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Abstract

Industrial generators, widely used for backup power generation, emit significant levels of pollutant gases such as carbon monoxide (CO), carbon
dioxide (CO,), hydrocarbons (HC), and nitrogen oxides (NOx). These emissions exacerbate air pollution and climate change, while their inhala-
tion adversely impacts human health, leading to respiratory/cardiovascular diseases and increased mortality rates. Raw exhausts of CO, CO,, HC,
NOx, and O, from industrial generators were assessed using a portable analyser. Thereafter, the obtained dataset was analysed using multiple
linear regression and Pearson’s correlation to quantify the synergistic impact of generator characteristics, while the study equally trained 70% of
the dataset using machine learning (ML) classification models. The result showed that generators’ age and capacity impacted considerably on
exhaust concentrations as the diesel-powered generators exhibited higher CO, and NOx emissions at 76.1% and 7393ppm, respectively, compared
to gas-powered generators. For diesel-powered generators, there was a moderate negative correlation at -0.49142 and p-value of 0.03281 for
CO and NOx. For the gas-powered generators, the correlation is statistically significant for CO and HC, while there was an inverse association
between NOx and O,. The employed ML models achieved high prediction accuracy range of 80.6-93.5 % for exhaust pollutant gases for OGEPA
classification status. Based on this study, policy frameworks should be implemented up to impose stringent generator emissions standards to
reduce air pollution, invest in expanding/upgrading the national electricity grid to reduce reliance, provide low-interest green loans to finance
renewable energy systems, as well as access climate finance mechanisms to subsidise clean energy projects.
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1. Introduction

With the increasing world population, which has led to each
nation’s rapid rise in industrialization, the energy demand has
been geometrically increasing day by day. Fossil oil ultimately
serves as a primary source of fuel for this industrialization drive
for the entire world’s population. Fossil fuels have remained
the major global source of energy, accounting for about 84%
of energy demands. Even though it is widely utilised in dif-
ferent areas, the emissions from fossil fuel usage and combus-
tion into the atmosphere cause major difficulties in the form of
acid rain and smog, to name a few [1-3]. Exhaust emission
particles from diesel combustion were classified by the Interna-
tional Agency for Research on Cancer as carcinogens, affecting
human health in both the cardiovascular- and pulmonary sys-
tems. These occur via the triggering of numerous cell signaling
pathways, causing oxidative stress, followed by inflammatory
markers’ release and the damage of the DNA, eventually result-
ing in cell death [4-6].

Air pollution promotes and exacerbates climate change
while also greatly impacting human health. Children, espe-
cially, have been reported to have an elevated risk of functional
and morphological consequences throughout fetal development
due to air pollution. This higher risk is attributed to the ac-
celerated rate of breathing and increased air intake per body
weight [7]. Concerning outcomes include pre-term delivery,
low birth weight, neurodevelopmental abnormalities, intelligent
quotient (IQ) loss, pediatric malignancies, and a higher risk of
adult chronic diseases. Other reported health impacts include
exacerbations of respiratory disorders, impaired lung function
development, and a rise in asthma occurrence. These effects
are mediated by oxidative stress resulting in acute or chronic
lung inflammation and injuries, endocrine disruption, as well
as genetic and epigenetic pathways that occur throughout life
[8-10]. Furthermore, testicular histomorphology degeneration
and increased semen oxidative stress, which may ultimately af-
fect male fertility, have been linked to exposure to fossil fuel
exhaust pollution [11]. Several other published works have re-
ported a significant association between air pollution and health
due to fossil fuel usage [12-21].

Despite the huge economic potential in Africa due to its
vast mineral resources and a human population of ~1.3 billion
people [22], nearly all parts of Sub-Saharan Africa (Nigeria in-
clusive) have the lowest per capita consumption of electricity
as well as the lowest rate of electricity access, with annual per
capita electricity consumption being 518 kWh, despite many
countries being rich in hydropower resources, large natural gas,
and coal reserves [23]. Nigeria, being the most populous black
nation in the world (~ 220 million inhabitants) [24], with vast
natural resources including petroleum, natural gas, and other
mineral deposits, has for decades encountered the challenges of
providing stable electricity (power) to her populace, generating
on-off grid performance ~4,430.76-5,209.60 MW [25]. In fact,
according to the information from the website of the Ministry of
Power [26], the government body in charge of electricity gener-
ation and distribution in Nigeria, the national grid performance
peaked at 5, 184.90 MW, while the off-peak generation was 4,

241.02MW as at December 22, 2024.

Due to the unstable, low electricity supply and constant
shut-down of the national grid, nearly all manufacturing indus-
tries and big organisations have resorted to using generators (ei-
ther diesel or gas-powered) of various capacities as their main
source of power generation for continuous running of their busi-
ness in order to stay afloat [27-29]. However, the environmen-
tal and health impacts of the pollutant gases exhaust emissions
such as carbon monoxide CO, carbon dioxide CO;, hydrocar-
bons HC, and oxides of nitrogen NOx, cannot be overlooked as
these pollutants have been reported to have considerable contri-
butions to climate change as well as delirious impact on human
health [8-21]. Reports from online searches on Scopus, Web of
Sciences, PubMed, and Google scholar databases revealed that
there are rare reports of studies based on raw exhaust pollu-
tants’ concentration from industrial generators (diesel and gas-
powered), especially in Africa.

The prediction of exhaust polluting emissions from com-
bustion engines and industrial generators has received a lot
of attention in recent years, thanks to increased environmen-
tal laws and a drive for better energy alternatives. Tradi-
tional mathematical and thermodynamic models frequently fail
to adequately capture the nonlinear and dynamic nature of ex-
haust emissions [30-35]. As a result, machine learning (ML)
methods are being used to improve prediction accuracy and
model adaptability and artificial neural networks (ANNSs) are
amongst the most extensively used machine learning (ML) ap-
proaches in this field. Ganesan ef al. [36] employed artifi-
cial neural networks (ANN) to forecast NOx and CO emissions
from diesel generators under varied load situations, achiev-
ing a strong correlation between predicted and measured val-
ues, while Zeinalipour et al. [37] used multilayer perceptrons
(MLPs) to model CO; and NOx emissions from spark ignition
engines, which outperformed typical regression models. Fur-
thermore, Random Forest (RF) and Support Vector Machine
(SVM) models have been proven useful in identifying emis-
sion levels and calculating pollutant concentrations. Potts et
al. [38] used RF to estimate PM and NOx emissions from
CNG buses, highlighting its resistance to noisy input data and
interpretability. Ensemble approaches, such as XGBoost, are
increasingly being adopted due to their superior performance
on structured emission datasets. On the afore-mentioned bases,
this study presents a novel integration of statistical analysis and
machine learning (ML) techniques to appraise raw exhaust pol-
lutant gas emissions from industrial generators in Nigeria—a
region where dependence on fossil-fuel-powered generators is
widespread due to unreliable grid electricity. While there are
very scarce research works on generator emissions especially
in Africa, this research brings out novelty as it (1) focuses on
raw exhaust data by offering real-time, high-fidelity insight into
emission characteristics without filtration or post-combustion
treatment interference, (2) addresses a data-scarce context by
developing or applying predictive ML models tailored to lim-
ited and heterogeneous Nigerian industrial data, (3) combines
classical statistical tools with modern machine learning to en-
hance prediction accuracy, as well as uncover hidden emission
patterns, and support environmental risk assessment, and (4)
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Figure 1: (a) Map showing the study area, (b) Kane gas analyzer used, (c) A scene of an industrial generator sampling.

contributes to region-specific findings that can guide policy-
makers, environmental agencies, and industry stakeholders in
designing emission control strategies and optimising generator
usage.

By merging empirical emission measurements with predic-
tive analytics, the research provides a pioneering methodolog-
ical framework that enhances environmental monitoring and
regulatory planning in developing economies facing similar en-
ergy and environmental challenges. Hence, this study assesses
the raw exhaust pollutant gases concentration from some se-
lected industries using generators in a Southwest city of Ibadan
in Nigeria while also using machine learning parameters to
evaluate the level of accuracy and precision of the data ob-
tained.

2. Materials and method

2.1. The sampling location

The sampling sites were some industries located within
Oluyole Industrial Estate, Ibadan, Oyo State (Figure 1a).

2.2. Raw exhaust sampling and data collection measurement

Exhaust pollutant emissions from industrial generators were
taken using a portable KANE 5-Gas Automotive Analyser
(Model 5-2) (Figure 1b), which has been programmed to de-
tect and determine the concentrations of CO,, O,, HC, CO, and
NOx. Before each measurement round, the industrial genera-
tors were allowed to run while on load” during their working
hours, after which the tests were conducted. The instrument
probe was inserted into the exhaust pipe of the generator end
and clamped (Figure 1c). The obtained data were recorded in
percentage (%) volume for CO, CO,, and O,, and parts per mil-
lion (ppm) for NOx and HC [39, 40]. Each measurement lasted
10 min, and after each round of measurement, the analyser was

calibrated to ’zero’. The testing event was done using thirty-
one (31) industrial generators in June 2024, coinciding with the
rainy season, while sampling events were carried out in tripli-
cate for each generator within the sampling time.

2.3. Data analysis
2.3.1. Statistical analysis

The data obtained were subjected to statistical analysis us-
ing tools such as simple descriptive and inferential (Duncan
Multiple Range Test and Principal Component Analysis) anal-
yses Python version: 3.9.12 [MSC v.1916 64 bit (AMD64)]
using seaborn as sns library, matplotlib.pyplot as plt to plot
the graphical representations and determining the relationships.
Also, the study utilised a multiple linear regression (MLR) ap-
proach to quantify the joint impact of industrial generator char-
acteristics on the exhaust emission levels of CO and NOx for
the generator samples tested. Equations (1) and (2) represent
the MLR model generated from sampled generators for CO and
NOx.

The hypothesis for this study is stated below:

Null Hypothesis: HO = Model adequately fits the data

Alternative Hypothesis: HA= Model does not adequately
fit the data

Regression Equation:

(CO) = by + b1Gyy, + brE; + b3Ag + byC), €))]
(NOx) = by + b1G,, + bLE, + b3Ag + bsC,, )
where G,, = Generator Model; E; = Engine fuel type; A, = Age;
C,, = Capacity; by = Intercept; b1-bs = Coeflicients.
Furthermore, Pearson’s correlation was used to assess the
strength of the linear relationship between two continuous vari-

ables. The Pearson Correlation Coeflicient (r) is described in
Equation (3).

. n( xy) = (X0 y)
VinE 2= (C0An YNy — (X2

3
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where r is Pearson correlation coefficient, which ranges from -1
to +1. +1 is a perfect positive linear relationship, -1 is a perfect
negative linear relationship, and 0 is a no linear relationship. n
is The total number of paired observations (data points) in the
dataset.

> xy = The sum of the product of corresponding values
of the two variables x and y. When x = [x,x3,...,x,] and
Y = V1,2, .., Y] this is x1y; + X2y2 + ... + X, y,. 2, x and
>y represent the sum of all values in the first dataset (x) and
the second dataset (), respectively. 3. x> and Y y represent the
sum of the squares of all values in x and y, respectively. For
example, x% + x% + ...+ x2. The generator models, Caterpil-
lar (CAT), Cummins, Heli, IMA, JMG, Marapco, Mikano, and
Perkins were grouped based on their manufacturers or brand
name.

2.3.2. Machine learning analysis

Exhaust emissions are governed by non-linear thermo-
chemical reactions; thus, machine learning models are suit-
able for the predictions of these non-linear relationships. Ma-
chine learning (ML) is an artificial intelligence (AI) subset
that focuses on developing algorithms and statistical models
enabling computers to perform tasks without being explicitly
programmed [41]. Instead of following predefined rules, ML
systems learn data to make predictions through recognizing
patterns. ML techniques have multivariable learning that can
enable multi-input-multi-output predictions. The acquired ex-
haust datasets were classified into pass (1) and fail (0) according
to the Ogun State Environmental Protection Agency (OGEPA)
standard. Four different machine learning algorithms are em-
ployed on the datasets. They include decision trees, support
vector machine (SVM), K-Nearest Neighbors (KNN), and en-
semble (bagged Trees) algorithms. Though the general deep
learning techniques require a large dataset, the chosen machine
learning techniques (DT, SVM, KNN, and EBT) in this study
captures the non-linear dependencies of the datasets, they per-
form well with small-to-medium datasets, and they are good
with high-dimensional data. The applied ensemble (bagged
Trees) model can handle complex interactions very well and is
quite robust to noise within the dataset. We trained our dataset
using four supervised machine learning algorithms available in
MATLAB®: Decision Trees, Support Vector Machine (SVM),
K-Nearest Neighbors (KNN), and Ensemble Methods (Bagged
Trees). These models were implemented through MATLAB®’s
Regression Learner App [42]. To prevent overfitting and en-
sure the generalization of each model, we applied 5-fold cross-
validation. This technique partitions the dataset into five equal
subsets (folds), training the model in four folds and validating
it on the fifth. This process is repeated five times, ensuring each
fold is used once for testing. The average performance across
all folds was computed and used as the final evaluation metric.
The model parameters and configuration for each technique in-
clude tree depth of 10 to 100 maximum number of splits and
minimum observation per leaf of 4 to 10 for the decision trees
technique. The SVM used the gaussian radial basis function
as the kernel function, and the regularization range of 0.1 to
10 Box constraints, and margin of tolerance regression of 0.1

to 0.5 (Epsilon). KNN algorithm used 3 to 15 optimal value
and Euclidean distance and equal distance weight. The tuning
for KNN was performed using cross-validation with K-fold of
5. The EBT was performed using a bootstrap aggregate with
number of learning cycles of 100 trees, with minimum leaf size
of 4 to 10, and learning rate of 0.1.

2.3.3. Decision trees (DT)

The tree algorithm is rooted in optimization, information
theory, and probability. A decision tree is a hierarchical struc-
ture where nodes represent decision points based on a feature,
edges represent outcomes of decisions (splits), and leaves repre-
sent the final decision or prediction (class or value). The split-
ting criterion states that at each node, the algorithm chooses
the feature and threshold that best splits the data into subsets
to maximize decision accuracy. The Gini impurity (G) mea-
sures how often a randomly chosen element would be incor-
rectly classified, as stated in Equation (4). K represents the
number of classes and p; is the proportion of samples belong-
ing to class i in the node. Entropy (H) measures the impurity
or disorder in the node, as shown in Equation (5). The lower
entropy indicates pure nodes. The information gained (IG) in
the classification evaluates the reduction in entropy after a split
in Equation (6), where N is the total samples in the parent node,
N is the number of samples in the child node, v is the number
of split and H; is the entropy of the subset v.

K
G=1->ph, @)
i=1
K
H ==Y pilog,pi )
i=1
v N
G :H—Z FJH,. ©6)

=1

The classification prediction using decision trees assigns the
majority class of samples in a leaf. The training time is defined
as O(n X m X log n) where n is the number of samples and m is
the number of features. O(depth) is the prediction time as the
algorithm traverses the tree from root to leaf.

2.3.4. Support vector machine (SVM)

A support vector machine (SVM) is a powerful supervised
learning algorithm that is used to classify and perform regres-
sion tasks. It relies on mathematical optimization and geomet-
ric principles to create decision boundaries in a feature space.
Given a dataset in Equation (7), the goal is to find a hyperplane
that separates the data points into two classes y; € {—1, +1} with
the largest margin. Generally, SVM guarantees the global opti-
mization solution for linearly separable data. It is quite efficient
in handling nonlinear data using kernel tricks.

D = {(x,y)lx; € RP,y; € (=1, +1}}_,. D
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Table 1: Generator brand and percentage by motorization, type, and age.

Generator Model Engine fuel type (%) Age in Years (%) Capacity (%)
Diesel Gas <5 5-10 >10 <500kV  500-1000 kVA  >1000 kVA
CATERPILLAR (CAT) 3.125 6.250 0.000 9.375 0.000 0.000 3.125 6.25
CUMMIN 3.125 0.000 0.000 0.000 3.125 3.125 0.000 0.000
HELI 6.250 0.000 0.000 6.25 0.000 3.125 3.125 0.000
IMA 3.125 0.000 0.000 0.000 3.125 3.125 0.000 0.000
IMG 3.125 3.125 0.000 6.25 0.000 3.125 0.000 3.125
MARAPCO 21.875 0.000 3.125  6.25 12.5 15.625 6.25 0.000
MIKANO 9.375 0.000 3.125 6.25 0.000 9.375 0.000 0.000
PERKINS 9.375 0.000 0.000 3.125 3.125 6.25 6.25 0.000
UNSPECIFIED 0.000 28.125 3.125 18.75 6.25 0.000 15.625 12.5
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Figure 2: (a) Age of the tested generation, (b) Generator model
capacity.

2.3.5. K-nearest neighbor (KNN)

The K-Nearest Neighbors (KNN) algorithm is a non-
parametric and instance-based earning method used for clas-
sification and regression tasks. Its foundation lies in geometry,
distance metrics, and majority voting. KNN predicts the class
label of a data point x, by finding the k-nearest neighbors in the
feature space. These neighbors are identified using a distance
metric, and the prediction is made based on their labels. The
distance metrics used to determine the nearest neighbors is the
Euclidean distance in Equation (8), where x and y are two data
points in a d-dimensional space, and x; is the value of the i

Figure 3: Box plots for numerical columns.
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Figure 4: Distribution of status (remark) based on OGEPA ex-
haust emission standard.
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2.3.6. Ensemble trees (ET)

The mathematics of ensemble algorithms, specifically bag-
ging, involves techniques that combine predictions from mul-
tiple base models to improve accuracy and robustness. Bag-
ging leverages concepts from probability, statistics, and ma-
chine learning optimization. Bagging is generally used with
decision trees - suppose we have datasets represented by Equa-
tion (9), where x; is the feature vector, y; the target variable, and
n the data points number. The goal is to train multiple models
on the subset of the data and combine their predictions.

D = {(x;, y)¥y.- ©))

2.3.7. Performance indicators

The performance metrics include validation, accuracy and
confusion matrix. The validation accuracy score evaluates a
model’s performance on new data in comparison to the train-
ing data. This score helps to choose the best model. Confusion
matrix plot helps to understand how the currently selected clas-
sifier performed in each class. True positive rate (TPR) is a
metric that measures how well a model can identify actual pos-
itives. It helps you understand how well a model can correctly
forecast cases in the true class. The true positive rate equation
is expressed in Equation (10), where TP is the true positive, FN
is the false negativity, and a perfect model would have a TPR of
1.0, which means it would have 100% detection rate. It reflects
the proportion of positive instances that are correctly classified
by the model. False negative rate (FNR) represents the propor-
tion of positive results that yield negative test outcomes with
the test.

TP

TPR = ———.
TP + FN

(10)

3. Results and discussion

3.1. Characteristics of the generator model

A summary of the generator models, indicating the per-
centage by engine fuel type and age, is outlined in Table 1.
The findings revealed that 59.375% of the tested generators
use diesel fuel, while 37.5% were equipped with gas (LPG) as
fuel. The breakdown of diesel-powered generator models in-
cludes Caterpillar (3.125%), Cummin (3.125%), Heli (6.25%),
IMA (3.125%), IMG (3.125%), Marapco (21.875%), Mikano
(9.375%), Perkins (9.375%) and no unspecified generator mod-
els. On the other hand, a larger percentage of gas-powered gen-
erator models comprised mainly of the unspecified generator
models (28.125%), Caterpillar (6.25%), and IMG (3.125%).
The preference for diesel generators by most of the sampled
industries indicated diesel engines have extensive usage on ac-
count of their low operating costs, energy efficiency, high dura-
bility, and reliability, as well as generally require less mainte-
nance due to their sturdier construction and lower revolutions
per minute (RPM) [43]. However, compared to diesel genera-
tors, a significant number of industries are now turning towards
LPG gas due to its greenness and global acceptance, as it emits
less greenhouse gases of CO and NOXx, as diesel emissions are

comprised of higher amounts of particulate matter (PMs) and
NOx which are known to be associated with severe environ-
mental and health cases, causing acid rains, ground-level ozone,
and reduced visibility [43].

The age of the generator models tested is a crucial factor in
the engine’s emissions. The results, as illustrated in Figure 2a,
revealed that 10% fell below 5 years, 60% of the total genera-
tor models were aged between 5 to 10 years, while 30% were
above 10 years old. It was observed that the Marapco model is
not only the most tested diesel generator model but is also the
model with a high proportion of older than 10 years in age. The
capacity of the generator models, distinguishing between a low
capacity < 500 kVA, middle capacity 500-1000kVA, and high
capacity, >1000 kVA was illustrated in Figure 2b. The findings
indicated that 43.754% of the generator models have less than
500 kVA capacity while the least 21.875% are classified to have
the capacity above 1000 kVA.

3.2. Distribution and model based exhaust concentration

From Figure 3, the result reveals exhaust concentrations in
comparison with the distribution. The distribution of CO emis-
sions is somewhat narrow, with a median of 0.02% and an in-
terquartile range of 0.04%. One outlier, at 0.18%, denotes a
solitary occurrence of exceptionally high CO emissions. Com-
pared to CO, CO, emissions are more widely distributed, with
a median of 5% and an interquartile range of 5.2%. Interest-
ingly, CO, emissions do not exhibit any anomalies. Two out-
liers, with HC emissions of 2339ppm and 2117ppm, respec-
tively, revealed very high HC emissions, while the distribution
of O, emissions indicates moderacy, with an interquartile range
of 7.99% and a median of 13.31%, as the emissions of O, are
not anomalous. Furthermore, NOx emissions revealed a me-
dian of 254ppm and an interquartile range of 377ppm, indicat-
ing a moderate dispersion, of which the NOx emission itself
does not exhibit any anomalies. With the result, it could be
inferred that while HC emissions have noticeable outliers in-
dicating higher exhaust concentration, CO and CO, emissions
are generally well-contained, while there are no outliers in the
more modest distributions for O, and NOx emissions.

From Figure 3, the results indicate that the CO emissions
are tightly clustered around the median value of 0.02%, indi-
cating that CO emissions are generally low and not very spread
out. But where one outlier for CO at 0.18% was observed, this
denotes a solitary occurrence (one data point) where the CO
level is much higher than the rest (an outlier). For the CO,,
the emissions are more widely distributed, which be explained
that the CO, values vary more. The median is 5%, indicating
that the data is more spread out. Despite the wider range of the
CO, values, there are no extreme outliers (unusual values) in
the data. Also, the HC emissions data contains two outliers—
values much higher than the rest (2339ppm and 2117ppm),
indicating significant spikes in HC exhaust emissions, which
could be due to engine issues, incomplete combustion, just to
mention a few. Additionally, the O, emission values were re-
vealed to have a moderate spread, centering around a median of
13.31%, with 50% of values within a 7.99% range. Since there
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Table 2: Ogun State Environmental Protection Agency (OGEPA) standard limit on industrial generators exhaust emissions.

Industrial Generators CO (%) CO, (%) HC (ppm) NOXx (ppm)
Diesel-powered 0.1 10.0 - 600
Gas-powered 1.0 10.0 400 300

*Note: This standard was obtained from the Bye-Laws Document at OGEPA [44].
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Figure 5: Bar plot of average emissions by model.

are no outliers (unusual oxygen levels), the data is therefore
considered normal.

Furthermore, NOx emissions revealed a median of 254ppm
and an interquartile range of 377ppm, indicating a moderate
dispersion, of which the NOx emission itself does not exhibit
any anomalies, suggesting a relatively consistent pattern. For
the HC exhibiting noticeable outliers (unusually high values),
this could be somewhat due to the abnormal working condition
or exhaust gas recirculation (EGR) and other internal combus-
tion working mechanisms of the generators, while the CO and
CO, values revealed that the emissions are controlled and con-
sistent, with CO having a small outlier, while the O, and NOx
values obtained indicate that distributions are moderate, indi-
cating stable performance.

The status/remark as compared with the Ogun State Envi-
ronmental Protection Agency, OGEPA exhaust emission stan-
dards limit, as shown in Figure 4 and Table 2 revealed that a to-
tal of thirteen (13) of the tested generators “failed” while eigh-
teen (18) “passed”. The status/remark of Pass or Failed was
related to OGEPA standards, as the Agency is the only State
Agency in the whole of Nigeria to have successfully carried out
large-scale exhaust emissions tests on automobiles, domiciling
such in the State’s Bye Laws, hence the emissions standard
used in this study. Of the “Failed” test remarks, diesel-powered
generators have three (3), and gas-powered generators have ten
(10), while from the “Passed” distribution, diesel-powered gen-
erators were sixteen (16) while gas has two (2). This explains
the higher pass count in which diesel generators performed.

Utilising the model distribution as seen in Figure 5, only
eight (8) models were observed and reported. The HC of CAT
(from Caterpillar) model possessed the highest emission con-
centration with 1386ppm, while its lowest emission concentra-
tion comes from CO at 0.26%. For the CUMMIN model, its
NOx emissions have the highest concentration at 555ppm. For
the HELI model, the HC has the lowest emission concentration
with Oppm as its NOx has the highest concentration of 532ppm,
while for JIMA model, its highest emission concentration was
observed in O, at 26.16%, as its lowest emission concentra-
tion was observed in HC at Oppm. In addition, the JMG model
has its CO possessing the lowest concentration at 0.02%, as its
NOx was reported to have the highest concentration at 369ppm.
Moreover, the NOx of the MARAPCO model was observed to
have the highest emission concentration of 727ppm while HC
(ppm) has zero (Oppm) emissions concentration, while for the
MIKANO, the NOx has the highest emission of NOx (ppm)
of 479ppm while HC has the lowest exhaust concentration of
Oppm. Furthermore, the NOx of PERKINS was observed to
have its highest exhaust concentration at 1405ppm, while the
exhaust concentration of the HC recorded the highest at 0 ppm.

For Figure 5, it could be inferred from the results that the
CAT model exhibited the highest HC emissions at 1386ppm
while its lowest CO emission value was 0.26%. The high HC
exhaust emissions is attributable to incomplete fuel combus-
tion resulting from ignition misfire or misfire due to excessively
lean or rich air/fuel mixtures. Other causes are excessive EGR
dilution, restricted or plugged fuel injectors, exhaust leakage
past exhaust valves, incorrect spark timing, insufficient cylin-
der compression, faulty signal to the electronic control mod-
ule (ECM), just to mention a few. The high NOx exhaust val-
ues observed for CUMMIN (555ppm), HELI (532ppm), IMG
(369ppm), MARAPCO (727ppm), MIKANO (479ppm) and
PERKINS (1405ppm) are ascribed to higher combustion tem-
peratures or engine load at the time of the exhaust testing. This
high combustion temperature is usually caused by cooling sys-
tem problems, leaky intake manifold gasket, improper oxygen
sensor and spark advance systems, inefficient EGR system op-
eration, just to mention a few.

3.3. Effect of the generator’s year of manufacture on exhaust
gas’ concentration

The year of manufacture (age) of the generator is another
key factor, playing a decisive role in the determination of the
exhaust gas’ concentration. Figure 6a illustrates the relation-
ship between the year of manufacture of the tested generator
and the exhaust concentrations of CO, and NOx. The gen-
erators proportion in the age groups of >5 years remarkably
contributes to increased exhaust concentrations in both engine
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Figure 6: Relationship between (a) year of manufacture and
exhaust gas’ concentration, (b) generator capacity and exhaust
gas’ concentration.

types. Noteworthy, in the case of diesel-powered engines, a
considerable rise in CO, and NOx concentrations was observed
due to a higher proportion of Marapco and Perkins models aged
more than 10 years, while in gas-powered engines, the exhaust
concentrations are predominantly influenced by the older Cater-
pillar and unspecified models.

3.4. Effect of generator capacity on exhaust gas’ concentration

The capacity (KVA) of the generator models is another im-
portant factor in the determination of pollutant exhaust concen-
tration, knowing fully well that the higher the capacity, the more
fuel consumed. Figure 6b illustrates the relationship between
the generator capacity and polluting exhaust concentrations of
CO; and NOx for both engine fuel types. The highest and low-
est CO, concentration (8.1% and 0% respectively) emanated
from the generator with a capacity of 1250 (;1000kVA). Also,
the corresponding NOx were relatively high and low (475ppm
and 1ppm). This proposes a possible relationship between the
CO, and NOx concentration in the exhaust emission from the
industrial generator models tested.
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Figure 7: Relationship between (a) the generator model and
exhaust gas’ concentration, (b) the engine fuel type and exhaust
gas’ concentration.

3.5. Effect of generator model and fuel type on exhaust gas’
concentration

Mapping the tested generator model revealed a discontinu-
ity in the level of emitted CO, and NOx (Figure 7a). However,
Caterpillar exhibited the highest CO, emission (8.1%), while
Perkins revealed the highest NOx emission (838ppm) (Figure
7). As regards the fuel type on exhaust concentration, the total
percentage of CO, emissions was 76.1%, and the total percent-
age of NOx 7393ppm was observed for diesel, while the total
percentage of CO, emissions was 60.9% and the total percent-
age of NOx stood at 1897ppm for gas fuel (Figure 7b).

3.6. The correlation analysis for the exhaust gases

According to the high p-value (0.65499) and weak negative
correlation (-0.10964) in diesel-powered generator’s exhausts,
as shown in Figure 8a, there is no significant linear association
between CO% and CO,%. This suggests that, given the set-
tings under investigation, variations in CO levels do not fore-
cast variations in CO; levels. In a similar vein, the high p-value
(0.89239) and extremely weak negative correlation (-0.03329)
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Figure 8: The descriptive and Pearson’s correlation of the exhaust emission parameters (a) using diesel, (b) using gas.

suggest that there is no meaningful link between CO% and
0,%, implying that there is no direct correlation between CO
emissions and O, levels. Between CO and NOX, there is a sta-
tistically significant inverse link, as indicated by the moderately
negative correlation (-0.49142) and p-value of 0.03281. This
may be attributable to incomplete combustion circumstances
resulting in higher CO emissions, hence limiting the produc-
tion of NOx [45]. Q. Malé and coworkers [46] in their study on

plasma-assisted combustion in sequential combustors, also cor-
roborated that incomplete combustion can result in higher CO
emissions, which may influence NOx production, stating that
increased CO levels may affect the pathway for NOx forma-
tion. A very low p-value (1.01615e-9) coupled with a substan-
tial negative correlation (-0.94567) points to a highly signifi-
cant unfavorable association. This establishes a fact because
O, is used during complete combustion with the fuel, produc-
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Figure 9: Scatter plots for all the predicting models (DT (modell), SVM (model 2), KNN (model 3), EBT (model 4)) of gases CO,
and NOx, where the dot represents correct prediction, and cross represents incorrect prediction.

ing CO,. The results indicated a substantial positive correlation
(0.73512) between higher CO, and higher NOx levels, with a
p-value of 3.36053e-4, as previously reported by Kozlov and
Titova [47].

Another higher possibility of this can occur in situations
when there is complete combustion at very high tempera-
tures, causing high NOx production. The substantial p-value
(1.01615e-9) and robust negative correlation (-0.94567) for O,
and CO; supported the anticipated adverse association result-
ing from combustion. The results indicate a significant nega-
tive correlation (-0.70955) between greater O, levels and lower
NOx emissions, with a p-value of 6.67708e-4. There is a sig-
nificant p-value of 0.03261 and a considerable negative corre-
lation of -0.49142 between greater CO and lower NOx levels.
The combustion theory provides a framework for interpreting
the correlation between NOx and CO2, as NOx primarily forms
through the thermal NOx mechanism, requiring high tempera-
tures to dissociate N2 and O2, forming NO. This is prevalent in
complete combustion conditions, explaining the positive CO2-
NOx correlation, in this study for diesel-powered exhaust emis-
sions. Herein, a substantial p-value (3.36053e-4) and a strong
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postive association (0.73512) indicate that circumstances that
support increased CO, generation also support the development
of NOx. Similarly, Shahariar et al. reported a strong linear cor-
relation between NOx and CO, emissions in urban driving sce-
narios of diesel vehicles, with a Pearson correlation coefficient
of 0.82 at a p-value of 0.001, indicating that higher fuel con-
sumption (reflected in CO, emissions) generally aligns with in-
creased NOx emissions [48]. However, the analysis highlights
that driving style and route features significantly modulate this
relationship, as aggressive driving behaviors (such as rapid ac-
celeration and hard braking) were linked to spikes in NOx emis-
sions, even when CO; levels (fuel consumption) remained com-
parable across drivers. This suggests that NOx emissions are
more sensitive to transient driving dynamics (e.g., turbocharger
lag during sudden acceleration) than CO,, which correlates
more strongly with trip duration and steady-state driving. Nev-
ertheless, a recent study has shown that carbon reduction is a
significant driver of NOx depletion in industrial sectors [49].
Urban infrastructure features like motorway entrances, traffic
signals, and intersections can be emerging emission hotspots,
where abrupt speed changes cause sharp increases in both pol-
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Figure 10: Confusion matrix for model 1 (DT), model 2 (SVM), model 3 (KNN), and model 4 (EBT).

lutants. Despite this overlap, the study by Shahariar et al. un-
derscores that NOx emissions exhibit greater variability due to
driver behavior, while CO; is more consistently tied to energy
consumption patterns [48]. Therefore, there is a need for tar-
geted interventions addressing driving habits and urban plan-
ning to mitigate both greenhouse gases and local air pollutants.
The conclusion that lower O, levels correlate with increased
NOx emissions is supported by the strong negative correlation
(-0.70955) and significant p-value (6.67708e-4). There is no
discernible relationship between HC and CO, CO,, O, or NOx.
This suggests that, in contrast to the other pollutants examined,
the mechanisms influencing HC emissions are distinct or more
intricate.

With a p-value of 0.04926 and a moderate positive corre-
lation (0.57749) for the exhausts from gas-powered generators,
as shown in Figure 8b, the correlation is statistically significant.
This implies that maybe as a result of changes in combustion
efficiency, CO, emissions tend to increase along with CO emis-
sions. Near the significance threshold, the moderately positive
correlation (0.55988) with a p-value of 0.05835 points to a pos-
sible link between higher CO levels and higher HC emissions,
most likely in the context of incomplete combustion. There
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is a substantial adverse link, as indicated by the moderately
negative correlation (-0.57885) and p-value of 0.04861. This
shows that incomplete combustion, where less oxygen is used,
is linked to lower O, levels and higher CO emissions. Also,
it is clear from the slight positive correlation (0.42789) and
p-value of 0.16525 that there is no significant association be-
tween CO and NOx emissions under the conditions of the study.
The lack of a significant association is suggested by the modest
positive correlation (0.383) and high p-value (0.21912), which
show that CO, and HC emissions are not highly correlated. As
would be predicted given that O, is consumed to produce CO,
during combustion, the extremely strong negative correlation (-
0.99726) with a highly significant p-value (1.21988e-12) shows
an almost perfect inverse association.

There appears to be no significant association between CO,
and NOx emissions, as indicated by the modest positive cor-
relation (0.44174) and p-value of 0.15051. Unlike the diesel-
powered exhaust emission, the non-significant correlation be-
tween NOx and CO; in the gas-powered exhaust emission may
reveal how the incorporation of modern technologies tends to
decouple the relationship between NOx and CO,. Interestingly,
factors such as their distinct formation mechanisms, indepen-
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dent control technologies, and varying responses to driving con-
ditions can contribute to the decoupling. NOx is temperature-
dependent and managed by catalytic systems, while CO, is fuel
consumption-driven and less affected by these controls. Higher
CO levels are linked to decreased O, levels, according to the
significant p-value (0.04861) and moderate negative correlation
(-0.57885). The predicted unfavorable link is confirmed by the
extremely significant p-value (1.21988e-12) and very substan-
tial negative correlation (-0.99726). Higher O, levels may be
linked to decreased NOx emissions, according to a tendency
shown by the somewhat negative correlation (-0.4905) and non-
significant p-value (0.105544), even though this association is
not statistically significant. Between NOx and O, there may
be an inverse association, but it is not statistically significant, as
shown by the moderately negative correlation (-0.4905) with
a non-significant p-value (0.105544). Between HC and O,,
the modest negative correlation (-0.40181) and non-significant
p-value (0.19541) indicate no significance. The high p-value
(0.34814) and modest positive correlation (0.29722) between
HC and NOx suggest that there is no meaningful association.
Therefore, a positive r indicates that as one variable increases,
the other tends to increase. A negative r indicates that as one
variable increases, the other tends to decrease. The closer |r| is
to 1, the stronger the linear relationship between the variables.

3.7. Machine learning analysis of the exhaust gases

The Decision Tree, the support vector machine, the KNN,
and the Tree Ensemble were trained on the MATLAB using
70% of the dataset. The scattered plots for the evaluation of the
predictive models (1-4) using the remaining 30% of the data are
presented in Figure 9. The prediction accuracies for the classi-
fication status of the exhaust gases are 93.5 %, 80.6 %, 90.3
%, and 87.1 % for the decision tree learner, support vector ma-
chine learner, KNN learner, and tree ensemble learner, respec-
tively (Table 3). In terms of the prediction speed and model
training time, the support vector machine learner has the great-
est prediction speed of 850 observations/second, while the tree
ensemble learner has the lowest prediction speed of 260 obser-
vations/second. Also, the decision tree learner has the longest
training time of 4.57 s compared to that of the support vector
machine learner of 1.31 s.

The confusion matrices for all the models are presented in
Figure 10. Both DT and SVM learners have the highest true
positive rate prediction of 100 % for the classification status of
pass (1), while the EBT has the lowest true positive rate pre-
diction of 88 %. Generally, all the machine learning classifica-
tions have an excellent true positive rate prediction for pass (1)
and fail (0) classification status, except SVM, which performs
poorly with a prediction accuracy of 57 % for fail (0) classifica-
tion status. These results are similar to that of the false negative
rate, where SVM equally performed poorly in the prediction of
fail (0) classification status.

The decision tree achieved high accuracy and perfect classi-
fication of the pass (1) class. However, it exhibited the longest
training time (4.57 s), likely due to recursive binary splitting
and deep tree structures. Decision trees perform well when
the data exhibits clear logical partitions, which may indicate
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that the features in this dataset align well with class bound-
aries. Even though the SVM has the fastest prediction speed
(850 obs/s) and short training time (1.31 s), it suffered from
low accuracy in predicting the fail (0) class (57 %). This is
likely due to imbalance class distributions where SVMs tend to
favour the majority class (pass (1)), especially when the kernel
parameters are not well-tuned. K-Nearest Neighbors (KNN)
produced a balanced performance, combining high overall ac-
curacy (90.3%) and moderately fast predictions. The strength
of this algorithm lies in capturing local data structures; its ef-
fectiveness suggests that the dataset contains meaningful clus-
ters corresponding to the classification labels. However, KNN
can suffer in high-dimensional or noisy data, and performance
can degrade with large dataset due to the computational cost of
distance calculations. The employed Tree Ensemble (Bagged
Trees) provided a robust compromise between bias and vari-
ance, with accuracy of 87.1%, though with the slowest pre-
diction speed (260 obs/s). The ensemble techniques are par-
ticularly good at generalizing especially on complex or non-
linear datasets. The reduced true positive rate (88%) for the
pass class could be due to model averaging, which smoothens
decision boundaries, slightly compromising peak performance
for increased robustness.

In environmental monitoring, especially when tracking ex-
haust gas emissions, The false negative rate is high for SVM
technique. The failure of SVM to detect a pollutant breach
will have serious implications for environmental monitoring.
The false negatives are costly for environmental monitoring,
as they may lead to regulatory violations and environmental
harm. Therefore, Decision trees and Tree Ensemble learners are
preferable for environmental monitoring, as they have higher
sensitivity to the fail (0) class, despite slightly higher computa-
tional costs.

4. Conclusion

Most of the sampled industrial generators utilise a higher
number of diesel generators than gas-powered ones, possibly
due to their energy efficiency, high durability, and reliability.
The diesel-powered generators generally require less mainte-
nance due to their sturdier construction and lower revolutions
per minute (RPM). Also, the age and capacity (KVA) of the
generators have been observed to have considerably impacted
high pollutant exhaust concentrations in both the diesel- and
gas-powered engines; regardless of generator models, there
was a considerable rise in CO, and NOx concentrations from
generators of more than 10 years and capacity of more than
1000KVA. Furthermore, the total percentage of CO, and NOx
emissions reported for diesel were 76.1% and 7393ppm, while
for gas-powered, they were 60.9% and 1897ppm. With respect
to the concentration of pollutants, it was observed that there is a
positive correlation between CO, and NOx for diesel-powered
generators, while for gas, there is a positive correlation be-
tween CO and CO,, the same for CO and HC. Interestingly,
a negative correlation was observed for CO, and O, in both the
diesel- and gas-powered generators. The study equally trained
four machine learning classification models on MATLAB using
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Table 3: Performance indicators of machine learning algorithms.

Accuracy Training Time (sec) Prediction Speed (obs/sec)  True Positive (%)  False Negative (%)

1 (Pass) O (Fail) 1 (Pass) 0 (Fail)
DT 93.5 4.57 410 100 86 0 14
SVM 80.6 1.87 850 100 57 0 43
KNN 90.3 1.31 760 94 86 6 14
EBT 87.1 3.15 260 88 86 12 14

70% of the dataset. The models achieved prediction accuracies
of 93.5%, 80.6%, 90.3%, and 87.1% for exhaust gas OGEPA
classification status. The support vector machine learner had
the highest prediction speed of 850 observations/second, while
the tree ensemble learner had the lowest. The confusion ma-
trices showed that DT and KNN learners possessed the high-
est true positive rate prediction of 100% for pass classification
status, respectively. The SVM suffered from low accuracy in
predicting the fail (0) class (57 %). The inability of the Sup-
port Vector Machine (SVM) model to accurately detect pollu-
tant threshold breaches can have significant consequences for
environmental monitoring. False negative predictions are par-
ticularly critical, as they may result in undetected regulatory vi-
olations and potential environmental damage. In contrast, De-
cision Tree and Tree Ensemble models demonstrated greater
sensitivity in identifying the “fail” (0) class. Although these
models may incur slightly higher computational costs, their en-
hanced reliability makes them more suitable for applications
in environmental compliance and risk mitigation. From the
results, it could be observed that gas-powered (LPG) genera-
tors are better and offer several advantages over diesel-powered
generators as the LPG generators produce significantly fewer
greenhouse gases and pollutants like NOx, when compared to
diesel, making them more environmentally friendly.

In an attempt to ameliorate the usage of fossil-fuel genera-
tors in developing countries including Nigeria, strategic frame-
works that can guide multi-pronged policy formulation policy
are crucial. A strategy to establish phasing out fossil-fuel gener-
ators in favour of cleaner alternatives should be adopted, while
stringent emissions standards should be set to reduce air pollu-
tion. Also, incentives and low-interest loans should be offered
to citizens to adopt renewable energy systems, while the expan-
sion and upgrading the national electricity grid should be im-
plemented to reduce reliance on fossil-fuel generators, amongst
other policies. Furthermore, future studies can broaden the
dataset to include a broader range of generator types and re-
gional variances in order to increase model generalisability,
while machine learning (ML) models and Internet of Things
(IoT) could be integrated for real-time emission diagnosis and
monitoring. Looking at the policy level, our study contributes
to the development of data-driven air quality legislation, gener-
ator usage regulations as well as overall emissions monitoring
in Nigeria and other developing nations. Finally, we recognise
that the sample size of 31 generators may be insufficient for
drawing broad conclusions about industrial generator emissions
over the entire region, as lower sample size can reduce statis-
tical power and fail to capture the full variability found in the
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larger population of industrial generators. This limitation may
affect the generalisability of the results, especially regarding
emission trends and model-specific performance, nevertheless,
the dataset still offers meaningful patterns and highlights key
emission concerns which can inform future, larger-scale stud-
ies.
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