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Abstract

In the field of disaster management, social media analytics has gained significant recognition. Social media platforms, particularly Twitter, have
become an invaluable source for disseminating information during disasters, offering real-time updates on events, crisis reports, and casualty
information. However, the deluge of information on social media can also be overwhelming, with a substantial amount of irrelevant content. To
address this challenge, researchers leverage machine learning (ML) classifiers to automatically categorize disaster-related tweets. However, ML
classifiers, while being effective, also face issues such as overfitting and class imbalance. This study proposes an ensemble-based approach that
integrates a variety of linguistic and word embedding features, including Parts-Of-Speech (POS), hashtags, Term Frequency-Inverse Document
Frequency (TF-IDF), GloVe, Word2Vec, and BERT. A range of supervised learning algorithms like Decision Trees, Logistic Regression, Support
Vector Machines, and Random Forests, were evaluated individually and as part of ensemble methods like AdaBoost, Bagging, and Random
Subspace. The results show that combining TF-IDF with word embeddings and using the AdaBoost ensemble model yields superior performance,
achieving a classification accuracy of 98.92%. This represents a notable improvement over the conventional standalone classifiers and highlights
the advantage of ensemble methods in enhancing model robustness and minimizing overfitting. The proposed approach demonstrates not only
high predictive capacity but also scalability for real-time tweet filtering during emergencies. In addition to demonstrating the efficacy of ensemble
methods in disaster tweet classification, this study also provides valuable insights for improving social media-based crisis response. It also
establishes a foundation for future research, particularly in multi-lingual and multi-disaster scenarios.
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1. Introduction

In recent years, disaster crisis management researchers and
emergency practitioners have widely acknowledged the signifi-
cance of social media analytics [1]. Times of disaster are often
characterized by large volumes of message exchange between
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friends and families trying to notify one another about the on-
going developments. Consequently, this leads to inefficiencies
in standard communication technologies due to the significant
overload of network lines, which in turn, limits the effectiveness
of disaster response teams. Recently, social media has drawn a
lot of attention in disaster crisis response [2]. Not only is it
making it easier for people to share information, but the pro-
cess of data collection and analysis has also been simplified by
many social media platforms such as Twitter [3].

Twitter has become well known among various organi-
zations and individuals for its value in improving situational
awareness during times of disaster crisis [4, 5]. It enables peo-
ple to post real-time and on-topic information about their status,
reports on damage to infrastructure, and information about in-
jured people or loss of life [6]. Disaster crisis-related tweets
have proven particularly effective in many human-made or nat-
urally occurring crises such as floods [7], earthquakes [8], nu-
clear disasters [9] and wildfires [10]. However, while tweets
provide important information, they often contain a significant
amount of unrelated or irrelevant information. As a result, so-
cial media analysts and disaster crisis response teams are faced
with the challenge of coming up with mechanisms to prioritize
relevant posts while discarding irrelevant ones. This has led to
an increase in intelligent technologies for the automatic classi-
fication of tweets.

Lately, conventional machine learning (ML) classifiers have
gained much popularity in research related to categorizing dis-
aster crisis-related tweets [11]. Conventional ML classifiers
have shown remarkable performance in the identification of
trustworthy and relevant information related to disaster crisis
posts [12]. These classifiers have recorded superior perfor-
mance results in several areas such as text classification, natural
language processing (NLP), speech recognition, and object de-
tection [13, 14]. The main idea of ML classifiers is to learn un-
derlying patterns and make predictions based on historical data.
ML classifiers such as k-nearest neighbour (KNN), support vec-
tor machines (SVM), Naı̈ve Bayes, and logistic regression (LR)
have successfully been applied in the identification of disaster
crisis-related tweets [15]. However, single-based ML classifiers
are prone to several challenges such as overfitting, especially
when the amount of available data is small [16]. Also, ML
classifiers are affected by significant class imbalances, where
a classifier gives more preference to a class with significantly
more examples than others.

Existing studies have shown that one way to enhance the
performance of ML classifiers is through the use of ensemble
methods [14, 17]. Ensemble methods refer to a learning ap-
proach that involves integrating and weighing several base-ML
models to identify a classifier that outperforms the rest [18].
The general concept of the ensemble-based approach is to max-
imize the predictive performance by combining the strengths
of several base classifiers. In addition, research has also re-
vealed that most text classification tasks have been handled us-
ing general-purpose NLP techniques such as Parts-Of-Speech
(POS), n-grams, unigrams, and Global Vectors (GloVe) [19–
21].

However, while prior studies have examined the use of ma-

chine learning for tweet classification during disasters, few have
conducted a detailed comparative analysis of multiple feature
representations including TF-IDF, word embeddings, and POS
tags combined with ensemble classifiers. Furthermore, existing
works often rely on a single model or feature type, which may
not generalize well across diverse social media content.

This study addresses this gap by evaluating a range of fea-
tures and classifiers, with a focus on the effectiveness of ensem-
ble approaches. The study contributes to the field by identifying
optimal combinations of features and models that can improve
the robustness and accuracy of tweet classification in real-time
disaster scenarios. The main contributions of this work are out-
lined as follows:

• The implementation of three different linguistic features
and four-word embedding features for disaster crisis clas-
sification on a benchmark dataset.

• The experimentation with the use of ensemble learning
methods in conjunction with ensemble feature subsets
and classifiers.

• Performance comparison of feature ensemble and classi-
fiers ensemble for disaster crises classification.

• Using the publicly available dataset, the study illustrates
that the proposed ensemble-based approach can success-
fully classify disaster tweets when applied to real-world
data.

• The systematic integration, evaluation, and optimization
of feature engineering, ensemble learning, and classifier
performance on real-world disaster-related tweets.

The rest of the study is organized in the following manner.
The second section provides an overview of the related works.
The third section outlines the materials and methods used to
implement the proposed approach. In the fourth section, the
results and discussion of the study are presented. Finally, the
fifth section gives the conclusions and suggestions for future
works.

2. Review of related works

This section provides a literature review based on feature
engineering, conventional machine learning, deep learning, and
ensemble classifiers for disaster crisis classification as repre-
sented in the subsection below.

2.1. Feature engineering

Feature engineering is used to extract relevant information
from tweet data to improve the performance of classifiers. Nep-
palli et al. [22] first preprocessed the raw tweet data using Nat-
ural Language Processing (NLP) techniques, such as tokeniza-
tion, stemming, and stop word removal to standardize the text
and make it easier to analyze. Then the preprocessed tweets
were used to extract a set of features that could be used to train
and evaluate their classifiers. The combination of traditional
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and more complex features to capture both basic and more nu-
anced aspects of tweet content helped to improve the model’s
accuracy. The paper by Schnebele et al. [23] demonstrates
how feature engineering can be used to extract relevant infor-
mation from limited remote sensing data and improve the accu-
racy of flood extent estimation during disaster events. By using
a combination of pixel-based and object-based features, the au-
thors can capture both basic and more nuanced aspects of the
satellite imagery, which helps to improve the accuracy of flood
extent estimation. In the paper by Naderi [24], performed fea-
ture engineering that includes tokenization, stop word removal,
stemming, and the removal of URLs and mentions. Besides,
several linguistic and content-based features, such as the num-
ber of words, characters, and hashtags, as well as sentiment,
readability, and information content were extracted. The au-
thors also used Named Entity Recognition (NER) to extract en-
tities related to disasters, such as locations and event types, and
then applied part-of-speech (POS) tagging to identify the func-
tion of the words in the tweet. Basu et al. [25] presented an-
other way for utilizing Twitter data for the management of post-
disaster resource needs and resource availability. Word-level
and character-level embeddings were proposed in two separate
unsupervised neural retrieval models. They examined several
different unsupervised techniques, including pattern matching
and information retrieval. Tweets from the 2015 Nepal and
portions of India earthquakes, as well as the 2016 Central Italy
earthquake, were used to compile the dataset. The unsuper-
vised information retrieval approach proposed by the authors
yielded better results compared to other methodologies applied
to the dataset of the earthquake that happened in Nepal. The
suggested method achieved an accuracy of 0.57 in classifying
the Nepal earthquake data and an F1-score of 0.191.

Several research projects have used ML and NLP strate-
gies for disaster management, particularly from the perspective
of emergency rescue operations [26, 27]. By combining natu-
ral language processing techniques with the machine learning
algorithms Nave Bayes and Maximum Entropy, Verma et al.
[28] were able to identify which tweets contributed to situa-
tional awareness during emergencies. Three disasters related
data were analyzed, including the 2009-10 floods at Red River,
the earthquake in Haiti, in 2010, and the 2009 Oklahoma grass
fire. To begin classifying tweets about situational awareness
from the three crisis occurrences, they started by building two
supervised classifiers, one using Naive Bayes and another us-
ing Maximum Entropy. They followed up by analyzing the
classifiers’ overall performance across all four instances. How-
ever, the authors discovered that the classifiers were transfer-
able across the 2009 and 2010 Red River floods, but not be-
tween different types of disasters. For instance, the classifier
trained on the Haiti earthquake data had poor accuracy perfor-
mance, in the cases when it was applied to the data of grass fires
in Oklahoma, and vice versa, due to the significant differences
between the two types of occurrences.

In addition, traditional ML techniques have been used for
tweet classification during disasters. For instance, Imran et al.
[29] proposed a classification framework that combines sev-
eral traditional machine learning algorithms, including Naive

Bayes, Decision Trees, and Random Forest, for extracting in-
formation nuggets from tweets during disasters. While the
novel combination of algorithms may lead to better perfor-
mance than using a single algorithm, the study’s sample size
may not be large enough to provide conclusive results or gener-
alizable findings. Kryvasheyeu et al. [30], proposed a DT and
RF-based rapid assessment model for disaster damage using so-
cial media activity, including tweets. The strength of the pro-
posed method has high precision and recall values, indicating
the approach’s effectiveness in identifying disaster-related mes-
sages and inferring damage. However, the authors relied heav-
ily on the use of location information which may lead to bias
in the results in a situation where users are less likely to share
their location. Khare et al. [31] proposed a method that uses
semantic and statistical features of tweets across several lan-
guages to classify crisis data. One strength of the paper is that
it addresses the issue of language diversity in crisis data classi-
fication, which is an important challenge in the field. However,
the authors do not provide a detailed evaluation of their method,
such as a comparison with existing methods in the field.

Deep learning algorithms have also been extensively used
to classify social media content related to crises. For instance,
the paper by Burel et al. [32], proposes a method called Sem-
CNN, which is a deep and wide CNN model that uses the con-
ceptual semantics of words to detect information categories of
tweets related to crises. The evaluation results in the paper indi-
cate that the method performs better than other traditional ma-
chine learning approaches. However, the paper does not pro-
vide much insight into the generalizability of the approach to
other languages or different types of crises. Similarly, Kabir and
Madria [33] applied Convolutional Neural Networks for tweet
classification and rescue scheduling for effective disaster man-
agement. While the paper proposes an interesting approach for
tweet classification and rescue scheduling for disaster manage-
ment, the lack of detailed evaluation and the narrow focus of the
study limit its potential impact on real-world disaster manage-
ment scenarios. Bhoi et al. [34] proposed a framework that in-
volves the use of pre-processing, feature engineering, and deep
learning techniques, including convolutional neural networks
(CNNs) and long short-term memory (LSTM) networks, for so-
cial media text classification and sentiment analysis for disaster
resource management. Although the proposed framework em-
ploys pre-processing and feature engineering techniques to im-
prove the quality of the data, which is crucial for accurate anal-
ysis, the authors did not clearly explain the feature engineering
techniques used in the framework. In another study, Kundu
et al. [35] introduced an LSTM-based framework to catego-
rize tweets into these categories (NGOs). The study relied on a
dataset including information about the 2015 Nepal earthquake
that was received from the International Information Retrieval
Forum for the years 2015 and 2017. With an accuracy of 0.9234
and an F1 score of 0.9159, the proposed method outperformed
the Bag of Words and TF-IDF methods.

Ensemble classifiers for identifying crisis-related text on so-
cial media have also been proposed. For instance, Alshehri and
Alahamri [36] proposed a two-stage binary ensemble classi-
fier that incorporates natural language processing and machine
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learning techniques. The method used in the study, which com-
bines TF-IDF, psychometrics, and linguistic features, has good
performance in tweet identification for situational awareness.
However, the classification technique may have poor efficacy
due to the poor quality of the labels used. Also, Madichetty
[37] proposed a method that uses a majority voting-based en-
semble technique that uses algorithms such as gradient boost,
bagging, AdaBoost, SVM, and random forest to detect medi-
cal resource tweets in times of disaster. The methods produce
informative features that have less sparsity, dimensionality, and
execution time in contrast with the baseline model. However,
the study was limited only to earthquake-related disaster-based
datasets.

Previous studies on tweet classification for disaster crises
primarily focused on utilizing traditional linguistic and psy-
cholinguistic features, semantic features, word embedding fea-
tures, and contextual features. In addition to the features
utilised common classifiers such as support vector machines,
random forests, Naive Bayes, K-nearest neighbour, and de-
cision trees, were employed during the classification process.
This study distinguishes itself from earlier research in various
aspects. It provides a comprehensive examination of ensem-
ble feature sets derived from diverse contextual and linguistic
features. Furthermore, both conventional learning methods and
ensemble learners were assessed during the classification phase.
The empirical findings also include an evaluation of the predic-
tive performance of deep learning-based algorithms specifically
applied to identifying disaster crisis tweets. All empirical anal-
yses were conducted using the Queensland flood dataset.

3. Materials and methods

In this section, a description of the data collection, pre-
processing, and feature engineering techniques used in this
study is provided. Furthermore, the section also described the
classification approach by describing the ML classifiers and
the ensemble-based techniques. Finally, the evaluation metrics
used to evaluate the performance of the classifiers are discussed.
Figure 1 depicts the architectural view of the methodology.

3.1. Data collection

The data collection stage is the first and most crucial step
in any classification task. Moreover, the quality of the data col-
lected and its use have a substantial impact on the performance
of the classifier. In disaster tweet classification tasks, data is
either collected directly from Twitter servers with the aid of a
Twitter API or from publicly available datasets. However, one
of the major drawbacks of data collected directly from Twit-
ter servers is that it requires a significant amount of manual
annotation and validation by experts. In contrast, most pub-
licly available Twitter datasets have already been annotated and
filtered, making them relatively convenient. As a result, this
study used publicly available real-world Twitter datasets. The
datasets were collected during the 2013 Queensland floods. The
datasets included millions of tweets gathered using the Twit-
ter streaming API using event-specific keywords and hashtags.

The tweets were labelled as either ”relevant” or ”not relevant”.
Tweets labelled ”relevant” included crisis response information,
such as news of injured or killed persons, infrastructure dam-
age, urgent needs of those impacted, and pleas or offers for
contributions. Tweets that did not include any of the aforemen-
tioned information, on the other hand, were labelled as ”non-
relevant.”

3.1.1. About the dataset
The 2013 Queensland flood tweets of 10,033 randomly se-

lected make up the dataset utilised in this study. The tweets
were carefully selected to guarantee a balanced representation
of both relevant and irrelevant content. In particular, the dataset
has 5,418 tweets categorised as ”not relevant” and 4,615 tweets
labelled as “relevant”, indicating a fairly even distribution be-
tween the two groups. Because each tweet is represented as
a text string, there is a wealth of textual data available for
study. This dataset balance is especially beneficial for train-
ing and assessing machine learning models since it lessens the
difficulties caused by class imbalance and guarantees solid and
trustworthy outcomes in tasks like topic modelling, sentiment
analysis, and binary classification. The availability of such a
well-structured dataset increases the possibility of significant
insights into public conversation during the Queensland floods,
which serves as a useful resource for scholars and practition-
ers in the fields of natural language processing and disaster re-
sponse. The dataset can be accessed through the link below
https://crisisnlp.qcri.org.

3.2. Data pre-processing

Twitter-based datasets are often characterized by noise due
to the presence of emojis, symbols, incomplete sentences,
slang, invisible characters, ill-formed words or sentences, and
non-dictionary-based words [19]. Thus, the data pre-processing
in this study applied several steps to pre-process the Twitter-
based dataset. Firstly, all text data was converted to lower-
case using the lambda function with the join method and split
method. Secondly, all URLs were removed from the text data.
Three distinct regular expressions were used to remove URLs:
one for URLs starting with “HTTPS”, another for those start-
ing with ”HTTP,” and a third for URLs without these prefixes,
which may or may not include www. Thirdly, placeholders
such as ”link” and ”video” that may have been introduced in the
text data during previous cleaning steps were removed. In the
fourth step, HTML reference characters such as & and >were
removed. The fifth step involved the removal of non-letter char-
acters from the text data. In the sixth step, Twitter handles were
removed. The seventh step comprised of tokenizing the text
data using the TweetTokenizer object. Thereafter, all punctua-
tion tokens were removed from the tokenized text data, which
comprised the eighth step. The final step was to lemmatize the
tokenized words using the WordNetLemmatizer object. Data
augmentation methods were not used as data was already bal-
anced and labelled.
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Figure 1: Architecture of the model.

3.3. Feature extraction and selection
In this study, various features were extracted before further

classification of the text data. Although the TF-IDF feature was
the final feature that was used in the ensemble of classifiers,
this section details all the features that were extracted in this
research.

(i) Parts of speech (POS) tagging: The first feature extrac-
tion technique performed on the Queensland dataset was
POS tagging. POS tagging involves assigning a POS la-
bel to each word in a sentence, such as noun, verb, adjec-
tive, or adverb, among others, to help identify patterns in
text data that could improve the machine learning mod-
els [38]. To accomplish this, Python code was used to
train three POS taggers, a default tagger, a unigram tag-
ger, and a bigram tagger. This was done using the Brown
corpus, a large corpus of text data [39]. Thereafter, the
code uses the taggers to POS tag the lemmatized words
in each dataset. The resulting POS tags were mapped to
WordNet POS tags, a more standard format for NLP ap-
plications. Finally, counts of the number of occurrences
of nouns, verbs, adjectives, and adverbs for each row of
data in the Queensland datasets were stored. These counts
served as features.

(ii) Hashtags: The second feature extraction technique per-
formed was hash-tagging. Hashtags were extracted and
one-hot encoding was applied to the hashtags for the
Queensland flood dataset. The one-hot encoded hash-
tag features were concatenated with the original tweet
datasets.

(iii) Term Frequency-Inverse Document Frequency (TF-IDF):
The third feature extraction technique performed was the
TF-IDF. This is a statistical-based approach that measures
the importance of a word in a document [40, 41]. TF-IDF
calculates the frequency of occurrence of a word in a par-
ticular document and normalizes it in a range between 0
and 1 to eliminate bias between lengthy documents. In
this study, the TF-IDF algorithm was used to transform
text data into a numerical format by assigning weights

to each word or phrase in a document based on its fre-
quency of occurrence in the document and its rarity in
the entire corpus. To do this, the TfidfVectorizer class
from the Scikit-learn library was used to implement the
TF-IDF algorithm. The TF-IDF algorithm was applied to
the Queensland dataset. For each dataset, first, the test
corpus extracted five documents and applied the TF-IDF
algorithm with ngram=1 to generate the features. It then
applied the same algorithm to the entire dataset and stored
the resulting features in separate variables.

(iv) Word2vec: The fourth feature extraction technique per-
formed was the Word2Vec algorithm. The Word2Vec
model converts words into vectors using a cosine similar-
ity formula [42]. To implement this technique, this study
used a pre-trained Word2Vec model from the Google
News corpus to calculate the similarities between different
words such as ”cat” and ”kitten”. The average embedding
value and the sentence embedding were defined. These
were then used to generate embeddings for the Queens-
land flood datasets.

(v) Global Vectors for Word Representation (GloVe): The
fifth feature extraction technique performed was the
Global Vectors for Word Representation (GloVe) model.
The GloVe model is used to convert word vectors from a
large text corpus into a dense vector space, which can be
used to represent word meanings in numerical form [20].
In this research, the glove2word2vec function was im-
ported from the gensim. Scripts module to convert GloVe
embeddings to the Word2Vec format. Then a pre-trained
GloVe model was loaded and used to generate embed-
dings for text data from the Queensland flood datasets.

(vi) FastText: The sixth feature extraction technique per-
formed was the FastText model. The FastText model is an
extension of the Word2Vec model that can generate em-
beddings for subword units of words, making it suitable
for handling out-of-vocabulary words and capturing more
fine-grained information about word meanings [43]. To
implement this, a pre-trained FastText model (wiki-news-
300d-1M) was loaded and used to generate embeddings
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for text data from the Queensland datasets.
(vii) Bidirectional Encoder Representations from Transform-

ers (BERT): The seventh feature extraction technique per-
formed was the BERT model. The BERT algorithm is
a pre-trained language model based on the transformer
architecture which generates bidirectional representations
of text to capture their meaning for downstream NLP tasks
[44, 45]. In our study, the BERT model was downloaded
from TensorFlow Hub and loaded into a KerasLayer. A
’bert encode’ function, which takes the textual data and
tokenizer as input and returns an encoded tensor with to-
kenized data, padded sequences, and segment IDs for the
input sentences was used. Finally, the ’bert encode’ func-
tion was then applied to the Queensland datasets.

These features were selected due their ability to capture
both the syntactic and semantic properties of tweets [46]. For
instance, the POS tags provides grammatical cues, while TF-
IDF capture term relevance and word embeddings capture con-
textual meaning. No automatic feature selection algorithm such
as mutual information, and recursive feature elimination was
used as features were comprehensively engineered manually
[47].

3.4. Classifiers
3.4.1. Supervised learning methods

(i) Decision Tree (DT): DT is a widely used ML algorithm.
It handles both classification and regression problems. It
has a tree-like structure such that the internal nodes are
termed features. While the branches signify a decision
concerning the features, the leaf node denotes the result
(predicted value) [48]. The DT algorithm constructs the
tree-like learning structure through recursive segregation
of the dataset using diverse features. Hence, picks the
finest features at respective stages of the tree using mea-
sures like Gini impurity, or information gain. The main
target of DT is to split the data such that impurity at each
stage is minimized [49].

(ii) Logistic Regression (LR): LR is a binary classifier that
predicts the possibility that a sample data is fit for cer-
tain input features [50]. Even though it is named lo-
gistic regression, it is a classification-inclined algorithm
rather than a regression algorithm. It has a wide range
of applicability across fields such as financial analysis,
healthcare models, etc. involving binary classifications.
It also serves as a benchmark algorithm upon which com-
plex methods are implemented. Logistic regression aims
at modelling the relationship involving input features and
probabilistic binary outcome generated by a logistic func-
tion also called the sigmoid function. The sigmoid func-
tion works by mapping real numbers to the binary values
of 0 or 1 often described as the actual or predicted class
[51].

(iii) Support Vector Machine (SVM): SVM is also a super-
vised learning model with the capacity to work with both
classification and regression problems. It also handles
high-dimensional data involving complex decision limits.

Its purpose is to find the best hyperplane which can split
data instances into various classes. For linearly discrete
data, the hyperplane that can maximize the boundary is
determined. SVM takes note of the hyperplane and the
data points space from each class. Hyperplane normally
defines the workable decision limits in logistic regression
[52].

(iv) Random Forest (RF): The RF classifier is a supervised
learning method that works like the ensemble models. RF
handles both the classification as well as regression prob-
lems and works very fine on datasets that are very com-
plex or multi-dimensional. Its randomness makes it ro-
bust against overfitting. It also gives it the capability to
handle complex and multi-dimensional datasets. Thus,
handles both the multi-linear relationships in data features
and their target values a process that helps in assessing
the feature importance in the dataset about all the features
[53, 54].

3.4.2. Ensemble methods
(i) AdaBoost: AdaBoost is a boosting-based ensemble learn-

ing algorithm. The algorithm trains the base learning
models sequentially, and in each round, a new model is
constructed. During the training process, the weight val-
ues assigned to misclassified samples are increased with
each round, while the weight values assigned to correctly
classified instances are decreased. Consequently, the al-
gorithm aims to allocate more rounds to challenging cases
that are harder to learn and compensate for classification
errors made by previous models [15].

(ii) Bagging: Bootstrap Aggregating simply called Bagging
is another ensemble method that groups several models
to make predictions. Primarily, bagging focuses on mini-
mizing the variance to enhance model performance. The
Bagging algorithm, also known as bootstrap aggregating
[55], is another method used to build an ensemble. In this
approach, different training subsets are obtained from the
initial training set through bootstrap sampling [56]. The
outputs generated by the base learning algorithms are then
combined using majority voting [15].

(iii) Random Subspace: The Random Subspace method [57]
is an additional approach used to create an ensemble. It
achieves diversity among the ensemble members by par-
titioning the feature space. In this algorithm, each clas-
sification algorithm operates on different random subsets
of the feature space. As a result, the technique effectively
reduces overfitting while simultaneously improving pre-
dictive efficiency (Onan et al., 2016).

3.5. Evaluation measures

(i) Accuracy metric: The accuracy metric measures the ratio
of the correctly classified samples to the sum of all sam-
ples in the data. It is used in classification tasks where the
dataset features are labelled. Thus, to measure accuracy,
the model’s predictions are compared with the true labels
of the samples in the test dataset. The model assigns a
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class label to each instance, and the accuracy metric as-
sesses how well the model’s predictions match the true
labels. The formula is expressed as:

Accuracy =
T N + T P

T P + T N + FP + FN
, (1)

where TP = True Positive, TN = True Negative, FN =
False Negative, and FP = False Positive.

(ii) Precision: Precision is used to measure the proportion of
correctly predicted positive instances out of all samples
predicted as positive by a model, often used in situations
where the focus is on minimizing false positives. Thus,
high precision indicates that the model has a low rate of
false positives, making it more reliable for applications
where false positives are costly or undesirable [58]. Math-
ematically, precision can be expressed as follows:

Precision =
T P

T P + FP
. (2)

(iii) Recall: Recall, also known as sensitivity or true positive
rate, is an evaluation metric commonly used in machine
learning to assess the performance of a classifier, particu-
larly in situations where the focus is on minimizing false
negatives. Recall measures the proportion of correctly
predicted positive instances out of all actual positive in-
stances in the dataset [59]. Recall is denoted mathemati-
cally as:

Recall =
T P

T P + FN
. (3)

(iv) F1-score: The F1 score provides a balance between preci-
sion and recall and is especially useful in situations where
both false positives and false negatives are required to be
minimized. It is simply the harmonic mean of precision
and recall. This penalizes extreme values, making it a
suitable metric when there is an imbalance between preci-
sion and recall. It ranges from 0 to 1, where 1 represents
the best possible F1 score (perfect precision and recall),
and 0 represents the worst score (either precision or recall
is 0). F1-score is mathematically expressed as:

F − score = 2 ×
P × R
P + R

, (4)

where P denotes Precision and R denotes Recall.
(v) Area Under the Curve (AUC): The AUC evaluation metric

measures the overall quality of predictions across different
thresholds or decision boundaries [60]. AUC represents
the area under the receiver operating characteristic (ROC)
curve. The ROC curve is created by plotting the true pos-
itive rate (sensitivity or recall) on the y-axis against the
false positive rate (1 - specificity) on the x-axis at differ-
ent classification thresholds. A good model would have an
AUC of 1, indicating that it achieves perfect classification
between the classes involved.

Table 1: Model parameter settings.

Algorithm Parameter Value
Support Vector
Machine

Regularization strength c=0.1

Penalty l1
Optimization formula-
tion

dual=False

Number of iterations 10000
Random state 42

Logistic Re-
gression

Inverse regularization
strength

Cs=10

Cross-validation folds cv=5
Penalty l1
Optimization algorithm liblinear
Random state 42

Random Forest Number of trees 100
Out-of-bag scores True
Warm start True
Number of jobs -1
Random state 42

Decision Tree Maximum depth 2, 4, 6
Minimum samples split 2, 4, 6
Minimum samples at leaf 1, 2, 3
Max features sqrt, log2,

None
Cross-validation folds fold = 5
Random state 42

3.6. Experimental procedure
In this section, the experimental procedure employed in the

study is presented. The study considered seven primary fea-
ture sets, including TF-IDF, HASHTAG, POS, FAST TEXT,
GLOVE, W2VEC, and BERT, for feature extraction. These
feature sets, along with various Ensemble combinations were
utilised in our empirical analysis. This approach resulted in a
total of 31 feature sets. To assess the predictive performance of
the proposed feature sets in comparison to traditional text repre-
sentation methods. Also, the evaluation metrics for the unigram
model based on term frequency representation are included.
Five supervised learning algorithms, including the decision tree
algorithm, logistic regression, support vector machines, and
random forest algorithm were employed. Furthermore, the en-
sembles of these classifiers using three ensemble learning tech-
niques: AdaBoost, Bagging, and the random subspace algo-
rithms were used. All the experiments were conducted using
the Jupyter Notebook in the Python programming environment.
Table 1 outlines the basic parameter settings for both the con-
ventional classifiers and the ensemble learning methods.

4. Experimental results

This section provides the predictive performance results in
terms of accuracy, precision, recall, F1-score and AUC values
obtained by modelling the proposed features using the conven-
tional supervised learning models and ensemble classifiers. The
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result reveals the predictive capabilities of various features like
TF-IDF, Hashtag, POS, and word embeddings such as GloVe,
FastText, and Word2Vec, including their ensemble combina-
tions when used as feature sets for classifying disaster response
tweets.

4.1. Performance of the conventional classifiers

Table 2 presents the classification accuracy and precision re-
sults achieved on different feature sets using typical supervised
learning algorithms.

As presented in Table 2, it is evident that the logistic regres-
sion classifier typically outperforms the other classification al-
gorithms in terms of classification accuracy across many feature
sets. Followed by the random forest algorithm. While, decision
tree and SVM are the least performed algorithms based on the
accuracy metric. Similarly, in terms of precision, random for-
est outperformed followed by the decision tree algorithm. Both
the support vector machine and logistic regression algorithms
underperformed across all the features.

Similarly, Table 3 displays the F1-score and AUC perfor-
mance results obtained from applying the same conventional
supervised learning algorithms.

In Table 3, the random forest classifier typically outper-
forms the other classification algorithms in terms of F1-score
values across the several feature sets. Followed by the decision
tree and logistic regression algorithms. While SVM appeared to
be the least performed algorithm based on the F1-score metric.
However, in terms of AUC values, the SVM algorithm demon-
strates the highest predictive performance across almost all the
feature sets experimented with. The random forest algorithm
follows in performance, whereas, the logistic regression and de-
cision tree algorithms tend to underperform across all the fea-
ture sets.

Table 4 focuses on the recall values obtained from the con-
ventional classifiers utilised in the study.

Table 4 shows that the logistic regression classifier typically
outperforms the other classification algorithms across several
feature sets in terms of recall values. Followed by the SVM and
logistic regression algorithms. While decision tree appeared to
be the least performed algorithm based on the recall metric.

4.2. Performance of the ensemble classifiers

To enhance the predictive capabilities of the traditional su-
pervised learning methods, an ensemble learning approach was
employed. This addresses the third objective of this empirical
analysis which is to determine whether ensemble learners can
achieve superior predictive results for disaster response classifi-
cation. In this regard, three well-established ensemble learners,
namely bagging (B), AdaBoost (A), and random forest (RS)
were leveraged. The experimental results are shown concern-
ing the evaluation metrics utilised. Table 5 presents the predic-
tive performance of the ensemble learners when combined with
standard learners and ensembles using the accuracy metric.

As evident in the results presented in Table 5, the employ-
ment of ensemble learning techniques generally led to improve-
ments in the evaluation metrics compared to those achieved by

standard classification algorithms. In terms of the outcomes ob-
tained from different ensemble learning techniques, the A-LR
algorithm consistently demonstrated the most remarkable pre-
dictive performance across several feature sets reaching 0.9662
on the TF-IDF+ FST TEXT feature set. A-RF and A-DT fol-
lowed closely with 0.9651 on the TF-IDF+HASH+GLOVE
feature set. Also, the B-RF classifier strongly performed on
some feature sets like TF-IDF+HASH+POS reaching 0.9623
on the accuracy metric. The RS-SVM algorithm consistently
underperformed across all the feature sets, reaching 0.5404 with
HASH and 0.5382 with POS + BERT feature set.

More so, the performance of the ensemble classifiers based
on their precision values was assessed as presented in Table 6.

From Table 6, the A-RF and the B-DT algorithms consis-
tently outperform the rest of the algorithms scoring the high-
est precision values of 0.985 and 0.9892 on TF-IDF, TF-IDF
+ HASH, and TF-IDF + HASH + BERT feature sets, respec-
tively. The RS-RF algorithm also achieved an outstanding re-
sult of 0.9892 on the TF-IDF +HASH + BERT feature set. The
least performed algorithms and feature sets include RS-SVM
with 0.5402, and 0.6158 precision values on the HASHTAG
and POS feature sets respectively.

Similarly, Table 7 presents the performances of the various
ensemble learners on the diverse feature sets based on the recall
evaluation metric.

As seen in Table 7, A-DT and B-DT returned a re-
call value of 1.0000 with the HASHTAG feature set. This
is followed by the RS-SVM, A-SVM and A-RF algorithms
reaching 0.9846, 0.9564 and 0.9436, respectively on the TF-
IDF+HASH+POS+BERT feature set combination. The low-
est recall value was achieved from A-RF (0.2072) and B-SVM
(0.2533) using the HASHTAG feature set.

Again, the F1-score performance of the ensemble learners
were also evaluated across all the feature sets as presented in
Table 8.

Table 8 indicates that the A-DT algorithm yielded the best
result of 0.9672 and 0.9667 F1-score value on TF-IDF +HASH
+ GLOVE and TF-IDF + POS + GLOVE feature sets, respec-
tively. Following closely, the A-RF algorithm reached 0.9655
F1-score value on the same TF-IDF +HASH +GLOVE feature
set. However, on a different feature set (HASH), the A-RF was
the least performed algorithm with 0.3415 F1-score value.

Furthermore, the AUC performance across the ensemble
learners and the feature sets was also assessed. The experimen-
tal results are presented in Table 9.

In terms of the AUC evaluation metric performance as
shown in Table 9, the TF-IDF and FastText performed excel-
lently with 0.9581 for A-SVM, 0.9671 for A-LR, and 0.9622
for A-DT. The least performing algorithm B-SVM, achieved a
low AUC value of 0.6364.

Overall, across all the ensemble algorithms, the A-RF en-
semble model consistently yielded outstanding results with a
precision value of 0.9892 using the TF-IDF + FST TEXT fea-
ture set combination.
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Table 2: Accuracy and precision results for the conventional classifier.

Feature Set SVM LR RF DT SVM LR RF DT
TF-IDF 0.9535 0.9640 0.9590 0.9635 0.9714 0.9649 0.9860 0.9861
HASHTAG 0.5620 0.5936 0.5637 0.5598 0.5524 0.7637 0.5533 0.9737
POS 0.6539 0.6528 0.6678 0.6661 0.6686 0.6515 0.6767 0.6626
FAST TEXT 0.8594 0.8594 0.8942 0.8056 0.8616 0.8594 0.9252 0.8047
GLOVE 0.8588 0.8594 0.8893 0.8162 0.8600 0.8594 0.9235 0.8019
W2VEC 0.8505 0.8522 0.8920 0.8311 0.8615 0.8521 0.9333 0.8215
BERT 0.6168 0.6351 0.8245 0.7137 0.6329 0.6349 0.8500 0.7608
TF-IDF +HASH 0.9546 0.9651 0.9635 0.9640 0.9735 0.9658 0.9861 0.9861
HASH+POS 0.7016 0.7027 0.7060 0.6755 0.7202 0.7038 0.7114 0.7335

Table 3: F1-score and AUC performance results for the conventional classifier.

Feature Set SVM LR RF DT SVM LR RF DT
TF-IDF 0.9562 0.9641 0.9611 0.9654 0.9802 0.9654 0.9609 0.9650
HASHTAG 0.7104 0.5373 0.7111 0.3176 0.6417 0.6227 0.5263 0.5919
POS 0.6895 0.6505 0.7053 0.7154 0.6993 0.6466 0.6618 0.6565
FAST TEXT 0.8712 0.8591 0.8993 0.8244 0.9267 0.8570 0.8959 0.8022
GLOVE 0.8709 0.8591 0.8942 0.8373 0.9256 0.8571 0.8912 0.8110
W2VEC 0.8615 0.8521 0.8960 0.8488 0.9224 0.8509 0.8947 0.8271
BERT 0.6608 0.6278 0.8345 0.7210 0.6639 0.6244 0.8249 0.7162
TF-IDF +HASH 0.9572 0.9652 0.9654 0.9660 0.9801 0.9664 0.9650 0.9655
HASH+POS 0.7257 0.7030 0.7378 0.6759 0.7736 0.7022 0.7008 0.6798

Table 4: Recall performance results for the conventional classi-
fier.

Feature Set SVM LR RF DT
TF-IDF 0.9415 0.9640 0.9374 0.9456
HASHTAG 0.9949 0.5936 0.9949 0.1897
POS 0.7118 0.6528 0.7364 0.7774
FAST TEXT 0.8810 0.8594 0.8749 0.8451
GLOVE 0.8821 0.8594 0.8667 0.8759
W2VEC 0.8615 0.8522 0.8615 0.8779
BERT 0.6913 0.6351 0.8195 0.6851
TF-IDF +HASH 0.9415 0.9651 0.9456 0.9467
HASH+POS 0.7313 0.7027 0.7662 0.6267

5. Discussions

The experimental results demonstrate that the AdaBoost-
based random forest (A-RF) ensemble model using TF-IDF +
FST TEXT achieved the highest result as evaluated with the
precision metric. This high performance can be likened to the
inherent nature of Bagging ensembles, which integrate multiple
weak learners to reduce variance while preventing overfitting.
The use of the TF-IDF + FST TEXT feature set further im-
proves its ability to weigh terms according to their document
frequency, which is effective in tweet classification.

Similarly, conventional algorithms like SVM and RF also
demonstrated high performance results especially when using
the TF-IDF feature set. The inclusion of the Part-Of-Speech
tagging as a standalone feature yielded lower accuracy. This
suggests that it lacks discriminative ability any time it is used

in isolation. The experimental results from the study align with
those reported in prior studies. Particularly, Onan, et al. [15]
achieved a promising result ensemble classifier for text classi-
fication. Thus, the study reinforces the performance of Bag-
ging in the present study which is in a similar context. Again,
the experimental findings resonate with that of ALRashdi and
O’Keefe [19], who also reported that conventional classifiers
that use the TF-IDF feature set outclassed deep learning models
in resource-constrained settings. The use of fused features like
TF-IDF + POS +GloVe and TF-IDF + FST TEXT also showed
improvements over single feature-based models. Deep learn-
ing models are also highly favoured by the fused features. The
findings from the current study suggest that well-tuned con-
ventional models are very competitive especially when dealing
with small or medium-sized datasets.

This finding has significant implications for emergency re-
sponse systems and social media monitoring tools. The excep-
tional performance of Bagging demonstrates that sophisticated
models for tackling emergencies can be developed without in-
volving complex deep-learning models. This is advantageous
as model interpretability challenges eminent among deep learn-
ing techniques as well as resource constraint issues are by this
handled. However, this study is not completely free from lim-
itations. First, the dataset size though adequate may not cap-
ture the full diversity of tweets across different disaster scenar-
ios, languages or contexts. In addition, the low performance
of some models might be a result of the inability to fine-tune
them. Thus, future works should take into consideration the use
of pre-trained models or properly fine-tuned models on domain-
specific and multilingual datasets to enhance the generalisabil-
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Table 5: Ensemble classification accuracy performance values.

Feature Set A-SVM A-LR A-RF A-DT B-SVM B-LR B-RF B-DT RS-SVM RS-LR RS-RF RS-DT
TF-IDF 0.9537 0.9635 0.9607 0.9618 0.9363 0.9568 0.9596 0.9618 0.5869 0.9081 0.9563 0.9579
HASHTAG 0.5593 0.5681 0.5687 0.5399 0.5914 0.5925 0.5626 0.5399 0.5404 0.5548 0.5626 0.5421
POS 0.6549 0.6689 0.6556 0.6423 0.6578 0.6495 0.6639 0.6539 0.6174 0.6312 0.6689 0.6501
FAST TEXT 0.8364 0.8283 0.8527 0.8128 0.8533 0.8333 0.8865 0.8173 0.8245 0.7907 0.8854 0.8278
GLOVE 0.8405 0.8355 0.8433 0.8267 0.8522 0.8372 0.8843 0.8084 0.8140 0.8389 0.8893 0.8173

Table 6: Ensemble classification precision performance values.

Feature Set A-SVM A-LR A-RF A-DT B-SVM B-LR B-RF B-DT RS-SVM RS-LR RS-RF RS-DT
TF-IDF 0.9688 0.9637 0.9809 0.9778 0.9715 0.9582 0.9892 0.9694 0.5696 0.9133 0.9848 0.9828
HASHTAG 0.7061 0.7616 0.9712 0.5399 0.9611 0.7632 0.5399 0.9612 0.5402 0.7402 0.5527 0.5411
POS 0.6598 0.6706 0.6712 0.629 0.6755 0.6485 0.6471 0.6728 0.6158 0.6296 0.6593 0.644
FAST TEXT 0.8350 0.8282 0.8506 0.8095 0.8615 0.8332 0.8342 0.8515 0.8270 0.7935 0.9201 0.8395
GLOVE 0.8396 0.8355 0.8446 0.8371 0.8590 0.8371 0.8117 0.8528 0.8111 0.8388 0.9282 0.8203

Table 7: Ensemble classification recall performance values.

Feature Set A-SVM A-LR A-RF A-DT B-SVM B-LR B-RF B-DT RS-SVM RS-LR RS-RF RS-DT
TF-IDF 0.9432 0.9635 0.9456 0.9508 0.9087 0.9568 0.9364 0.9395 0.9610 0.9081 0.9333 0.9385
HASHTAG 0.6910 0.5681 0.2072 1.0000 0.2533 0.5925 0.9928 1.0000 1.0000 0.5548 0.9949 1.0000
POS 0.7275 0.6689 0.7097 0.8226 0.7046 0.6495 0.7333 0.7897 0.7744 0.6312 0.8000 0.7867
FAST TEXT 0.8607 0.8283 0.8821 0.8544 0.8677 0.8333 0.8656 0.8256 0.8533 0.7907 0.8626 0.8421
GLOVE 0.8635 0.8355 0.8697 0.8431 0.8687 0.8372 0.8564 0.84 0.8544 0.8389 0.8615 0.8472

Table 8: Ensemble classification F1-score performance values.

Feature Set A-SVM A-LR A-RF A-DT B-SVM B-LR B-RF B-DT RS-SVM RS-LR RS-RF RS-DT
TF-IDF 0.9557 0.9635 0.9629 0.9641 0.9391 0.9569 0.9616 0.9637 0.7153 0.9082 0.9584 0.9601
HASHTAG 0.5618 0.496 0.3415 0.7012 0.4010 0.5356 0.7102 0.7012 0.7014 0.4121 0.7106 0.7022
POS 0.6884 0.6627 0.6899 0.7129 0.6898 0.6455 0.702 0.7113 0.6861 0.6289 0.7229 0.7082
FAST TEXT 0.8476 0.8282 0.8661 0.8313 0.8646 0.8332 0.8917 0.8299 0.8400 0.7887 0.8904 0.8408
GLOVE 0.8511 0.8353 0.857 0.8401 0.8638 0.8371 0.8888 0.8256 0.8322 0.8386 0.8936 0.8335

Table 9: Ensemble classification AUC performance values.

Feature Set A-SVM A-LR A-RF A-DT B-SVM B-LR B-RF B-DT RS-SVM RS-LR RS-RF RS-DT
TF-IDF 0.9547 0.9641 0.962 0.9627 0.9807 0.9586 0.9616 0.9637 0.5781 0.9117 0.9582 0.9596
HASHTAG 0.5557 0.5995 0.6 0.5 0.6364 0.6217 0.5253 0.5 0.5026 0.5163 0.5251 0.5024
POS 0.6461 0.6587 0.6509 0.6267 0.7033 0.6414 0.6579 0.6422 0.6035 0.6250 0.6575 0.6382
FAST TEXT 0.8338 0.8265 0.8502 0.8092 0.9252 0.8318 0.8883 0.8166 0.8970 0.7842 0.8874 0.8266
GLOVE 0.8379 0.8331 0.841 0.8253 0.9246 0.8354 0.8867 0.8057 0.8850 0.8366 0.8917 0.8147

ity of disaster classifiers.

6. Conclusion

Twitter has emerged as a prominent platform for individuals
and organizations to disseminate or collect information during
times of disaster [61]. It serves as a means for people to share
crucial, real-time, and pertinent details such as their well-being,
casualties, and the extent of damage caused by the disaster [62].
Additionally, Twitter is frequently utilised to request assistance
or extend aid to others. Over recent years, Twitter has proven to
be a valuable source of information during various natural and
human-induced disaster scenarios, including earthquakes, wild-
fires, floods, and nuclear incidents. Automatically categorizing
tweets related to disaster response poses a substantial challenge
in the field of natural language processing. This study intro-

duces a machine learning-based approach for classifying disas-
ter response tweets using a benchmark dataset from the Queens-
land flood. The extensive examination of various feature sets,
classifiers, and ensemble techniques revealed that combining
Term Frequency-Inverse Document Frequency (TF-IDF) and
word embedding features with ensemble learning methods can
produce highly promising predictive outcomes for classifying
disaster-related content. By employing ensemble feature com-
binations along with the Bagging ensemble method of the de-
cision tree algorithm, an impressive classification accuracy of
98.92% was achieved. The experimental findings suggest that
employing deep learning techniques can result in superior pre-
dictive performance when it comes to satire identification.

This study has demonstrated the effectiveness of ensemble-
based machine learning approaches using engineered text fea-
tures for disaster-related tweet classification. However, future
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research could explore more sophisticated Natural Language
Processing models such as BERT, RoBERTa and GPT, capa-
ble of capturing deeper contextual relationships. Additionally,
the extension of this work to multilingual tweet classification
would enhance its applicability in global crisis contexts. De-
veloping models that can handle code-switching or mixed lan-
guage content is particularly important for real-world deploy-
ment. Furthermore, short learning and adaptation techniques
could be investigated to improve model generalisability in low-
resource or novel disaster scenarios.

Data availability

The data utilised in this study, which supports the findings
from the research are available based on the request.
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