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Abstract

Solid waste management poses significant environmental challenges worldwide, particularly in developing nations like India, where unscientific
disposal of industrial solid waste (ISW) leads to severe environmental and health concerns. With the increasing demand for energy, there is
a growing emphasis on developing alternative fuels and optimizing waste management systems across all production stages. Among various
methods, incineration has emerged as a sustainable alternative to landfilling, addressing issues such as soil, groundwater, and air pollution while
generating energy. This study investigates 21 industrial waste samples from Visakhapatnam to evaluate their physical and chemical properties
for secure and eco-friendly incineration. Key parameters analyzed include bulk density, pH, calorific value, and heavy metal concentrations.
Bulk density values ranged from 0.23 to 1.48 g/cc, and pH levels varied from highly acidic (1.36) to slightly alkaline (11.74), with some falling
outside the prescribed range of 4-12 for incinerable waste. Calorific values revealed substantial variation, with some exceeding the limit of
2500 Cal/gm, highlighting their potential for energy recovery. Heavy metal analysis demonstrated compliance with regulatory limits for most
samples. Total zinc, copper, and chromium concentrations were within acceptable ranges, while cadmium concentrations (up to 8.5 mg/kg in
certain samples) necessitate closer monitoring to mitigate potential environmental risks. Nickel concentrations were below the detection limit
of 7.0 mg/kg, and lead levels remained well within permissible limits. The findings indicate that most waste samples are deemed suitable for
incineration, posing minimal leaching risks. This study provides critical insights into optimizing waste-to-energy processes and reactor design,
contributing to sustainable waste management practices and energy recovery solutions.
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1. Introduction The rapid growth of the global economy and urbanization has
significantly increased waste generation, with cities producing
approximately 1.2 kg of waste per capita daily and an estimated
1.3 billion tons annually. Of this total, around 15% under-
goes incineration [3, 4]. A World Bank report [5] estimates
that global municipal solid waste (MSW) generation currently
stands at 2.01 billion tonnes annually, with projections suggest-

Incineration is a widely used method for disposing of waste
through combustion, allowing energy recovery and utilized di-
rectly or converted into electricity, gases, steam, and ash [1, 2].
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ing an increase to approximately 3.4 billion tonnes by 2050.
This surge in MSW is driven by population growth, industrial-
ization, improved living standards, and rapid urbanization [6—
9]. Managing such vast quantities of waste presents signifi-
cant challenges worldwide. Municipal solid waste incineration
(MSWI) has gained prominence as an alternative to landfilling,
particularly given the environmental challenges posed by land-
fills, including soil, groundwater, and air pollution caused by
methane emissions during waste degradation [10—12]. Public
opposition to landfills, coupled with high costs, limited land
availability, and stricter regulations, has further emphasized
the need for advanced waste management solutions. Landfill-
ing, the most common method of MSW disposal, faces grow-
ing constraints due to limited land availability, environmental
contamination, and stringent regulations. These issues have
prompted environmental managers to explore alternative waste
management strategies, including enhanced landfill bioreactors,
composting, and thermal treatment processes [13, 14]. Among
these, incineration has gained widespread acceptance due to its
smaller land requirements, significant mass and volume reduc-
tion, and potential for energy recovery in the form of heat and
electricity [2]. In MSWI, waste is combusted in furnaces at
temperatures ranging from 800 to 1000°C. Heat produced dur-
ing combustion is transferred via flue gases, which are cooled
in high-pressure boilers to generate steam. This steam can then
be used to produce electricity, offering a sustainable approach
to energy recovery [15]. Researchers continue to explore and
refine such technologies to address the growing challenges of
municipal solid waste management. Incineration can reduce
MSW mass and volume by 70-90%, making it a more effi-
cient and space-saving option compared to sanitary landfills
[16-18]. Consequently, this method is increasingly valued and
implemented in both developed and developing countries as a
practical solution for sustainable waste management. The ef-
ficiency of waste incineration technology is closely tied to the
properties of the waste, such as moisture content and calorific
value. Effective incineration requires high temperatures rang-
ing from 800-1000°C, along with adequate air supply and thor-
ough mixing of the gas stream. To minimize smoke release
and prevent the formation of harmful emissions like dioxins
and furans, a minimum temperature of 850°C is essential for
burning carbonaceous waste. Optimal waste characteristics in-
clude a moisture content below 45% and a calorific value ex-
ceeding 1500 kcal/kg. Additionally, the incineration of chlori-
nated plastics should be avoided to reduce environmental haz-
ards. Emission standards for such processes are regulated under
the Solid Waste Management (SWM) Rules, 2016 [19]. Waste-
to-Energy (WtE) technology leverages the energy potential of
waste through high-temperature incineration and thermochem-
ical or biochemical conversions to generate electricity and/or
heat energy. This approach not only reduces waste volume
but also mitigates the environmental impact of improper waste
management [20-22]. Plastics and other non-biogenic mate-
rials are particularly advantageous for WtE processes, as they
provide higher heat output compared to biogenic materials like
paper. The increasing prevalence of plastic waste necessitates
compositional analysis to optimize energy recovery [23]. Key

parameters include calorific values exceeding 3500 kcal/kg,
sulfur content below 2.5%, and chlorine content under 0.2%.
Additionally, levels of heavy metals, polychlorinated biphenyls
(PCBs), and other toxic substances must remain within permis-
sible limits [10]. While AFs offer economic benefits over fossil
fuels by utilizing waste materials, their use poses challenges
such as uneven heat distribution, operational instabilities, emis-
sions control, and limitations on clinker composition in cement
manufacturing [24]. Understanding the chemical behaviour and
composition of municipal solid waste (MSW) is critical for de-
veloping an effective waste management system. This knowl-
edge is particularly important when MSW is intended for use as
fuel or other applications, as it ensures compliance with safety
and efficiency requirements [19]. In the present study, the focus
was on analyzing various industrial waste samples from dif-
ferent locations to ensure their secure and eco-friendly disposal
through incineration. By examining these samples, the research
aims to evaluate their composition, leachability, and compli-
ance with environmental standards for safe disposal, specifi-
cally focusing on the suitability of incineration as a disposal
method.

2. Method and materials

The present research work was carried out at ‘Depart-
ment of Environmental Sciences, GITAM School of Sciences,
Gandhi Institute of Technology and Management (GITAM),
Visakhapatnam during 2023-2024°. Twenty one samples from
various locations, detailing various type of waste and waste
management process. The details of each sample are presented
in Table 1.

2.1. Sample collection

Collect a sufficient amount of material to ensure reliable
analysis, typically around 1 kg for solid samples or an appro-
priate volume for liquid samples. Immediately secure samples
in suitable containers to prevent contamination or deteriora-
tion. Solid samples should be placed in double-lined polyethy-
lene bags or other appropriate containers to maintain integrity.
Clearly marked each sample with essential details, including
the sample identification number, collection date, and location.
Thoroughly document the sampling process, noting any obser-
vations, environmental conditions, and potential hazards en-
countered during collection.

2.2. Analytical procedures

The characterization of waste and environmental samples
requires specific methodologies to analyze various physical,
chemical, and biological parameters. These methods provide
insights into the composition, reactivity, and potential environ-
mental impacts of the sample. Below is a detailed description
of the parameters and the methodologies used for their analysis.
Physical and Reactivity Analysis is performed by taking Physi-
cal State, Colour, and Texture, Reactivity in Air or Water, Toxic
Gas Generation, Explosive Potential are measured. In addition
to this Moisture, Density, and Combustion Properties like Paint
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Table 1. Samples from various industrial waste collected at different locations.

Sample No.  Type of Waste Location of sample col-  Report Year
lection Date
Sample -1 Organic JNPC, Parawada 29.04.22 2022-23
Residue(distillation
bottom residue)
Sample -2 Process dried Sludge JNPC, Parawada 22.05.22 2022-23
Visakhapatnam
Sample -3 Organic Liquid JNPC, Parawada, 09.06.22 2022-23
Waste(spent sol-  Visakhapatnam
vent)
Sample -4 DMC residue Allinagaram,Srikakulam 16.06.22 2022-23
Sample -5 Process residue JNPC,Parawada 30.07.22 2022-23
Sample -6 Process organic residue  Atchutapuram, 10.08.22 2022-23
Visakhapatnam
Sample -7 Manufacturing waste Duvvada,Vizag 18.08.22 2022-23
Sample -8 Contaminated  Glass Duvvada,Vizag 18.08.22 2022-23
Waste
Sample -9 Tank bottom sludge JNPC,Parawada 29.08.22 2022-23
Sample -10  Organic residue Nakkapalli, Visakhap- 29.08.22 2022-23
atnam
Sample -11 Methanol Containing JNPC, Parawada 11.09.22 2022-23
hydrazine hydrate
Sample -12  Chemical Containing Atchutapuram, 28.09.22 2022-23
Residue Visakhapatnam
Sample -13  WARP Sample Pithapuram, Kakinada  22.10.22 2022-23
Sample -14 Chemical Incinerable JNPC,Parawada 24.10.22 2022-23
Waste
Sample -15  Paint Sludge Atchutapuram, 28.10.22 2022-23
Visakhapatnam
Sample - 16  organic Residue JNPC,Parawada 25.01.23 2022-23
Sample — 17  Process Salt JNPC, Parawada 27.01.23 2022-23
Sample — 18  off Specification prod- Devunipalasa,Srikakulam 16.02.23 2022-23
uct
Sample — 19  Date Expired Products =~ JNPC,Parawada 21.02.23 2022-23
Sample —20 Discarded PPE JNPC,Parawada 28.02.23 2022-23
Sample —21  Paint Sludge Kondapalli,Krishna 10.04.23 2023-24

Filter Liquid Test, Bulk Density, Moisture Content, Loss on
Drying, Calorific Value. The parameter values are represented
in Table 2 and 3.

2.3. Chemical composition

The pH value is measured at 25°C as per USEPA; 9045C
(1995) to determine the acidity or alkalinity of the sam-
ple. This is a vital parameter influencing chemical reactions,
leachate quality, and environmental compatibility. For Ex-
tractable Organics and In organics the concentrations of water-
soluble organic and inorganic compounds are determined us-
ing USEPA-3540C and APHA 23rd Edition, 2540B & E, re-
spectively. These analyses are critical for understanding po-
tential leachate toxicity and environmental mobility. Reactive
Cyanide and Reactive Sulfide: Tested using USEPA 9010B
(1996) and 9030B/9034 (1996) methods, these analyses iden-
tify compounds that release hazardous gases like HCN and H,S

under certain conditions. Ammonical Nitrogenis measured as
per APHA 4500 NH; (2017), this parameter indicates the pres-
ence of nitrogen in ammonium form, which can affect nutrient
cycles and leachate properties.

2.4. Heavy metals analysis

Heavy metals are analyzed using USEPA-3050B (1996) in
conjunction with AAS (7000B-2007) or specific methodologies
for arsenic (APHA 3500 AsB). These methods quantify met-
als like zinc, copper, arsenic, cadmium, chromium, lead, and
nickel. The analysis helps assess toxicity levels and compli-
ance with regulatory standards. Along with Nitrogen, Carbon,
Sulfur, Hydrogen, Chloride, Fluoride, Chloride as C1~ (%), Flu-
oride as F (mg/L) measured as per APHA 4500 F-D, this test
identifies fluoride levels, which are critical for assessing the
sample’s impact on water resources.
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Figure 3. Flash point in °C of different samples collected at different

Figure 1. Bulk density of different samples collected at different loca- locations.
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Figure 4. Loss on drying at 105°C & 550°C of different samples col-

Figure 2. pH of different samples collected at different locations. lected at different locations.

2.5. Results and discussion segregation of acidic or alkaline wastes is crucial. Further-

This data represents the physical and chemical character- ~ more, adopting site-specific waste management strategies can
istics of 21 different samples, analyzed using various visual ~ improve environmental safety and treatment efficiency, ensur-
methods. Here’s a summary of the key parameters like physical ~ ing compliance with regulatory standards and reducing the haz-
state, Color, Texture, Chemical Behavior, Paint Filter Liquid ~ ardous implications of extreme pH levels. The values for dif-
Test (USEPA-9095A, 1996), Physical State, Color, and Tex-  ferent samples are represented in the Figure 2.
ture, Chemical Reactions (e.g., violent reactions, toxic fumes,

explosive risks) are assessed and presented in Table 2. 3.1. Flash point
Flash points are generally above the threshold of 65.5°C,
2.6. Bulk density with a few exceptions. Lower flash points could indicate a

Bulk density values range from 0.23 to 1.48 g/cc, which ~ higher risk of combustion under certain conditions. For exam-
might indicate differences in the material composition or the  ple, Sample 2 (40°C) is below the minimum, suggesting a need
moisture content of the samples. Generally, higher bulk density ~ for caution in storage and disposal (Table 2 and Figure 3).
indicates a more compacted, possibly heavier material. This

can impact handling and disposal (Table 2 and Figure 1). 3.2. Loss on drying
The high values for loss on drying, especially for certain
3. pH samples, indicate a significant amount of moisture or volatile

matter, which may influence combustion efficiency or landfill
The pH values of analyzed samples ranged from highly stability. Losses higher than 30% could be due to organic con-
acidic (1.36) to slightly alkaline (11.74), with many falling out-  tent or moisture (Table 2 and Figure 4).
side the acceptable range of 4—12 prescribed for secure inciner-
able waste. These extreme variations, particularly in the lower ~ 3.3. Calorific value

pH range, suggest the presence of high acid content, which can Calorific values range significantly, with some samples hav-
pose significant challenges for handling, treatment, and envi- ing values far exceeding the limit of 2500 Cal/gm (such as Sam-
ronmental safety. The significant variability in pH values across ples 2, 10, 13). This indicates potential high energy content,
studies and regions underscores the influence of waste compo-  which might influence how the waste is disposed of or inciner-

sition, site characteristics, and management practices. While ated (Table 2 and Figure 5).
well-managed sites exhibit pH within safe limits, leachates and
effluents from industrial or poorly managed sites often show
hazardous pH levels. To mitigate these risks, effective pH
control through treatment methods like neutralization and the
10
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Figure 5. Calorific values (Cal/gm) of different samples collected at
different locations.

3.4. Extractable organics

The organic content in the analyzed samples is notably low,
falling below 1% in most cases. This observation suggests that
the materials are predominantly inorganic or have undergone
significant treatment to remove organic components, which is
common in non-biodegradable waste. These findings underline
the importance of detailed compositional analysis in determin-
ing appropriate waste management practices and minimizing
environmental impact.

3.5. Water-soluble inorganics and organics:

Most samples show very low water-soluble content, indicat-
ing that they are either non-reactive or have limited interaction
with water, which is favorable for disposal. However, if these
exceed limits in specific cases, they may influence leachability
or long term stability of the waste.

3.6. Reactive cyanide and sulfide:

All values for reactive cyanide and sulfide are below regu-
latory thresholds, which suggests that the samples do not pose
significant risks related to toxic releases of these substances un-
der typical disposal conditions.

3.7. Ammonical nitrogen:

The majority of the samples analyzed exhibit low ammoni-
acal nitrogen levels, indicating a limited potential for ammonia
release, which is a significant concern in managing biological
waste. Additionally, the seasonal variation observed in nitrite
and nitrate concentrations, with increases noted during winter
and summer, was attributed to agricultural activities surround-
ing the landfill. These trends emphasize the influence of exter-
nal environmental factors and waste composition on nitrogen
forms in landfill leachates. In comparison, the minimal ammo-
niacal nitrogen content in the current study’s samples suggests
a reduced risk of ammonia-related emissions or contamination.
This suggests that the samples may be pre-treated or largely in-
organic in nature. Consequently, these findings could inform
waste management practices by highlighting the reduced ne-
cessity for stringent controls on ammonia emissions for the an-
alyzed waste types.
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Figure 6. Total Zinc (mg/Kg) of different samples collected at different
locations.

3.8. Zinc (Zn) analysis

The analysis of the dataset reveals that all samples meet the
standards for secure incinerable waste for total Zinc, TCLP, and
WLT values, indicating safe disposal conditions. Total Zinc
concentrations in the samples range from 1.36 mg/kg (Sample-
4) to 18.35 mg/kg (Sample-12), with all values significantly be-
low the permissible limit of 250 mg/kg. This demonstrates that
the overall Zinc content in the samples is well within safe levels
for secure incineration (Table 2 and Figure 6). The TCLP val-
ues range from 1.35 mg/L (Sample-5) to 8.95 mg/L (Sample-
14). All the TCLP values are below the permissible limit of
250 mg/L, ensuring that the Zinc in these samples has a mini-
mal risk of leaching under standard disposal conditions. Sam-
ples with higher TCLP values, such as Sample-14, still remain
well within the acceptable range, reflecting controlled leacha-
bility. Water Leaching Test (WLT) values range from 2.5 mg/L
(Sample-7 and Sample-9) to 6.1 mg/L (Sample-12). All WLT
values are below the permissible limit of 10 mg/L, confirming
minimal water-soluble zinc content and reduced potential for
environmental contamination via water leaching. In summary,
the dataset shows that all samples comply with secure incinera-
ble waste standards for total Zinc, TCLP, and WLT values. The
results indicate safe disposal characteristics and low environ-
mental risk across all samples.

In contrast, the lower zinc concentrations in the present
study indicate minimal ecological risk from zinc contamina-
tion. These results, along with comparisons to other studies,
underline the importance of context-specific assessments in un-
derstanding and managing zinc concentrations across different
waste types and environmental settings.

3.9. Copper (Cu) analysis:

The dataset analysis for copper concentrations in the sam-
ples indicates compliance with secure incinerable waste stan-
dards, with all values well within permissible limits. Total
copper concentrations in the samples range from 0.1 mg/kg
(Sample-1) to 9.9 mg/kg (Sample-21), which is significantly
below the allowable limit of 250 mg/kg. This highlights that
the copper levels in the samples are low and pose minimal
environmental risks when incinerated (Table 2 and Figure 7).
The TCLP values range from 0.4 mg/L (Sample-7) to 6.5 mg/L
(Sample-12). These values are substantially below the permis-
sible threshold of 250 mg/L, ensuring that copper leachabil-
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Figure 7. Total copper (mg/Kg) of different samples collected at differ-
ent locations.

ity under toxicity characteristic leaching procedures is well-
controlled. Even the highest value recorded (Sample-12) rep-
resents a minor risk of leaching. The WLT values across the
samples are less than the acceptable limit of 10 mg/L. The ma-
jority of samples exhibit values below 2.5 mg/L, with several
showing negligible leaching potential (<1.5 mg/L). This fur-
ther confirms the low risk of water-soluble copper contamina-
tion from the samples. In conclusion, the dataset reflects that
all samples adhere to the required standards for secure inciner-
able waste, with total copper concentrations, TCLP values, and
WLT results demonstrating minimal environmental and health
risks.

3.10. Arsenic (As) analysis:

The dataset analysis for arsenic concentrations in the sam-
ples demonstrates compliance with secure incinerable waste
standards, with all water leaching test (WLT) values below the
permissible limit of 1.0 mg/L. The total arsenic concentrations
across samples are expressed as less-than values, indicating that
arsenic is present at levels below the detection or quantifica-
tion thresholds. The highest reported concentration is <10.5
mg/kg (Samples-10 and 21), while the lowest is <0.15 mg/kg
(Sample-7). These values signify minimal arsenic content in the
samples, suggesting low environmental risks. The WLT val-
ues range from <0.1 mg/L (Samples-2 and 10) to <0.8 mg/L
(Samples-17 and 18), with all results falling well within the
permissible standard of 1.0 mg/L. Most samples exhibit val-
ues at or below <0.5 mg/L, reflecting negligible leaching poten-
tial under water-soluble conditions. Overall, the data confirms
that arsenic concentrations and leachability in these samples are
significantly below hazardous thresholds, ensuring their safe
disposal in compliance with regulatory standards. The mini-
mal leaching potential underscores the environmental safety of
these samples when managed as secure incinerable waste.

3.11. Cadmium (Cd) analysis:

The analysis of cadmium concentrations and leaching tests
reveals that the total cadmium content across the 21 samples
ranges from 0.5 mg/kg to 8.5 mg/kg, with the highest levels
observed in Sample-1 and Sample-20. Despite the variation
in total cadmium content, all samples demonstrate compliance
with regulatory standards for secure incinerable waste disposal.
The results of the Toxicity Characteristic Leaching Procedure

12
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Figure 8. Total cadmium (mg/Kg) of different samples collected at dif-
ferent locations.

(TCLP) indicate that cadmium leaching potential under acidic
conditions is minimal, with values consistently below the per-
missible limit of 1.0 mg/L. The highest TCLP value recorded is
<0.8 mg/L in Sample-7, while most samples show even lower
values (Table 2 and Figure 8). Similarly, the Water Leaching
Test (WLT) results confirm that cadmium mobility in water is
negligible, with all values falling well below the standard of
0.2 mg/L. The highest WLT value observed is <0.1 mg/L in
Samples-13 and 17, with the majority of the samples showing
values below 0.05 mg/L. Even samples with relatively higher
total cadmium concentrations, such as Sample-1 and Sample-
20, exhibit low leachability in both tests, ensuring their suit-
ability for safe disposal. Overall, the findings indicate that the
cadmium content in all samples poses no significant environ-
mental risk during disposal. The findings emphasize that the
current waste samples are comparatively safer in terms of cad-
mium contamination, though consistent monitoring and appro-
priate management practices remain essential to ensure contin-
ued compliance and minimal environmental impact.

3.12. Chromium (Cr)

The analysis of chromium concentrations and leaching be-
havior in 21 samples demonstrates compliance with secure in-
cinerable waste disposal standards. The total chromium content
across all samples is below detection limits, indicating minimal
presence in the waste. The Toxicity Characteristic Leaching
Procedure (TCLP) results reveal chromium leachability under
acidic conditions to be consistently within the permissible limit
of 5.0 mg/L. The highest TCLP value recorded is <10.5 mg/L
in Sample-7, while most samples exhibit significantly lower
leachability. The Water Leaching Test (WLT) results indicate
chromium mobility in water is also within acceptable limits,
with all samples reporting values below the regulatory threshold
of 5.0 mg/L. The highest WLT value observed is <4.5 mg/L in
Samples-9 and 11, while other samples display lower concen-
trations. In conclusion, the negligible total chromium content,
coupled with low leachability in both TCLP and WLT results,
confirms that all samples meet the safety standards for secure
disposal through incineration. These findings highlight the min-
imal environmental risk associated with chromium in the tested
waste samples.
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Figure 9. Total lead (mg/Kg) of different samples collected at different
locations.

3.13. Nickel (Ni)

The data provided presents an analysis of Total Nickel
concentrations along with the results of two leaching tests—
Toxicity Characteristic Leaching Procedure (TCLP) and Water
Leaching Test (WLT)—for a total of 21 samples. The results
of the TCLP tests for all samples are also below 13.0 mg/L,
with no sample exceeding the regulatory limit of 20.0 mg/L for
secure incinerable waste. This indicates that the potential leach-
ability of nickel from the samples into the environment, under
conditions mimicking waste disposal or incineration, is within
safe limits as per the standard. Similarly, the results from the
Water Leaching Test (WLT) also show that the leachable nickel
concentrations are well below the 3.0 mg/L threshold for secure
disposal. The values for WLT range from less than 0.1 mg/L to
a maximum of 3.5 mg/L, all of which are within the acceptable
range for safe disposal and do not pose any significant risk to
water quality.

In summary, the data demonstrates that all 21 samples con-
form to the environmental standards for secure incineration and
disposal, as specified by the regulatory limits for Total Nickel
content, TCLP, and WLT. The low concentrations observed for
both Total Nickel and its leachability suggest that these samples
are safe for disposal, posing minimal risk to the environment.

3.14. Lead (Pb)

The analysis of lead concentrations across the samples re-
veals compliance with secure disposal standards for most pa-
rameters. Total lead concentrations range from 0.4 mg/kg
(Sample-5) to 6.5 mg/kg (Sample-10), with a mean value of 2.2
mg/kg, which is well below the permissible limit of 5.0 mg/kg
for secure incinerable waste. This indicates that the overall lead
content in the samples is within acceptable levels for disposal
(Table 2 and Figure 9).

The results of the Toxicity Characteristic Leaching Proce-
dure (TCLP) test show values ranging from 1.3 mg/L (Sample-
20) to 5.5 mg/L (Samples-11 and 13). While the majority of the
samples are within the permissible limit of 5.0 mg/L, Samples-
11 and 13 exceed this threshold, suggesting potential leaching
risks for these specific samples. These cases warrant additional
attention or pre-treatment to mitigate the potential environmen-
tal impact.

Water Leaching Test (WLT) values for all samples are con-
sistently low, ranging from <0.1 mg/L to <0.8 mg/L. These re-
sults are significantly below the permissible limit of 2.0 mg/L,

13

13

indicating minimal water-soluble lead content and a low risk of
contamination through water leaching.

In summary, while the total lead and WLT results demon-
strate compliance with regulatory standards, the elevated TCLP
values in two samples highlight the need for focused manage-
ment strategies to address potential leaching concerns.

4. Summary

The analysis indicates that most samples tested for heavy
metals are within regulatory disposal limits, posing no immedi-
ate risks of leaching harmful levels of zinc, copper, arsenic, or
cadmium. However, a few samples with higher cadmium con-
centrations (e.g., 8.5 mg/kg) warrant closer monitoring during
disposal processes to mitigate potential environmental impacts.
While most tested samples exhibit safe heavy metal concentra-
tions for disposal, insights from comparative studies emphasize
the variability in contamination across industrial and municipal
waste sources. Continual monitoring and adherence to regula-
tory limits are critical, particularly for elements like cadmium,
arsenic, and zinc, which pose heightened environmental risks if
concentrations exceed safe thresholds.

5. Conclusion

The overall quality of waste in terms of heavy metal con-
tamination is compliant with most regulatory standards. Regu-
lar monitoring of nickel and lead levels (especially in the TCLP
form) should be maintained, as some occasional spikes could
cause issues. Cadmium, chromium, and nickel are consistently
below the set thresholds, showing no significant environmental
risks. The presence of lead near the upper limits for TCLP sug-
gests that future disposal practices might need to ensure more
stringent treatment or disposal methods if these levels increase
further.

Data availability

The data used for this study is available on request from the
corresponding author.
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