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Abstract

The artificial potential field (APF) is one of the famous path planning algorithms. It creates a virtual force field that attracts a robot to the goal or
repels it from an obstacle, forcing it to move along the direction of the resultant forces toward the goal. The repulsive force pushes the robot away
from the obstacle, causing a large displacement from the straight path, increasing the path length. This paper presents the Kenneth-Nnanna-Saleh
(KNS) algorithm that can shorten the length of an APF path by reducing its waypoints. The algorithm takes an APF path that is generated from
the problem domain as input, evaluates angles at each point, and compares the angle with a pre-defined threshold angle to remove or retain the
point in the resultant KNS path. Simulation environments, each with varying complexity in obstacle arrangement, were designed for various
simulations of the proposed algorithm. A Python-based computer simulation program was implemented and used to simulate the KNS, APF, and
a similar waypoint reduction algorithm - Ramer-Douglas-Peucker (RDP) and the results were analyzed. The results show that KNS can yield a
shorter path than APF and RDP and retain the obstacle avoidance feature of the path. The shortened path maintains the geometry of the APF path
and leads to reduced energy cost for the deployment of robots.

DOI:10.46481/jnsps.2025.2659

Keywords: Path planning, Artificial potential field, Obstacle avoidance, Robot

Article History :
Received: 03 February 2025
Received in revised form: 30 May 2025
Accepted for publication: 02 June 2025
Available online: 12 June 2025

© 2025 The Author(s). Published by the Nigerian Society of Physical Sciences under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this

work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Communicated by: O. Akande

1. Introduction

Path planning is finding a feasible, reliable, and efficient
collision-free path from a starting position to a predefined goal
position through a series of configurations in a given real-world
environment within the shortest possible time [1–3]. It involves
determining an optimal path for a robot to reach a specific des-
tination while avoiding obstacles and minimizing costs such as
time, distance, and energy consumption. Advancements in path
planning for modern robots have increased the need to consider
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other qualities and attributes, such as the smoothness of the
path, the number of bends, the sharpness of the bends, the clear-
ance of the path from obstacles, and the jerk of the path [4, 5].
An efficient and reliable obstacle avoidance path must ensure
adequate clearance around obstacles to prevent the robot from
scratching against them during its journey. The path should
avoid being “too close” or “too far” from obstacles [3]. How-
ever, increasing clearance often results in a longer path. There-
fore, it is essential to identify a path that minimizes bends and
displacement while maintaining effective obstacle avoidance, as
illustrated in Figure 1.

APF method has a rich history in robotics and has under-
gone several advances since its inception [1, 6, 7]. The suc-
cesses of the APF in planning the path for mobile robots have
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Figure 1: Optimum robotic path with appropriate clearance.

drawn the attention of several researchers with the aim of ex-
tending and improving it to provide solutions to its limitations
and improve its performance [8–12]. These works have resulted
in improved APF techniques capable of handling dynamic ob-
stacle avoidance, addressing local minima and deadlocks, and
integrating with other planning and control techniques and de-
sirable features[13–18].

Energy costs are on the rise worldwide, increasing the de-
sire to implement robots that deliver their objectives at a re-
duced energy cost. A reduced path length will ultimately trans-
late to energy savings if all other factors are constant. This work
presents the KNS algorithm that significantly reduces the way-
points of an APF path to yield a path that maintains the origi-
nal geometry, obstacle avoidance attributes, and shortened path
length. The main contributions of this paper are as follows:

1. The KNS algorithm - a novel technique that inputs an
APF path and eliminates non-essential waypoints to yield
a path that is shorter than the original (inputted APF)
path.

2. The KNS algorithm can achieve lower path costs through
shorter path lengths and reduced waypoints while avoid-
ing collisions with obstacles.

3. The KNS algorithm takes advantage of all the great fea-
tures of the APF algorithm, including its simplicity, ele-
gance, easy implementation, use of a simple math model,
and good collision avoidance attributes, to speed up the
computation time and obtain results in considerably less
time.

4. Simulation data, comparison data, and analysis results of
the effectiveness of the KNS algorithm generated from
complex environmental configurations with different ob-
stacle arrangements.

Section 2 (Related works) presents the APF and RDP algo-
rithms, APF pseudocode, a description of the RDP algorithm,
and the RDP flowchart. Section 3 (Materials and methods)
presents the KNS algorithms, KNS pseudocode, KNS steps,
flowchart, and proposed algorithm description. Section 4 (Path
planning simulation and analysis) presents the simulation re-
sults in tabular data and charts, a comparative study, and the
analysis of the simulation results data. Finally, in Section 5,
conclusions are drawn.

1.1. Background
Amongst the several approaches to measure the effective-

ness of robot paths, this research adopts three measures: path

Table 1: Value range for curvature (k) of a robotic path.

S/N Value
Range

Classification Interpretation

1 κ = 0 Zero curvature The path is a
straight line

2 0 < κ < 1 Small curva-
ture

The path has gen-
tle, gradual bends

3 0.1 ≤ κ ≤ 1 Moderate cur-
vature

The path has no-
ticeable bends

4 κ > 1 High curvature The path has
sharp bends or
tight turns

5 κ → ∞ Infinite curva-
ture

The path has
a discontinuity
or an extremely
sharp turn

length, smoothness, and obstacle avoidance. To achieve these
measures, this research design followed a three-step process as
listed below:

1. Generation of a path using Artificial Potential Field
(APF) algorithm

2. Application of the KNS algorithm on the APF path to
yield a shorter path.

3. Compare the resultant path from the application of the
KNS algorithm with the original APF path and the resul-
tant path using a similar path simplification algorithm –
the RDP algorithms

1.2. Evaluation of the KNS and comparison with APF and RDP
path

To measure the smoothness of the generated paths, the met-
rics described below were computed and compared for the APF,
RDP, and KNS in the various simulation environments.

1. Path Length: The total distance covered along a path. It
measures how long a path is from the starting point to
the goal position, including all the intermediate points or
segments along the pathway. Formula: For points, (x1,
y1), (x2, y2), (x3, y3), ..., (xn, yn),

L =
n∑

k=0

√
(xi+1 − xi)2 + (yi+1 − yi)2. (1)

A shorter path is preferred because it is assumed to min-
imize energy consumption if all other variables are con-
stant.

2. Curvature: Measures how sharply a path bends or
changes direction. A lower average curvature indicates
a smoother path. Table 1 shows the value range for cur-
vature (k).

3. Number of Turns The Number of Turns refers to the total
count of directional changes from the start point to the
goal point. Fewer turns usually mean a smoother path,
which is preferred.
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Table 2: Value range for a jerk (J) of a robotic path.

S/N Value
Range

Classification Interpretation

1 (0 - 1 m/s³) Low jerk Very smooth
changes in accel-
eration

2 (1 - 5 m/s³) Moderate jerk Moderate
changes in
acceleration,
relatively smooth
but noticeable

3 (5 - 20 m/s³) High jerk Significant
changes in
acceleration,
potentially dis-
comfort

4 > 20 m/s3 Very high jerk An extreme
change in ac-
celeration may
cause damage

Table 3: Classification and interpretation of collision risk value
range for a path.

S/N Value Range Interpretation Action
1 0.0 - 0.9 Very low

probability of
collision

Continue on the
current path with
standard monitor-
ing.

2 0.1 - 0.39 Low probabil-
ity of colli-
sion

Maintain the cur-
rent path but stay
vigilant for any
changes in the en-
vironment.

3 0.4 - 0.69 Moderate
probability of
collision

Minor adjust-
ments to the
path

4 0.7 - 1.00 High prob-
ability of
collision

Adjust the path to
reduce risk

4. Jerk The Jerk refers to the rate of change of acceleration
over time. Lower jerk values indicate smoother transi-
tions. Table 2 shows the value range classification for
jerks in Robots [18].

5. Collision risk This is the likelihood of the robot colliding
with an environmental obstacle. Table 3 shows the value
range that guided the interpretation of the outcomes of
our simulation results.

6. Safety score This Quantifies how safe a path is for a
robot, considering various factors that could lead to col-
lisions, and helps to determine the risk level associated
with the path as classified in Table 4 [8, 19].

Table 4: Classification and interpretation of safety score value
range of a path.

S/N Value
Range

Classification Interpretation Action

1 1 (close to
1)

Very/ highly
safe

Minimal
risk of colli-
sion

Good for
robot

2 0.7 – 0.9 Generally
safe

May have
minor risk

Monitoring
may be
required

3 0.4 – 0.7 Marginally
safe

Noticeable
risk

The risk
needs
to be
addressed

4 < 0.4 Unsafe path Significant
risk

The path
is not
suitable
for robots

Figure 2: Angle A1 computed from points P0, P1 and P2 .

2. Related works

Solutions to path planning problems have been as old as the
existence of mobile robots, dating back more than 100 years
during the Second World War, and have been transforming
with growing advancements in computing [20]. These traverses
from the first mobile robot “Shakey the robot”, which was de-
veloped in the late 1960s, to recent advanced work on humanoid
robots of modern days that have incorporated advanced Artifi-
cial Intelligence (machine learning and deep learning). Con-
tinuous research and advancement in path planning techniques
through the enhancement, improvement, and optimization of
existing techniques have resulted in more efficient, precisely
controlled, and hybrid methods that employ more efficient com-
putational methodologies [21].

2.1. The APF algorithm

Several approaches generate a reliable and feasible path for
a robot. The APF path planning approach creates a virtual po-
tential field where attractive forces guide the robot toward the
goal and repulsive forces push it away from obstacles [22, 23].
The robot moves along the resulting force vectors towards the
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goal while avoiding obstacles. The force of the potential field
FAPP is the sum of the attractive potential field Fatt and the re-
pulsive potential field Frep, as shown in Equation (2).

FAPP = Fatt + Frep. (2)

Consider a potential function U of RM ⇒ R where RM is the
configuration space and R is the field of real numbers. Equation
(3) gives the total potential function.

U(q) = Uatt(q) + Urep(q), (3)

where Uatt is the attractive potential that moves the robot to-
ward the goal and Urep is the repulsive potential that moves the
robot away from the obstacles. The total potential function is
the combination of the attractive and the repulsive potential, and
the resultant force is the gradient of the total potential function.

F(q) = −∇U(q) = −∇Uatt(q) − ∇Urep(q), (4)

where −∇U(q), −∇Uatt(q) and −∇Urep(q) are the first deriva-
tives of U(q), Uatt(q) and Urep(q) respectively. Equation (5)
depicts the total potential function of an APF.

F(q) = Fatt(q) + Frep(q). (5)

Pseudocode 1 gives the iterative operations of the APF algo-
rithm to generate a reliable and feasible path.

Algorithm 1 Pseudocode 1 APF algorithm

1. Input: Start point (S), Goal point (G), Obstacles (O), Max
iterations (Max Iter), Step size (Step Size).

2. Output: Path from S to G.
3. Initialize:.

(a) Current position (P) = S.
(b) Path = [S]
(c) Iteration = 0

4. while Iteration ¡ Max Iter and P != G:
(a) Attractive force Frep = G - P
(b) Repulsive forces Frep = 0
(c) for each obstacle (o) in O:

i. if P is within influence range of o:
A. Frep += Repulsive Force(P, o)

(d) Total force Ftotal = Fatt + Frep

(e) P = P + Step Size * NormalizeFtotal

(f) Path.append(P)
(g) Iteration += 1

5. Return Path

2.2. Ramer-Douglas-Peucker algorithm (RDP)

The RDP algorithm effectively reduces the number of points
in a curve while preserving its essential shape. The RDP algo-
rithm was independently proposed by Urs Ramer, David Dou-
glas, and Thomas Peucker in the 1970s with some improve-
ments that kept the corner selection procedure simple and also

Figure 3: KNS-path algorithm steps.

Figure 4: Adjusted path with optimum clearance and reduced
path.

Table 5: Results of average performance evaluation of the APF,
RDP, and KNS paths.

S/No Measures (Average) APF RDP KNS
1 Number of turns 26.9167 6.4167 7.0833
2 Collision Risk 0.0581 0.0505 0.0525
3 Clearance 3.3718 3.2905 3.4574
4 Jerk 0.0614 2.4638 0.5116
5 Curvature 0.2279 0.0844 0.3037
6 Safety Score 1.0000 1.0000 1.0000

selected corners in a more accurate pattern [24–26]. The goal is
to simplify the representation of a curve by retaining the critical
points and removing the points that contribute less to its overall
geometry.

2.3. How RDP simplification works

The RDP takes a set of points representing a path as input,
processes it through the steps of its algorithm, and outputs a
simplified set of points that approximate the original path. The
following steps represent the complete RDP process.

1. Select the first and last points in the input set; these are
always part of the simplified path.

4
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Table 6: Simulation environments, SE01 to SE11, configurations (qstart and qgoal) and obstacle layouts (obstacles Oi).

Environment Start (Qs)
(Xs,Ys)

Goal (Qg)
(Xg,Yg)

Obstacles Points Oi = (Xi, Yi): Ox= obstacle x position list [m], Oy = obstacle
y list [m]

SE01 (0.0, 10.0) (30.0, 30.0) ox = [15.0, 5.0, 20.0, 25.0]
oy = [25.0, 15.0, 26.0, 25.0]

SE02 (30.0, 30.0) (0.0, 10.0) ox = [15.0, 5.0, 8.0, 20.0, 25.0]
oy = [25.0, 15.0, 15.0, 26.0, 25.0]

SE03 (0.0, 15.0) (30.0, 26.0) ox = [15.0, 5.0, 8.0, 20.0, 22.0, 25.0]
oy = [25.0, 15.0, 15.0, 26.0, 26.0, 25.0]

SE04 (30.0, 26.0) (0.0, 15.0) ox = [15.0, 5.0, 8.0, 20.0, 22.0, 25.0, 27.0]
oy = [25.0, 15.0, 15.0, 26.0, 26.0, 25.0, 25.0]

SE05 (0.0, 10.0) (30.0, 26.0) ox = [15.0, 5.0, 8.0, 16.0, 20.0, 22.0, 26.0]
oy = [25.0, 15.0, 15.0, 17.0, 26.0, 26.0, 23.0]

SE06 (30.0, 26.0) (0.0, 10.0) ox = [15.0, 5.0, 8.0, 16.0, 20.0, 22.0, 26.0]
oy = [25.0, 15.0, 15.0, 17.0, 26.0, 26.0, 23.0]

SE07 (0.0, 10.0) (40.0, 36.0) ox = [15.0, 5.0, 8.0, 16.0, 20.0, 22.0, 26.0, 27.0, 30.0, 35.0, 37.0, 39.0, 40.0]
oy = [25.0, 15.0, 15.0, 17.0, 26.0, 26.0, 23.0, 25.0, 31.0, 32.0, 32.0, 32.0, 33.0]

SE08 (40.0, 36.0) (0.0, 10.0) ox = [15.0, 5.0, 8.0, 16.0, 20.0, 22.0, 26.0, 27.0, 30.0, 35.0, 37.0, 39.0, 40.0]
oy = [25.0, 15.0, 15.0, 17.0, 26.0, 26.0, 23.0, 25.0, 31.0, 32.0, 32.0, 32.0, 33.0]

SE09 (0.0, 10.0) (80.0, 76.0) ox = [15.0, 5.0, 3.0, 20.0, 22.0, 40.0, 46.0, 62.0, 67.0, 73.0, 78.0, 30.0, 55.0]
oy = [25.0, 15.0, 15.0, 26.0, 25.0, 36.0, 45.0, 58.0, 69.0, 71.0, 70.0, 23.0, 46.0]

SE10 (80.0, 76.0) (0.0, 10.0) ox = [15.0, 5.0, 3.0, 20.0, 22.0, 40.0, 46.0, 62.0, 67.0, 73.0, 78.0, 30.0, 55.0]
oy = [25.0, 15.0, 15.0, 26.0, 25.0, 36.0, 45.0, 58.0, 69.0, 71.0, 70.0, 23.0, 46.0]

SE11 (40.0, 0.0) (50.0, 76.0) ox = [42.0, 43.0, 43.0, 30.0, 50.0, 50.0, 50.0, 47.0, 52.0, 47.0, 47.0, 48.0, 78.0,
55.0]
oy = [2.0, 5.0, 10.0, 23.0, 21.0, 25.0, 50.0, 30.0, 55.0, 58.0, 64.0, 72.0, 70.0,
46.0]

SE12 (50.0, 76.0) (40.0, 0.0) ox = [42.0, 43.0, 43.0, 30.0, 50.0, 50.0, 50.0, 47.0, 52.0, 47.0, 47.0, 48.0, 78.0,
55.0]
oy = [2.0, 5.0, 10.0, 23.0, 21.0, 25.0, 50.0, 30.0, 55.0, 58.0, 64.0, 72.0, 70.0,
46.0]

Table 7: Planning results for (path length in meters) for APF, RDP and KNS improvements on APF with corresponding path
differences in meters and percentage reduction due to each improvement.

Environment APF path
length (m)

RDP path
length (m)

KNS path
length (m)

(RDP - APF)
(m)

(KNS - APF)
(m)

(RDP - APF)
%

(KNS - APF)
%

SE01 40.82 39.94 38.72 0.88 2.10 2.16 5.14
SE02 39.99 39.32 38.75 0.67 1.24 1.67 3.10
SE03 38.70 36.78 35.88 1.92 2.82 4.96 7.28
SE04 37.46 37.04 36.38 0.42 1.08 1.12 2.88
SE05 40.70 38.08 37.14 2.62 3.56 6.43 8.74
SE06 39.58 38.64 37.51 0.94 2.07 2.37 5.22
SE07 61.72 58.90 57.19 2.82 4.53 4.56 7.33
SE08 55.31 53.78 51.87 1.53 3.44 2.75 6.21
SE09 115.53 112.64 110.29 2.89 5.24 2.66 4.54
SE10 112.51 110.60 109.73 1.91 2.78 1.70 2.47
SE11 92.57 87.90 84.90 4.67 7.67 5.04 8.28
SE12 87.18 83.50 81.94 3.68 5.34 4.23 6.01

2. Calculate the perpendicular distance from each interme-
diate point to the line formed by the first and last points.

3. Identify the point with the maximum perpendicular dis-
tance dmax.

4. If dmax is greater than a user-defined threshold (epsilon):

(a) Split the curve at the point with maximum distance,
creating two sub-curves.

(b) Recursively apply the RDP algorithm to each sub-
curve.

5. If dmax is less than or equal to epsilon:

5
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Figure 5: Flowchart of the KNS-path algorithm.

(a) The line segment between the first and last points
sufficiently represents the original curve

6. End

2.4. Gap
The APF, RDP, and all the improvements researches on

APF in the past and present time have focused on the notable
drawbacks of APF such as local minima problem,unreachable
target,poor adaptability, oscillation near obstacle, difficulty in
narrow passages, etc. with the increasing energy cost world-
wide,there is increasing need to generate robotic paths that are
as short as possible.

3. Material and methods

As more obstacles are introduced into an APF path, the
avoidance attribute of the APF algorithm (powered by the re-
pulsive force) causes the path to bend, resulting in curves with
varying angles. The generated path takes different shapes with
varying degrees of bends proportionate to the obstacle’s posi-
tion on the robot’s path in the environment.

3.1. KNS algorithm
Given a path G, as shown in equation (6),

G = (P1, P2, P3, . . . , Pn), (6)

where G is an APF-generated path, Pi is the set of points (xi , yi)
coordinates that make up the path. Let be the resultant path of

the KNS algorithm on G. The first point is automatically added
to (Gk to maintain the geometry of the path G. Iteratively, the
angle at the next point Pi, ( i= 1, 2, 3, ..., n) is evaluated and
compared with a predefined angle threshold θt. If the angle of
the point θi is less than or equal to the defined angle threshold
θi, the point is eliminated in the path; else, the point is added to
the path Gk.

Given three points P0, P1, and P2 as shown in Figure 2 as
vertexes, the angle on the vertex P1, that is the angle between
the vector from P0 to P1 and the vector form P1 to P2. To
evaluate the angle at P1, three points are considered, the prior
point P0 and P1 itself, and the next point at P2 on the path is
considered.

For Pi( ri, θi), consider the points (Pi−1, Pi, Pi1 ). The angle
on the vertex Pi, that is the angle between the vector P0 to P1
and P1 to P2. The length of the vertex is given in equation (7).

−−−−→
P0P1 = P0 − P1,

−−−−→
P1P2 = P1 − P2. (7)

The scalar product (the dot product) has the property de-
picted in equation (8).

−−−−→
P0P1 ·

−−−−→
P1P2 = ∥

−−−−→
P0P1∥∥

−−−−→
P1P2∥ cos θ, (8)

where ∥ ∗ ∥ ∥ ∗ ∥ measures the length and θ is the angle between
the two vectors is given in equation (9).

θ = arccos

 −−−−→P0P1 ·
−−−−→
P1P2

∥
−−−−→
P0P1∥∥

−−−−→
P1P2∥

 , (9)

where arccos θ = Inverse cosine function = cos−1 θ. Thus, gen-
eralizing using Figure 10, to evaluate the angle at Pi, three
points are used: the prior point Pi−1, point Pi itself and the next
point Pi+1 on the path are considered. that is, for Pi (ri, θi),
consider points (Pi−1, Pi, Pi+1).

Therefore, given three points, Pi−1, Pi and Pi+1 as vertexes,
to evaluate angle at point Pi, three point: the prior point Pi−1,
point Pi itself and next point Pi+1 are considered. Equation (10)
is the function for the computation of angle θ

θ = arccos

 −−−−−→Pi−1Pi ·
−−−−−→
PiPi+1

∥
−−−−−→
Pi−1Pi∥∥

−−−−−→
PiPi+1∥

 , (10)

where i = 1, 2, 3, . . . , n. Finally, the goal point Pn is added to
the new path Gk to form the full path.

3.2. KNS algorithm methodology
The KNS-path algorithm was implemented using the

Python development and simulation environment. The resul-
tant path was compared with paths generated with other algo-
rithms with similar objectives and the data results were anal-
ysed. Pseudocode 2 shows the internal working techniques of
the KNS algorithm.

Figure 3 shows the steps of the KNS algorithm. It takes
as input an APF path into the KNS algorithm through steps 1
to 7 and the final (shortened) path – the output also depicted
in Figure 4 as an adjusted path with a shorter path length and
acceptable clearance. Figure 5 illustrates the flow chart of the
KNS algorithm.

6
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Figure 6: Robot path for different simulation environments presented in Table 6. Each map shows the outcome the APF, RDP, and
K-path with their corresponding path length in meters.

4. Path planning simulation and results

The simulation environment for the proposed planning path
was performed in twelve (12) different environmental configu-
rations as indicated in Equation (11).

F(qi) = Qi(Xi,Yi,Oi), (11)

where i = 1, 2, 3, . . . , 12.

In all simulations, the path planning algorithm begins from
the initial position qi, which is the point (x0, y0). As path
generation progresses to the goal point, F(q0) takes into con-
sideration the positions of all obstacles Oi = (Ox. Oy) to
generate effective avoidance. The resultant path F(qi) =
([x0, y0], [x1, y1], ..., [xn, yn]) with starting point = [x0, y0] and
goal position = [xn, yn] for the APF algorithm. The APF path

7
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Figure 7: Measure of smoothness value (number of turns and
clearance for APF, RDP & KNS).

Figure 8: Measure of smoothness value (collision risk, curva-
ture and saft score for APF, RDP & KNS).

Figure 9: Measure of smoothness value (jerk and safety score
for APF, RDP & KNS).

Figure 10: Angle θ computed from points Pi−1, Pi and Pi+1 .

F(qi) is fed independently as input into the RDP and KNS path
reduction algorithms to generate the corresponding improved
path for each of the algorithms in each simulation. All simu-
lation environments were configured to evaluate the length of
the path, the differences in the path and the percentage of path
improvement relative to the original APF path. The simulation
environments SE01, SE02. . . SE12 as shown in Table 6.

In Table 6, the different configurations of the twelve simu-
lation environments are shown with varying complexity of the

Algorithm 2 Pseudocode 2 KNS-path algorithm

1. Start
2. pathin ←− path Matrixoriginal

3. pathout ←− []
4. t←− Amgle threshold
5. i←− 0
6. k←− len (Pin) - 1
7. pathout . append(pathin (i))
8. for i in range (1,k):

(a) Anglei ←− angle between pathin(i-1), pathin(i) and
pathin(i+1)

(b) if ( Anglei ≤ t )
i. pathout . append(pathin (i))

(c) End If
9. next i

10. pathout . append(pathin (k))
11. End

obstacle arrangement. The environments are labeled SE01 to
SE12, representing simulation environment 01 to simulation
environment 12, respectively. For each of the environment in
the, we defined the start point (Qs), the goal point (Qg), and
the positions of obstacles (Qi) in each environment. The Start
and goal positions provides coordinates (Qs) (Xs,Ys) and (Qg)
(Xg,Yg) for each simulation environment. The obstacle position
in each environment is depicted by Ox and Oy, which are arrays
of x and y coordinates of each obstacle in various simulation
environments.

Table 6 shows the length in meters of the generated paths by
the three algorithms (APF, RDP, and KNS in each of the simu-
lation environments SE01 to SE12. Additionally, it shows the
absolute and percentage reduction in length achieved by RDP
and KNS algorithms compared with the original path gener-
ated by APF. The algorithms (RDP and KNS) recorded reduc-
tions in path length in all the simulation environments, but KNS
recorded a higher reduction in all the environments.

Additional indices that give more comfort on the reliabil-
ity and smoothness of APF, RDP, and KNS paths are estimated
and shown in Table 5. Both RDP and KNS recorded more than
half (50%) reduction in the number of turns of the APF path.
The three algorithms recorded very low collision risk, indicat-
ing that the chances of the path colliding with an obstacle are
very low. Collision Risk of a path measures the likelihood of a
path leading to a collision with obstacles or other moving enti-
ties. Additionally, the clearance measure of the three algorithms
indicates that the paths have adequate space from the obstacles.
Clearance of a path measures the minimum distance between
the path and obstacles in the environment. The APF had the
best jerk value, followed by the KNS algorithm. Jerk measures
the rate of change of acceleration over time. If acceleration
changes smoothly, the jerk is low; if acceleration changes sud-
denly, the jerk is high. On the other hand, the RDP had the least
curvature (curvature measures how much a path deviates from
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being a straight line).
The results in Table 7 show that the KNS paths greatly im-

proved path length, with as much as 8.74% reduction in SE05
and 7.67 meters absolute length reduction in SE11. The paths
are shown in Figure 6 (a-l), which are the resultant paths for
simulation environments SE01-SE12, respectively.

The graphical plot of the APF, RDP, and KNS paths gen-
erated in the twelve simulation environments is shown in Fig-
ure 6(a-l). Each of the graphs shows the different obstacle ar-
rangements, the plot, and the path length of the three algorithms
(APF, RDP, and KNS).

The obstacles are represented by the circular shapes in the
graph. The plots of the various simulation environments show
that the paths of the KNS algorithm avoided all the obstacles
and there was no collision at any point despite the reduced way-
points that led to a shortened path. on closer observation, the
graphs show that the KNS and RDP have smoother paths, which
lead to shortened path length. Additionally, the plotted chart
showed the path lengths of the three algorithms in all the sim-
ulations. The KNS path was the shortest in all the instances,
which implies a higher reduction in path length both in abso-
lute and percentage terms.

4.1. Analysis of results

The outcome of applying the KNS and RDP algorithms on
the APF path is presented in this section. The respective path
reductions in each simulation environments were observed. The
two algorithms - KNS and RDP take an APF path as input, act
on it using different techniques, and output a path with a shorter
length as presented in the simulation results, which is depicted
in Figures 6(a-l). The new paths ensure that the geometry of the
path and the obstacle avoidance feature of the path were pre-
served [19, 25, 27]. Table 7 shows the original APF path length
and the resultant RDP and KNS paths. It depicts the absolute
and percentage path reduction of RDP and KNS algorithms.
Both algorithms recorded path reductions in all simulation en-
vironments, with the highest impact in simulation environment
SE05. The KNS algorithm recorded a significant reduction of
up to 3.56 meters in absolute length, which translates to 8.74%
reduction in length.

Table 5, Figures 7, 8 and 9 show the results of the average
performance evaluation of the APF, RDP, and KNS paths. The
KNS recorded the lowest average number of turns, indicating a
higher smoothness measure than other algorithms that recorded
a higher number of turns. Similarly, the collision risk measures
of the three algorithms are very low, which signifies high ob-
stacle avoidance and low risk of colliding with obstacles. The
clearance results of the three algorithms reaffirms the low risk
of the robot to colliding with obstacles. The safety score one
(1) the algorithms strongly indicates how safe the three paths
are for a robot. Finally, the low Jerk measures recorded by
the three algorithms signify that the paths have very smooth
changes in acceleration, which will not harm the robot and its
components.

5. Conclusions

In this paper, the KNS algorithm was implemented and the
simulation results (of the APF, RDP, and KNS path lengths)
were compared and analyzed. Firstly, the effect of the large
clearances on APF path length due to the effects of repul-
sive forces from obstacles in the environment was highlighted.
Then, the pseudocode and the flowchart of the KNS algorithm
were designed and developed. The capability of a similar way
point reduction algorithms - RDP, was identified and applied
to the APF path. Finally, the APF, RDP, and KNS algorithms
were implemented in a Python-based computer simulation en-
vironment. Compared to APF path planning algorithms and the
RDP curve smoothing technique, the KNS algorithm showed an
impressive result, and the comparative resultant path Figure 6(a
- l), were the effective and reliable path to move a robot from
the start configuration to the goal position. Further evaluation
of the KNS path showed very acceptable values of other path
performance measures such as clearance, jerk, curvature, col-
lision risk, and safety score. These results show that the KNS
can significantly reduce the length of an APF path and maintain
obstacle avoidance features.

Future work would be a further study of a standardized
method to fix the reduction of the depth of the curve or bend
around the obstacle. Another future work would be to continue
to improve the path clearance to define the minimum space be-
tween the obstacle and the path relative to the speed and size
of the obstacle. Furthermore, as deep reinforcement learning
(DRL) and other artificial intelligence algorithms are signifi-
cantly advancing many fields [28, 29], DRL applications can
be examined in robot path planning to shorten path length and
allow robots to navigate complex environments more efficiently
and effectively.
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The data presented in this study are available upon request
from the corresponding author.
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