Table 2. Simulation result for GCV, GML and MCP for Autocorrelation level = 0.1
Cubic
Smoothing
Methods

Sample
sizes

Predictive Mean Square Error
criterion R-square Adj. R-

square
β̂0 β̂1 β̂2 β̂3

GCV 30 -0.0965 11.3553 -33.4818 22.4204 0.9998 0.9963
60 -0.1753 11.4502 -33.3385 22.2447 0.9996 0.9979
120 -0.1767 11.7285 -34.2144 22.8765 0.9977 0.9971
240 -0.2000 11.9830 -34.7553 23.1753 0.9995 0.9992
480 -0.1854 11.8463 -34.4414 22.9781 0.9988 0.9986
960 -0.1893 11.8804 -34.4933 22.9920 0.9804 0.9804

GML 30 -0.1278 11.5373 -33.8893 22.6035 0.9824 0.9804
60 -0.1080 10.9222 -32.1454 21.4069 0.9827 0.9818
120 -0.2242 12.0912 -34.7044 22.9920 0.9769 0.9763
240 -0.1968 12.0617 -34.9399 23.2581 0.9804 0.9802
480 -0.1815 11.9975 -34.9133 23.3067 0.9770 0.9768
960 -0.2157 12.0444 -34.8217 23.2068 0.9784 0.9784

MCP 30 -0.0965 11.3553 -33.4818 22.4204 0.9698 0.9663
60 -0.1753 11.4502 -33.3385 22.2447 0.9696 0.9679
120 -0.1953 11.7876 -34.1166 22.6815 0.9778 0.9772
240 -0.2092 12.1147 -35.0511 23.3478 0.9837 0.9835
480 -0.1913 11.9395 -34.6317 23.0761 0.9798 0.9796
960 -0.2103 12.0782 -34.9856 23.3324 0.9799 0.9798
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Table 3. Simulation result for GCV, GML and MCP for Autocorrelation level = 0.3
Cubic
Smoothing
Methods

Sample
sizes

Predictive Mean Square Er-
ror criterion R-square Adj. R-

square
β̂0 β̂1 β̂2 β̂3

GCV 30 -0.2800 13.376 -37.869 24.757 0.9106 0.9003
60 -0.3475 13.005 -36.993 24.732 0.9201 0.9137
120 -0.1212 10.645 -31.490 21.112 0.8699 0.8665
240 -0.1015 11.572 -34.618 23.474 0.9037 0.9025
480 -0.2467 12.431 -36.011 24.109 0.9304 0.9297
960 -0.1395 11.605 -34.211 22.962 0.8938 0.8935

GML 30 -0.0353 8.3035 -25.345 16.764 0.8526 0.8356
60 -0.0564 11.046 -32.398 21.367 0.8986 0.8932
120 -0.2749 13.134 -37.862 25.307 0.9151 0.9129
240 -0.1426 11.686 -34.316 22.989 0.8941 0.8927
480 -0.1887 12.008 -34.743 23.089 0.9021 0.9015
960 -0.2065 12.082 -35.038 23.379 0.8978 0.8975

MCP 30 -0.2806 12.211 -33.454 21.491 0.8358 0.8168
60 -0.1306 8.8825 -27.929 19.017 0.8569 0.8492
120 -0.1361 11.428 -33.283 22.081 0.9021 0.8996
240 -0.1511 11.424 -33.114 22.003 0.8881 0.8867
480 -0.2311 12.348 -35.816 23.998 0.8911 0.8904
960 -0.2375 12.676 -36.672 24.519 0.8995 0.8992

Table 4. Simulation result for GCV, GML and MCP for Autocorrelation level = 0.5
Cubic
Smoothing
Methods

Sample
sizes

Predictive Mean Square Error
criterion R-square Adj. R-

square
β0 β1 β2 β3

GCV 30 -0.0847 11.0575 -33.6550 22.9325 0.8242 0.7923
60 -0.1924 10.4646 -30.4378 20.3870 0.8479 0.8291
120 -0.2296 11.5794 -32.9893 21.6783 0.8481 0.8416
240 -0.2663 12.9193 -36.9713 24.5493 0.8999 0.8974
480 -0.1601 11.8929 -34.5237 22.9573 0.8733 0.8718
960 -0.2469 12.5111 -36.1165 24.1212 0.8705 0.8698

GML 30 -0.1644 9.7970 -32.003 22.1713 0.8335 0.8143
60 -0.0666 11.0730 -34.2401 23.5602 0.7834 0.7718
120 -0.2531 13.5851 -40.1524 27.3208 0.7438 0.7372
240 -0.1301 11.9951 -35.3193 25.6299 0.8072 0.8048
480 -0.1119 11.5210 -34.3366 23.1544 0.7587 0.7571
960 -0.0844 11.3560 -33.9543 22.9082 0.7652 0.7645

MCP 30 -0.3708 12.9624 -35.0598 22.4159 0.7934 0.7696
60 -0.3290 13.8516 -38.0849 24.5585 0.7509 0.7376
120 -0.1718 12.078 -34.8942 23.1811 0.7514 0.7450
240 -0.1913 11.556 -33.2619 22.1224 0.7155 0.7119
480 -0.2059 12.1036 -35.2078 23.5514 0.7514 0.7499
960 -0.1775 12.3371 -35.9588 24.0466 0.7738 0.7731

196



Adams et al. / J. Nig. Soc. Phys. Sci. 3 (2021) 191–200 197

Figure 1. Cubic smoothing spline and fitted curve using GCV, GML and MCP, n=30

Figure 2. Cubic smoothing spline and fitted curve using GCV, GML and MCP, n = 60

Figure 3. Cubic smoothing spline and fitted curve using GCV, GML and MCP, n = 120

was observed that Generalized Cross-Validation provided the
best fitted/estimated value when compared to the Generalized
Maximum likelihood (GML) and Mallow’s CP Criterion (MCP).

4. Application to Real-life data

In this section, the performance of the cubic smoothing spline
selection methods on the real-life dataset of the federal govern-
ment capital expenditure (in billion nairas) in Nigeria between

1981-2019 sourced from [25] is presented as our example. This
series has 39 datasets of the expenditure, the cubic spline was
fitted for the mean function (i.e. f ∈ w) and a first-order Au-
toregressive process AR (1) for the disturbance. The General-
ized Cross-Validation (GCV) was used in the example because
it was found to perform better than the other cubic smoothing
spline competing models in the simulation study presented in
section three. This cubic smoothing spline curve presented in
Figure 7 showed that the observed data in our curve is very
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Figure 4. Cubic smoothing spline and fitted curve using GCV, GML and MCP, n = 240

Figure 5. Cubic smoothing spline and fitted curve using GCV, GML and MCP, n = 480

Figure 6. Cubic smoothing spline and fitted curve using GCV, GML and MCP, n = 960

close to the estimated data. This provided great insight on
the cubic smoothing spline selection method whose model pro-
duces the best fit for the time-series observations used as an
example to validate generalized cross-validation (GCV) cubic
spline selection method as the preferred model for time series
observation.

5. Discussion and Conclusion

This paper presents the goodness-of-fit test for time series
observations using three cubic spline nonparametric regression
functions. A simulation study and real-life dataset on the total
federal government capital expenditure (in billion nairas) be-
tween 1981-2019 in Nigeria were used to demonstrate how the
three classical cubic smoothing spline selection methods per-
form when a time series dataset possesses autocorrelation in its
error term.

198



Adams et al. / J. Nig. Soc. Phys. Sci. 3 (2021) 191–200 199

Table 5. Simulation result for GCV, GML and MCP for Autocorrelation level = 0.9
Cubic
Smoothing
Methods

Sample
sizes

Predictive Mean Square Error
criterion R-square Adj. R-

square
β0 β1 β2 β3

GCV 30 -0.2659 10.7596 -33.8282 23.4447 0.4702 0.4575
60 -0.2095 9.4790 -27.5371 18.5292 0.3126 0.4198
120 -0.2638 11.3711 -31.8619 20.6751 0.4751 0.6665
240 -0.3234 13.7239 -38.8914 25.7508 0.5659 0.4267
480 -0.1290 11.8463 -34.4156 22.8385 0.5244 0.5226
960 -0.2833 12.9439 -37.2473 24.9099 0.5186 0.4717

GML 30 -0.4094 8.4909 -30.8536 22.0745 0.642 0.6007
60 -0.0169 10.5741 -34.3813 24.2411 0.5504 0.5263
120 -0.5117 11.8106 -31.1566 19.9740 0.3301 0.3128
240 -0.0496 10.5045 -31.9189 21.8216 0.4964 0.4900
480 -0.3971 13.7294 -39.3648 26.5502 0.4985 0.4954
960 -0.0487 11.0139 -33.4744 22.7946 0.4958 0.4942

MCP 30 0.2659 10.7596 -33.8282 23.4447 0.4702 0.4091
60 -0.2095 9.4790 -27.5371 18.5292 0.3126 0.2757
120 -0.2638 11.3711 -31.8619 20.6751 0.4751 0.4615
240 -0.3234 13.7239 -38.8914 25.7508 0.5659 0.5604
480 -0.1290 11.8463 -34.4156 22.8385 0.5244 0.5214
960 -0.2834 12.9439 -37.2473 24.9099 0.5186 0.5171

Figure 7. Smoothing curve of Nigeria Federal Government capital expenditure
(in billion nairas) between 1981-2019 (green line) and estimates (red line) with
Smoothing Parameters Chosen by GCV.

In the general structure of the simulated result, it was observed
that an increase in the sample size and changes in the level of
disturbances from autocorrelation affect the performance of the
three cubic smoothing spline methods see (Tables 1-4 and Fig-
ures 1–6). The adjusted R-Square result indicated that the GCV
had the highest values of 0.9992 at n = 240 and ρ = 0.1,
closely followed by the GML and MCP. It was discovered that
the generalized cross-validation (GCV) smoothing method pro-
vides the best model fit and proved to be more efficient than the
other smoothing methods for the simulated time-series obser-
vations with autocorrelation levels (ρ = 0.1, 0.3, 0.5 and 0.9)
in the error term and for sample sizes -

(n = 30, 60, 120, 240, 480 and 960). The smoothing curve
of the real-life data set of Nigeria Federal Government capi-
tal expenditure (in billion nairas) between 1981-2019 validated
the efficiency of the Generalized Cross-Validation smoothing
method as its’ model provided the best fit model without any
defection and shortcoming under cubic spline functional form
when compared with the competing smoothing methods.

Our findings also revealed that the GCV smoothing spline
estimator out-performed the other competing selection methods
for time series observation disturbed with four autocorrelation
levels (ρ = 0.1, 0.3, 0.5 and 0.9). The GCV is a smooth-
ing spline method fitted without any defection and shortcoming
under cubic spline functional form with the highest adjusted R-
Square of 0.9992, 0.9297, 0.8974, at ρ = 0.1, 0.3, 0.5, for
n = 240 and 480 respectively.

This finding is corroborated by [13, 26, 27, 28 ] whose find-
ings found that GCV was fairly better when compared to GML
for n = 64. That GCV was distinctly unrivalled for n = 128,
while for n= 32, GCV was better for more modest σ2 and the
examination close for bigger σ2. Other findings recommended
generalized cross-validation as the best method for penalized
Spline Smoothing parameter estimation and that GCV-Spline
decides fitting measures of smoothing fMRI time arrangement.
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