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Abstract

Pertussis, also known as whooping cough, is a very infectious respiratory disease that can be easily avoided with vaccination. In this work, a
system of nonlinear ordinary differential equations of pertussis has been formulated to examine the impact of early treatment. Through theoret-
ical examination, the model has been extensively analyzed. Numerical experiments are performed to validate the theoretical conclusions. The
suggested model has been fitted to real Austrian pertussis data, demonstrating that it is appropriate for the data. The control reproduction number
was also used to test the sensitivity analysis of all of the parameters of the proposed model. The results indicate that the effective contact rate
is the parameter that is more sensitive to increasing the control reproduction number. In contrast, the awareness rate is the parameter that is
most sensitive to decreasing the number of control reproductions, and optimal control analysis has also been performed in this work. Numerical
simulation reveals that awareness is the most influential parameter in reducing infection in the population. Moreover, vaccination and treatment
are also very important in controlling pertussis in society.
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1. Introduction

Pertussis is a very infectious respiratory disease that can
be readily avoided with vaccination. For newborns, whoop-

∗Corresponding author Tel. No: +234-806-783-6348.
Email address: james.a@fud.edu.ng (J. Andrawus)

ing cough poses an especially serious risk [1]. In addition to
a ”whoop”-like cough, other symptoms include sneezing, nasal
congestion, and a runny nose. Bordetella pertussis is the bac-
terium that causes pertussis, also known as whooping cough.
The disease mainly affects the upper respiratory system and is
extremely contagious [1]. Worldwide, whooping cough, also
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known as pertussis, is a major cause of infant mortality and
a public health problem, even in nations with high immuni-
sation rates [2]. Infants under 12 months old who have not
received all or some vaccinations account for most reported
deaths. However, adults and teenagers are also infected by the
disease [3].WHO estimates that each year there are between
40 and 50 million whooping cough infections, with 297,000 to
409,000 deaths. Ninety per cent of cases occur in low-income
countries [4]. There were 24.1 million cases of pertussis world-
wide in 2014, according to a report. This disease claimed the
lives of almost 160,700 children under five years of age [5, 6].
It was in France in 1578 that the first outbreak was observed.
107 people died in Cape Town during a significant whooping
cough outbreak in 1947 [7]. In the 1600s, it was widespread
throughout other European countries [4]. Before vaccination
was introduced in England and Wales in 1957, there were about
100,000 documented cases of pertussis each year [8]. In early
2010, there was an outbreak in Israel, the United States, and
Ireland. 2014 saw the highest whooping cough outbreak since
1947, with more than 10,000 confirmed cases in California [7].

Whooping cough bacteria are easily transmitted from per-
son to person through the air [11]. An infected person may
cough or sneeze and release tiny particles that contain bacteria
[9]. The germs are then inhaled by other people [9]. In addi-
tion, it spreads when individuals interact often or share breath-
ing spaces, such as when a newborn is carried on your chest [9].
After infection, the first symptoms usually show up seven to
ten days later. They consist of a low-grade fever, a runny nose,
and a cough, which usually progresses to a hacking cough and
whooping (hence the term whooping cough). Pneumonia is a
fairly common consequence, but brain damage and convulsions
are uncommon [10].

Antibiotics can be useful, but supportive care is the main-
stay of medical therapy for instances of pertussis [10]. This
treatment removes the organism from secretions, which re-
duces communicability and, if started early, changes the way
the disease progresses. Erythromycin, clarithromycin, and
azithromycin are suggested antibiotics [11]. You can also use
trimethoprim-sulfamethoxazole [11]. Regardless of age or im-
munisation status, all close contacts of a person with pertussis
should receive an antibiotic that is effective against the disease
[11]. Vaccination is the main method of controlling pertussis.
Mass immunisation began with the introduction of diphtheria-
tetanus-pertussis (DTP) as the primary vaccine in the first year
of life in several countries throughout the 1950s. The inci-
dence of illness and death has decreased by more than 90%
[12]. WHO recommends giving the first dose as early as six
weeks of age and then giving the second and third doses at in-
tervals of four to eight weeks, or ages ten to fourteen and four-
teen to eighteen weeks. Preferably, in the second year of life, a
booster dose is advised. More booster doses might be necessary
later in life, depending on the local epidemiology [10].

Several researchers developed a mathematical model to
study the transmission dynamics of pertussis using various con-
trol measures among these: a study by Ref. [7] recommended
that the best control method would be to combine vaccination
and quarantine to prevent the spread of whooping cough. A

study by Ref. [13] indicated that the change in epidemiological
observations in Australia during the analysis period is compati-
ble with the selective pressure of acellular pertussis vaccination.
In the research by Ref. [14, 15], a mathematical model of per-
tussis was formulated; they found that the length and intensity
of the outbreaks are highly influenced by the timing of contact
tracing. The study by Ref. [16] stated that in order to reduce
the severity and prevalence of the disease, a booster vaccina-
tion program could be more beneficial than a single immunisa-
tion campaign. Furthermore, the study by Refs. [17] indicated
that a decrease in the duration of protection after vaccination
due to a change in the pathogen is the most likely factor to ac-
count for the 1996-1997 epidemic. Optimal control theory is a
branch of control theory that deals with finding a control for a
dynamical system over a period of time such that an objective
function is optimised. It has numerous applications in science,
engineering, and operations research. Ref. [18] formulated a
mathematical model within an optimal control framework of
a generic disease, accounting for treatment and media report-
ing of disease-induced deaths, their study analyzes the effect of
different incidence functions on disease transmission, and the
qualitative nature of epidemic dynamics by performing optimal
control analysis using three different contact rates and a media
function that is dependent on the number of deaths. However,
the optimal control in this work focuses on awareness by pro-
viding health education.

Considering all the research mentioned above, Refs. [7,
13, 15–17]. The fact that none of the above-mentioned au-
thors considered timely awareness was specifically motivated
by the work of Ref. [17], which also did not consider timely
awareness. We developed a mathematical model of pertussis
(whooping cough) considering aware susceptible and unaware
susceptible, this is indeed important in the dynamics of pertus-
sis and also, we considered three different kinds of vaccination
administration:

• It can be administered at recruitment,

• It can be administered by awareness, and

• both the two cases stated earlier can be given booster vac-
cinated.

We also considered the evaluation of the influence of vaccina-
tions, timely awareness, and treatment in some compartments.

The organization of the paper is as follows. Section 1, con-
tain the introduction and pertinent literature, section 2 covers
the formulation of the model, section 3 covers the analytical
analysis of the model, Section 5 contains optimal control anal-
ysis, section 4 covers the model fittings and sensitivity analysis
of the control reproduction number, section 6 covers numerical
simulations associated with the model, and Section 7 covers the
concluding remarks and recommendation.

2. Model Description

The model divided the human population at time t into six
subgroups: Susceptible, Unvaccinated people S u(t), this group

2



Andrawus et al. / J. Nig. Soc. Phys. Sci. 7 (2025) 2732 3

consists of those individuals who are at risk of infection. Sus-
ceptible vaccinated S v(t), this group consists of all individuals
who take the vaccine, however, some can get the infection at a
slower rate. Exposed E(t) refers to S u(t) and S v(t) that make ef-
fective contact with infectious individuals. infected individual
I(t), this group refers to all infected individuals. An infected
individual under treatment It(t), this group consists of all indi-
viduals under treatment, and Recovered R(t), this group con-
sists of individuals who recover naturally and due to treatment.
The susceptible un-vaccinated group is recruited by Π(1 − P1),
and the group increases with the waning rate of vaccine ω, it
decreases by the natural mortality rate µ, and it further de-
creases by the rate of infection λ. The susceptible vaccinated
group is recruited by Πp1; the group is generated by the cover-
age of vaccine due to awareness p1; it decreases by the recov-
ery rate due to booster vaccination p3 and the natural mortal-
ity rate µ; and it further decreases by the rate (1 − θ)λ, where
(1 − θ)(0 < (1 − θ) < 1) is the risk of infectiousness reduc-
tion of vaccinated individuals. The exposed group is generated
by λ and (1 − θ)λ; it decreases with the progression rate and
treatment due to awareness of the exposed individuals σ and
γ1. The infected group is generated by σ(1−γ1), and decreases
with treatment due to awareness of the infectious individuals.
γ2, it also decreases by the natural recovery rate α, and it fur-
ther decreases by the natural mortality rates µ and the mortality
rate due to infection δ. Infected individuals in the treatment
group are generated by γ2; it decreases by the recovery rate due
to treatment τ; it also decreases by µ. Recovered groups are
generated by the recovery rate due to booster vaccination p3; it
also increases by τ and decreases by the natural mortality rate
µ. Consequently, the entire human population at any given mo-
ment t is given by

N(t) = S u(t) + S v(t) + E(t) + I(t) + It(t) + R(t). (1)

dS u

dt
= Π(1 − p1) + ωS v − λS u − (µ + p2)S u,

dS v

dt
= Πp1 + p2S u − (1 − θ)λS v − (ω + µ + p3)S v,

dE
dt
= λS u + (1 − θ)λS v − (µ + σ)E,

dI
dt
= σ(1 − γ1)E − (µ + δ + α + γ2)I,

dIt

dt
= σγ1E + γ2I − (µ + τ)It,

dR
dt
= p3S v + αI + τIt − µR,

(2)

where

λ =
(1 − ϵ)β(I + ηIt)

N
(3)

3. Analytical analysis of the model

3.1. Positivity and boundedness of solutions
The theoretical framework deals with the human popula-

tion. It is now possible to demonstrate that for any t ≥ 0, all
state variables in the model (2) are non-negative.

Theorem. A dynamical system in the closed set defined by the
equation 2 is provided by

Ω = {(S u(t), S v(t), E(t), I(t), It(t),R(t)) ∈ R6
+ : N ≤

π

µ
}. (4)

Proof. Here, we need to demonstrate the positive invariance
of R6

+, that is, no solution to the system 2 that is in Ω exits Ω
(Theorem 2.1.5) of Ref. [19]). Assume that R(0)) > 0 and that
S u(0), S v(0), E(0), I(0), andIt(0) > 0. If S u(0) and S v(0) are not
both positive, then S u(t) > 0 and S v(t) > 0 for t ∈ [0, t̃) exist
at some time t̃ > 0 and S u(t̃) = S v(t̃) = 0. Using second, third,
fourth, and fifth equations, we now get,

dE(t)
dt
≥ −(µ + σ)E(t) for t ∈ [0, t̃),

dI(t)
dt
≥ −(µ + δ + α + γ2)I(t) for t ∈ [0, t̃),

dIt(t)
dt
≥ −(µ + τ)It(t) for t ∈ [0, t̃).

(5)

Consequently, E(0) > 0, I(0) > 0 and It(0) > 0 for t ∈ [0, t̃). As
a result, using the system 2’s first and second equations, we’ve
obtained

dS u(t)
dt

≥ −(p2 + µ + λ)S u(t) for t ∈ [0, t̃),

dS v(t)
dt

≥ −(µ + ω + p3 + (1 − θ)λ)S v(t) for t ∈ [0, t̃).

One can see that, S u(0) > 0 and S v(0) > 0 which contradict our
assumption of S u(t̃) = S v(t̃) = 0. Hence S u(t) and S v(t) are pos-
itive. Conversely, a subsystem of (2) that does not include the
first and second equations may be expressed in matrix form as
follows, demonstrating the positivity of the model’s remaining
state variable.

dX(t)
dt
=MY(t) + B(t), (6)

with

Y(t) =
(

E, I, It, R
)T
,

M =


−k3 k ηk 0

σ(1 − γ2) −k4 0 0
σγ1 γ2 −k5 0

0 α τ −µ

 ,
B(t) =

(
0 0 0 0

)T
,

(7)

where, k = β(1−ϵ) S u+(1−θ)S v
N , k3 = µ+σ, k4 = µ+δ+α+γ2 and

k5 = τ + µ, The fact that both S u(t) and S v(t) are non-negative
indicates that M is a Metzler matrix. indicating that subsys-
tem (6) is a monotone system [20]. Therefore, under the flow
of subsystem (6), R4

+ is invariant. R6
+ consequently becomes

positively invariant under the system’s flow (2). Furthermore,
we need to prove the total population of humans at time t, N(t)
satisfies the boundedness property 0 ≤ N(t) ≤ Π

µ
whenever

0 ≤ N(0) ≤ Π
µ

. We point out that this bound represents the
unique equilibrium of the dynamics of the total population in
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Figure 1. Model (2) diagrammatical description.

Table 1. Interpretation of the state variables and parameters used in the model (2).
Variable Description

N Total population at time, t
S u Susceptible un-vaccinated individuals at time, t
S v Susceptible vaccinated individuals at time, t
E Exposed individuals at time, t
I Infected individuals at time, t
It Infected individuals under treatment at time, t
R Recovered individuals at time, t

Parameter Description
Π Recruitment rate
p1 Vaccination of recruitment
p2 Vaccination due to awareness
p3 Vaccination booster
ω Reversion rate
µ Natural mortality rate
β Effective contact rate

(1 − θ) Reduction rate of infection due to vaccine
γ1 Treatment due to awareness of the exposed individuals
γ2 Treatment due to awareness of the infectious individuals
δ Mortality rate due to infection
α Natural recovery rate
σ Progression rate
ϵ Awareness rate
τ Recovery rate due to treatment
η modification parameter due to reduced of the infectiousness

of infected individuals under treatment

the ideal situation where there are no ongoing pertussis cases.
By adding the equation of model (2), one obtains the conserva-
tion law [21]. We focused on showing that any solution in Ω
remains in Ω. Therefore, the rate of change of total population

is given by,

dN
dt
= Π − µN − δI ≤ π − µN. (8)

4
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Figure 2. Comparison of real data of the disease with the simulations
obtained with the proposed model.

Applying the Groomwall inequality to equation (8), gives

N(t) ≤
Π

µ
+

[
N(0) −

Π

µ

]
e−µt,∀t ≥ 0, (9)

which implies that 0 ≤ N(t) ≤ Π
µ

whenever 0 ≤ N(0) ≤ Π
µ

∀t ≥ 0 in another words, from equation (9), as t → 0, N(t) →
N(0) ⇒ N(t) ≤ Π

µ
, and as t → ∞ N(t) → Π

µ
. Therefore,

Ω is positively invariant and a global attractor of all positive
solutions of the system (2) for all positive initial conditions.

3.2. Disease-free equilibrium and basic reproduction number
The model system 2 possesses a disease-free equilibrium,

which may be ascertained by bringing both of the equation’s
right-hand sides to zero and solving simultaneously to give.

ϵ0 = (S 0
u, S

0
v , E

0, I0, I0
t ,R

0)

=

(
Π ((1 − p1)k2 + ωp1)

k1k2 − ωp2
,
Π ((1 − p1)p2 + p1k1)

k1k2 − ωp2
, 0, 0, 0,

p3Π ((1 − p1)p2 + k1 p1)
µ(k1k2 − ωp2)

) (10)

where

k1 = µ + p2, k2 = ω + p3 + µ. (11)

3.3. Basic reproduction number
When an infected person interacts with a fully susceptible

population in the absence of vaccination and awareness, the
number of new infections they cause is known as the basic re-
production number (represented by R0 = ρ(FV−1) in the model
2. Here, ρ represents the spectral radius of the next-generation
matrix, FV−1). The stability of the equilibrium is established
using the next-generation matrix technique [22–25]. The new
infection terms are represented by the matrix F, while the ex-
isting transition terms are represented by the matrix V , R0.

F =


0 β(1−ϵ)(S u

0+(1−θ) S v
0)

N0
βη(1−ϵ)(S u

0+(1−θ)S v
0)

N0

0 0 0

0 0 0

 , (12)

Figure 3. A depiction of the residuals for the least-squares method on
the proposed model.

Figure 4. Statistical illustration of the real data and the model’s pre-
dicted values via a box and whisker plot.

and

V =


k3 0 0

−σ (1 − γ1) k4 0

−σγ1 −γ2 k5

 , (13)

V−1 =


k3
−1 0 0

−
σ (−1+γ1)

k3k4
k4
−1 0

σ ((1−γ1)γ2+k4γ1)
k3k4k5

γ2
k4k5

k5
−1

 , (14)

FV−1 =


−(1−ϵ)β

((k4 − γ2)η − k5)γ1

+ ηγ2 + k5

(S 0
u+(1−θ)S 0

v )σ

N0k3k4k5

−(1−ϵ)β(S 0
u+(1−θ)S 0

v )(ηγ2+k5)
N0k4k5

(1−ϵ)βη(S 0
u+(1−θ)S 0

v )
N0k5

0 0 0
0 0 0


The control reproduction number Rc is the total number of sec-

ondary infections produced by a single individual throughout his/her
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Table 2. Ranges and baseline values of parameters of model (2).
Parameter Value Unit Reference Parameter Value Unit Reference
λ 0.0006 1/year [26] Π 0.019 1/year [26]
p1 0.6 1/year [26] p2 0.003264 1/year fitted
p3 0.012781 1/year fitted µ 0.012 1/year fitted
ω 0.776507 1/year fitted β 0.55 1/year [26]
1 − θ 0.831504 1/year fitted γ1 0.186850 1/year fitted
γ2 0.000002 1/year fitted δ 0.055 1/year [26]
α 0.2 1/year [26] σ 0.014326 1/year fitted
ϵ 0.123033 1/year fitted τ 0.5 1/year [26]
η 0.598350 1/year fitted – – – –

Table 3. A summary of the facts, both actual and anticipated.
Statistics Min Q1 Q2 (Median) Q3 Mean Max Standard Deviation
Real 164 3710 8350 10000 6780 11300 3930
Predicted 164 4160 8150 10100 6910 10900 3680

Table 4. Pertussis data in Austria, (ECDC dashboard [27]).
Year Cases C. cases
2022 164 164
2021 129 293
2020 632 925
2019 2233 3158
2018 2202 5360
2017 1411 6771
2016 1291 8062
2015 579 8641
2014 370 9011
2013 580 9591
2012 571 10162
2011 288 10450
2010 495 10945
2009 185 11070
2008 188 11258

p
3 2
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1

p
2 1

Parameters
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0
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0.4
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1

P
R

C
C

 v
a
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e
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Figure 5. Figure showing the PRCC values of Rc versus the parameters
of model (2).

life-time in the presence of controls, is obtained by putting S 0
u, S

0
v and

N0,

Figure 6. Box plotting to illustrate the effectiveness of awareness on
infected individuals under treatment.

Rc =
βµσ(1−ϵ)[(1−p1)(k2+(1−θ)p2)+p1(ω+(1−θ)k1)][η(k4γ1+(1−γ1)γ2)+k5(1−γ1)]

k3k4k5[µk2+p2(µ+p3)],

where k1 = µ + p2, k2 = ω + µ + p3, k3 = µ + σ, k4 = µ + δ + α + γ2

and k5 = τ + µ.
The basic reproduction number can be calculated by setting all

control parameters in (3.3) to zero, that is (p1 = p2 = p3 = ω = γ1 =

γ2 = ϵ = θ = 0)

R0 =
βσµ(η(1 + µ + δ + α) + τ + µ)
µ(µ + σ)(µ + δ + α)(τ + µ)

(15)

3.4. Local stability of disease free equilibrium
theorem. For the model (2), the disease-free equilibrium (DFE) ϵ0 is
unstable if mathcalRc > 1 and locally asymptotically stable (LAS) if
mathcalRc < 1 in Ω.

proof. A dynamical system is said to be locally asymptotically stable
if small perturbations to the system do not cause significant changes in
the trajectories of the system variables. Mathematically, local asymp-
totic stability can be established if the real parts of all eigenvalues of
the Jacobian matrix, which represents the linearized system around the

6
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Table 5. PRCC values for the parameters of model (2) using Rc as response functions, all the parameter values used are in Table. 3.
Parameter PRCC values of Rc Parameter PRCC values of Rc

Π 0.0020 Ω 0.0100
µ -0.3799 p1 -0.4983
p3 0.799225 p2 0.7123
ω 0.2180 β 0.9649
(1 − θ) -0.1391 γ1 0.4268
γ2 -0.5799 δ 0.3681
α -0.2771 σ 0.2192
ϵ -0.8969 τ -0.4010
η 0.1952 - -

Figure 7. Behaviour of Susceptible un-vaccinated individuals.

Figure 8. Behaviour of susceptible vaccinated individuals.

equilibrium point, are negative. The linearization of the system (2) at
the disease-free equilibrium (DFE) yields the following linear system:

J(ϵ0) =



−p2 − µ ω 0 −β(1 − ϵ)N1 −βη(1 − ϵ)N1 0
P2 −k2 0 −β(1 − θ)(1 − ϵ)N2 −β(1 − θ)η(1 − ϵ)N2 0
0 0 −k3 β(1 − ϵ)(N1 + (1 − θ)N2) βη(1 − ϵ)(N1 + (1 − θ)N2) 0
0 0 σ(1 − γ1) −k4 0 0
0 0 σγ1 γ2 −k5 0
0 p3 0 α τ −µ


(16)

Figure 9. Behaviour of exposed individuals.

Figure 10. Behaviour of infectious individuals.

where N1 =
µ((1−p1)k2+p1ω)

k1k2−ωp2
,N2 =

µ((1−p1)p2+k1 p1)
k1k2−ωp2

.

7
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Figure 11. Behaviour of infectious individuals under treatment.

Figure 12. Behaviour of recovered individuals.

Figure 13. Impact of vaccination at recruitment on Exposed individuals.

Figure 14. Impact of vaccination at recruitment on Infectious individu-
als.

Figure 15. Impact of vaccination at recruitment on Infectious individu-
als under treatment.

Reducing (16) into row-echelon form we have (17) below,



m11 m12 0 m14 m15 0

0
m11m22 − m12m21

m11
0

m11m24 − m14m21

m11

m11m25 − m15m21

m11
0

0 0 m33 m34 m35 0

0 0 0
m33m44 − m34m43

m33
−

m43m35

m33
0

0 0 0 0
m33m44m55 − m34m43m55 + m35m43m54 − m35m44m53

m33m44 − m34m43
0

0 0 0 0 0 m66


(17)

where

m11 = −(p2 + µ), m12 = ω, m14 = −β(1 − ϵ)N1, m15 = −βη(1 − ϵ)N1,

m21 = p2, m22 = −k2, m24 = −β(1 − θ)(1 − ϵ)N2, m25 = −β(1 − θ)η(1 − ϵ),

m33 = −k3, m34 = β(1 − ϵ)N1 + β(1 − θ)(1 − ϵ)N2,

m35 = βη(1 − ϵ)N1 + β(1 − θ)η(1 − ϵ)N2, m43 = σ(1 − γ1),

m44 = −k4, m53 = σγ1, m54 = γ2, m55 = −k5,

m62 = p3, m64 = α, m65 = τ, m66 = −µ.

(18)

8
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Figure 16. Impact of vaccination due to awareness on exposed individ-
uals.

Figure 17. Impact of vaccination due to awareness on infectious indi-
viduals.

The eigenvalues of the system were computed using the mathe-
matical software Maple, as shown below:

λ1 = m66

λ2 = m33

λ3 =
m33 m44−m34 m43

m33

λ4 =
m33 m44 m55−m34 m43 m55+m35 m43 m54−m35 m44 m53

m33 m44−m34 m43

λ5 = m11

λ6 =
m11 m22−m12 m21

m11


. (19)

Clearly, λ1, λ2 and λ5 are all negatives of (18). Now for the remaining
eigenvalues we have,
For λ3, after all simplification, we have

λ3 = −
k3k4 + βµσ(1 − ϵ)(1 + γ1)((1 − p1)k2 + ωp2))

k3(µ(ω + µ) + µ(p2 p3) + p2 p3)
. (20)

Figure 18. Impact of vaccination due to awareness on infectious indi-
viduals under treatment.
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Figure 19. Impact of vaccination booster on exposed individuals.

For λ4, after simplification we have

−k3k4k5+βσ(1−ϵ)(N1+(1−θ)N2)[(1−γ1)k5+η(k4γ1−(1−γ1)γ2+(1−γ1)k5)]
k3k4−βσ(1−ϵ)(N1+(1−θ)N2)(1−γ1) < 0(21)

−k3k4k5 + βσ(1 − ϵ)(N1 + (1 − θ)N2)((1 − γ1)k5 + η(k4γ1 − (1 − γ1)γ2 + (1 − γ1)k5) < 0,(22)

if and only if

βσ(1 − ϵ)(N1 + (1 − θ)N2)
[
(1 − γ1)k5 + η(k4γ1 − (1 − γ1)γ2 + (1 − γ1)k5)

]
< k3k4k5(23)

Putting N1 and N2 in (23) we have λ4 < 0 if and only if

βµσ(1−ϵ)[(1−p1)k2+(1−θ)p2]+p2[ω+(1−θ)k1][(1−γ1)k5+η(k4γ1−(1−γ1)γ2+(1−γ1)k5)]
k3k4k5[µk2+p2(µ+p3)] < 1(24)

The left-hand side of equation (24) corresponds to the control repro-
duction number Rc of equation (3.3). This means that the eigenvalue
λ5 is negative if and only if Rc is less than 1.
Lastly for λ6 after simplification we have

λ6 = −
[µk2 + p2(µ + p3)]

p2 + µ
. (25)

9
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Figure 20. Impact of vaccination booster on infectious individuals.

Years

0 1 2 3 4 5

I t

×10
5

1

2

3

4

5

6

p
3
=0

p
3
=1

Figure 21. Impact of vaccination booster on infectious individuals.
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Figure 22. Impact of awareness on exposed individuals.
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Figure 23. Impact of awareness on infectious individuals.
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Figure 24. Impact of awareness on infectious individuals under treat-
ment.

The results of the eigenvalue analysis show that when Rc < 1, all
the eigenvalues of the Jacobian matrix are negative, indicating that the
disease-free equilibrium is locally asymptotically stable and otherwise
unstable. This implies that small perturbations of the system do not
significantly affect the dynamics of the system and that the disease
will eventually disappear. Therefore, the theorem (3.4) is proven.

3.5. Global stability of disease-free equilibrium
theorem. For the model (2), the disease-free equilibrium (DFE) ϵ0 is
globally asymptotically stable (GAS) in Ω if mathcalRc < 1, and un-
stable if mathcalRc > 1.

proof.

dX1

dt
= F(X1, X2),

dX2

dt
= G(X1, X2); G(X1, 0) = 0,

(26)

where X1 = (S 0
u, S

0
v ,R

0) and X2 = (E0, I0, I0
t ), where X1 ∈ R3

+ is denot-
ing the uninfected population and X2 ∈ R3

+ denoting the infected pop-
10
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Figure 25. Impact of treatment due to awareness of the exposed indi-
viduals on exposed individuals.
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Figure 26. Impact of treatment due to awareness of the exposed indi-
viduals on infectious individuals.

ulation. The disease-free equilibrium is now denoted as, M0 = (X∗1 , 0),
where X∗1 = (N0, 0).
Now for the first condition, globally asymptotic stability of X∗1 , gives

dX1

dt
= F(X1, 0)

=

 Π(1 − p1) + ωS v − (p2 + µ)S 0
u

Πp1 + p2S u − (ω + µ + p3)S 0
v

p3S v − µR0

 . (27)
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Figure 27. Impact of treatment due to awareness of the exposed indi-
viduals on infectious individuals under treatment.
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Figure 28. Impact of treatment due to awareness of the infectious indi-
viduals on exposed individuals.

A linear ODE solving gives the following.

Π(1 − p1) + ωS v

(p2 + µ)
−
Π(1 − p1)
(p2 + µ)

e−(p2+µ)t

+ S 0
u(0)e−(p2+µ)t = S 0

u(t),

Πp1 + p2S 0
u

(ω + µ + p3)
−
Πp1 + p2S 0

u

ω + µ + p3
e−(ω+µ+p3)t

+ S 0
v (0)e−(ω+µ+p3)t = S 0

v (t),

p3S 0
v

µ
−

p3S 0
v

µ
e−µt + R0(0)e−µt = R0(t).

(28)

Now, clearly from system (2) we have S 0
u(t)+S 0

v (t)+R0(t)→ N0(t)
as t → ∞ regardless of the value of S 0

u(t), S 0
v (t) and R0(t). Thus ,

X∗1 = (N0, 0) is globally asymptotically stable.
Next, for the second condition, that is G̃(X1, X2) = AX2−G(X1, X2) ≥ 0

11
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Figure 29. Impact of treatment due to awareness of the infectious indi-
viduals on infectious individuals.
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Figure 30. Impact of treatment due to awareness of the infectious indi-
viduals on infectious individuals under treatment.

A = −k3 Ψ1 Ψ2

σ(1 − γ1) −k4 0
σγ1 γ2 −k5

 , (29)

where

Ψ1 =
β(1 − ϵ)(S u + (1 − θ)S v)

N

Ψ2 =
βη(1 − ϵ)(S u + (1 − θ)S v)

N
.

(30)

The matrix A is a Metziller matrix (the non-diagonal elements of are
non-negative).

G(X1, X2) =
(1−ϵ)β(I+ηIt)

N S u +
(1−ϵ)(1−θ)β(I+ηIt)

N S v − k3E

σ(1 − γ1)E − k4I

σγ1E + γ2I − k5It

 ,
(31)
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Figure 31. Figure showing the control profile of model (46).
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Figure 32. Influence of health education control on un-vaccinated sus-
ceptible individuals.

then

G̃(X1, X2) = AX2 −G(X1, X2) =

 0
0
0

 ,
that is

G̃(X1, X2) =
[

0 0 0
]T
.

It is obvious that G̃(X1, X2) = 0.

3.6. Existance of equilibria
At every equilibrium state, let S u(t), S v(t), E(t), I(t), It(t), and R(t)

represent the solutions of system (2). We compare the rate of change
with zero at equilibrium. In other words, setting all the equations in
the system (2) to zero, we can use the Maple program to get the equi-

12
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Figure 33. Impact of treatment due to awareness of the exposed indi-
viduals.

Figure 34. Influence of health education control on infected individuals.

librium solutions, which look like this;

S ∗u =
Π ((1 − θ)λ∗(1 − p1) + (1 − p1)k2 + ωp1)

(1 − θ)λ∗(λ + k1) + λ∗k2 − ωp2 + k1k2
,

S ∗v =
Π ((1 − p1)p2 + (λ + k1)p1)

(1 − θ)λ∗(λ + k1) + λ∗k2 − ωp2 + k1k2
,

E∗ =
λΠ ((1 − p1)k2 + (1 − p1)(1 − θ)p2 + (λ + k1)(1 − θ) + ωp1)

k3 ((1 − θ)λ∗ + λ∗k2 − ωp2 + k1k2)
,

I∗ =
λΠσ(1 − γ1) ((1 − p1)k2 + (1 − p1)(1 − θ)p2 + (λ + k1)(1 − θ) + ωp1)

k3k4 ((1 − θ)λ∗ + λ∗k2 − ωp2 + k1k2)
,

I∗t =
λΠσ(1 − γ1) ((1 − p1)k2 + (1 − p1)(1 − θ)p2 + (λ + k1)(1 − θ) + ωp1)

k3k4k5 ((1 − θ)λ∗ + λ∗k2 − ωp2 + k1k2)
,

R∗ =
p3Π ((1 − p1)p2 + (λ + k1)p1)

µ ((1 − θ)λ∗(λ + k1) + λ∗k2 − ωp2 + k1k2)

+
λΠσα(1 − γ1) ((1 − p1)k2 + (1 − p1)(1 − θ)p2 + (λ + k1)(1 − θ) + ωp1)

µk3k4 ((1 − θ)λ∗ + λ∗k2 − ωp2 + k1k2)

+
λΠτσ(1 − γ1) ((1 − p1)k2 + (1 − p1)(1 − θ)p2 + (λ + k1)(1 − θ) + ωp1)

µk3k4k5 ((1 − θ)λ∗ + λ∗k2 − ωp2 + k1k2)
.

(32)

Figure 35. Influence of health education control on infected under treat-
ment individuals.

Figure 36. Influence of vaccination control on un-vaccinated susceptible
individuals.

3.7. Existence of endemic equilibrium
To determine the existence of an endemic Equilibrium, Descartes’

rule of signs is used. Now in the endemic state, the force of infection
is given by

λ∗ = β(1 − ϵ)(
I∗ + ηI∗t

N∗
), (33)

where,
N∗ = S ∗u + S ∗v + E∗ + I∗ + I∗t + R∗.

Substituting for the endemic equilibrium points into the force of infec-
tion above gives λ∗ = 0. equivalent to DFE, which is stable, and the
following quadratic equation in terms of λ∗,

B1λ
2 + B2λ + B3 = 0, (34)

13
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Figure 37. Influence of vaccination control on exposed individuals.

Figure 38. Influence of vaccination control on infected individuals.

where

B1 = k4k5(1 − θ)Π + (1 − θ)Πσ(1 − γ1)(k5 + 1)

+ k5Πασ(1 − γ1)(1 − θ) + Πτσ(1 − γ1)(1 − θ)

B2 = k3k4k5(1 − θ)(1 − p1)Π + k3k4k5 p1Π + k4k5Π(1 − p1)p2

+ k4k5Π(1 − p1)(1 − θ)p2 + k4k5Π ((1 − θ)k1 + ωp1)

+ k5Πσ(1 − γ1)(1 − p1)k2 + k5Πσ(1 − γ1)(1 − p1)(1 − θ)p2

+ Πσ(1 − γ1)k5 ((1 − θ)k1 + ωp1)

+ Πσ(1 − γ1)(1 − p1)k2 + Πσ(1 − γ1)(1 − p1)(1 − θ)p2

+ Πσ(1 − γ1) ((1 − θ)k1 + ωp1) + k3k4k5Πp1 p3

+ Πσα(1 − γ1)k5(1 − p1)k2 + Πσα(1 − γ1)k5(1 − p1)(1 − θ)p2

+ (1 − θ)k1 + ωp1 + Πστ(1 − γ1)k5(1 − p1)k2

+ Πστ(1 − γ1)k5(1 − p1)(1 − θ)p2

+ Πστ(1 − γ1)k5(1 − θ)k1 + ωp1

− (1 − ϵ)βΠσ(1 − γ1)k5(1 − θ)

− (1 − ϵ)βΠση(1 − γ1)(1 − θ)

B3 = Πk3k4k5[µk2 + p2(µ + p3)](1 − Rc)

(35)

theorem. The system (2) has:

• no endemic equilibrium if B2 > 0⇐⇒ Rc < 1

• a unique endemic equilibrium if B2 < 0⇐⇒ Rc > 1

Figure 39. Influence of vaccination control on infected individuals un-
der treatment.

Figure 40. Influence of treatment control on un-vaccinated susceptible
individuals.

• a unique endemic equilibrium if B2 > 0⇐⇒ Rc > 1

• two positive equilibrium if B2 < 0 ⇐⇒ Rc < 1 and B2
2 −

4B1B3 > 0.

3.8. Global Asymptotic Stability (GAS) of Pertussis Equilib-
rium Endemic Point (PEEP)

Let

D∗∗ = {(S ∗∗u , S
∗∗
v , E

∗∗, I∗∗, I∗∗t ,R
∗∗) ∈ E∗∗} (36)

be a stable manifold of E∗∗.

Theorem. The PEEP of model (2) is GAS in D∗∗ with the conditions
that ω = P2 = γ1 = δ = P3 = α = 0 whenever Rc > 1.

14
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Figure 41. Influence of treatment control on exposed individuals.

Figure 42. Influence of treatment control on infected individuals.

Proof. Let F be a Goh-Volterra type of Lyapunov function, as given
below

F =

(
S u − S ∗∗u − S ∗∗u ln

S u

S ∗∗u

)
+

(
S v − S ∗∗v − S ∗∗v ln

S v

S ∗∗v

)
+

(
E − E∗∗ − E∗∗ln

E
E∗∗

) (37)

+
k∗1
σ

(
I − I∗∗ − I∗∗ln

I
I∗∗

)
+

k∗1k∗2
σγ2

(
It − I∗∗t − I∗∗t ln

It

I∗∗t

)
+

k∗1k∗2k∗3
σγ2τ

(
R − R∗∗ − R∗∗ln

R
R∗∗

)
,

where
k∗1 = µ + σ, k

∗
2 = µ + γ2, k∗3 = µ + τ

, differentiating equation (37) with respect to time, we have

Ḟ =

(
1 −

S ∗∗u
S u

)
Ṡ u +

(
1 −

S ∗∗v
S v

)
Ṡ v

+

(
1 −

E∗∗

E

)
Ė +

k∗1
σ

(
1 −

I∗∗1
I1

)
İ1

+
k∗1k∗2
σγ2

(
1 −

I∗∗2
I2

)
İ2 +

k∗1k∗2k∗3
σγ2τ

(
1 −

R∗∗

R

)
Ṙ,

(38)

substituting equation (2) into (38), we have

Ḟ =

(
1 −

S ∗∗h
S h

)
(Π(1 − p1) − λS u − µS u)

+

(
1 −

S ∗∗v
S v

)
(Πp1 − (1 − θ)λS v − µS v)

+

(
1 −

E∗∗

E

)
(λS u + (1 − θ)λS v − k1E)

+
k∗1
σ

(
1 −

I∗∗1
I1

)
(σE − k2I)

+
k∗1k∗2
σγ2

(
1 −

I∗∗2
I2

)
(γ2I − k3It)

+
k∗1k∗2k∗3
σγ2τ

(
1 −

R∗∗

R

)
(τIt − µR)

(39)

with relations

Π(1 − p1) = λ∗∗S ∗∗u + µS
∗∗
u ,

Πp1 = (1 − θ)λS ∗∗v + µS
∗∗
v

(40)

k∗1E∗∗ = λ∗∗S ∗∗u + (1 − θ)λS ∗∗v ,

k∗2I∗∗ = σ∗∗E∗∗,

k∗3I∗∗t = γ2I∗∗,

µR∗∗ = τI∗∗t ,

by substituting first two equations in (40), equation (39) becomes

Ḟ =

(
1 −

S ∗∗u
S u

) (
λ∗∗S ∗∗u + µS

∗∗
u − λS u − µS u

)
+

(
1 −

S ∗∗v
S v

) (
(1 − θ)λS ∗∗v + µS

∗∗
v
)

+

(
1 −

S ∗∗v
S v

)
(−(1 − θ)λS v − µS v)

+

(
1 −

E∗∗

E

)
(λS u + (1 − θ)λS v − k1E)

+
k∗1
σ

(
1 −

I∗∗1
I1

)
(σE − k2I)

(41)

+
k∗1k∗2
σγ2

(
1 −

I∗∗2
I2

)
(γ2I − k3It)

+
k∗1k∗2k∗3
σγ2τ

(
1 −

R∗∗

R

)
(τIt − µR) .

Substituting third to sixth equations in equation (40), equation (41) and
simplify, becomes

Ḟ ≤ µS ∗∗u

(
2 −

S u

S ∗∗u
−

S ∗∗u
S u

)
+ µS ∗∗v

(
2 −

S v

S ∗∗v
−

S ∗∗v
S v

)
+ λ∗∗S ∗∗u

(
6 −

S ∗∗u
S u
−

R
R∗∗
−

S uE∗∗

S ∗∗u E
−

EI∗∗

E∗∗I
−

II∗∗t
I∗∗It

−
ItR∗∗

I∗∗t R

)
+ (1 − θ)λ∗∗S ∗∗v

(
6 −

S ∗∗v
S v
−

R
R∗∗
−

S vE∗∗

S ∗∗v E
−

EI∗∗

E∗∗I1
−

II∗∗t
I∗∗It

−
ItR∗∗

I∗∗t R

)
,

(42)

15
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Using the relation of arithmetic mean to geometric mean, we then have

(
2 −

S u

S ∗∗u
−

S ∗∗u
S u

)
≤ 0,

(
2 −

S v

S ∗∗v
−

S ∗∗v
S v

)
≤ 0,(

6 −
S ∗∗u
S u
−

R
R∗∗
−

S uE∗∗

S ∗∗u E
−

EI∗∗

E∗∗I
−

II∗∗t
I∗∗It

−
ItR∗∗

I∗∗t R

)
≤ 0,(

6 −
S ∗∗v
S v
−

R
R∗∗
−

S vE∗∗

S ∗∗v E
−

EI∗∗

E∗∗I1
−

II∗∗t
I∗∗It

−
ItR∗∗

I∗∗t R

)
≤ 0.

(43)

Hence, we have Ḟ ≤ 0 with conditions that ω = p2 = γ1 = δ = p3 =

α = 0 and Rc > 1, since all the concerned variable in the model such
as S u, S v, E, I, It and R are at steady state (pertussis endemic steady
state), this can be substituted into the concerned variable of equation
(2) to give

lim
t→∞

(S u(t), S v(t), E(t), I(t), It(t),R(t))→
(
S ∗∗u , S

∗∗
v , E

∗∗, I∗∗, I∗∗t ,R
∗∗) .(44)

Hence, using Lassalle’s invariant principle [28–34], the pertussis en-
demic equilibrium point is globally asymptotically stable (GAS).

4. Model fittings and parameter estimation

Determining accurate parameter values for mathematical models
built with real-world data is a crucial but challenging step. This diffi-
culty stems from the inherent inability to directly measure these pa-
rameters from the collected data. Therefore, estimation techniques
are essential. The initial dynamics of the disease and relevant de-
mographic factors can provide preliminary estimates of some parame-
ters. The literature can also offer benchmark values. However, relying
solely on literature can lead to incongruous results due to variations
in data collection periods (days to years) and potential inaccuracies.
Although there are numerous parameter estimation methods that exist,
the least-squares method remains the most prevalent choice, despite
the availability of alternatives. Even with validated models, parameter
estimation remains a significant hurdle. To ensure that our proposed
Pertussis model accurately reflects reality, we used parameter estima-
tion using empirical data with realistic bounds. This approach yields
parameter values specific to our model, avoiding dependence on values
from other models.

We used patient data, as mentioned in Table 4, for the fitting of
the least squares curve to estimate the parameters of the model. Data
spanning 13 years (2008-2022) from the ECDC dashboard [27] was
used to perform the least squares fit. The optimization process min-
imized the sum of squared errors (SSE) between the actual Pertussis
data for severe cases and the predicted values of the model. Table 2
summarizes the estimated biological parameters and their correspond-
ing values. Figure 2 visually demonstrates the agreement between the
fitted curve (red line) and the actual data points (blue circles). It may
also be noted that the value of R-squared is 0.987157, which is further
evidence of the better agreement of the predicted values with those
of the real data, while the basic reproduction number found using Eq.
(3.3) is ≈ 1.29105. Figure 3 displays the residuals. Statistical sum-
maries in Figure 4 indicate the absence of outliers, further supported
by the summary table (Table 3).

The least squares method minimizes the residuals between the ob-
served infection data (ŷ j) and the simulated values obtained from the
model equations, g(t j, y j). Mathematically, this is represented by:

Residual =
1
N

N∑
j=0

(ŷ j − y j)2, (45)

where:

• N = total number of data points

• ŷ j = observed infection data at time point j

• y j = simulated infection data at time point j from the model.

This objective function was minimized using Python 3.12.1’s
built-in ‘scipy‘ functions for solving ordinary differential equations
(ODEs) and curve fitting. The initial conditions used for parameter
estimation are provided as follows:

S u(0) = 3255221585, S v(0) = 15215578, E(0) = 543, I(0) = 164, It(0) = 520580,R(0) = 215.

4.1. Uncertainty and Sensitivity Analysis
In this section, the uncertainty and sensitivity analysis of all the

parameters of the model (2) will be discussed. Most of the time, we
usually see some parameters as potential parameters that can be used
to control disease, but when their sensitivity on the reproduction num-
ber is tested, it proves otherwise, that is what we call uncertainty that
surrounds the parameters of the model. Also, we usually see some
parameters as potential parameters that cannot be used to control dis-
ease, but when their sensitivity on the reproduction number is tested,
it proves otherwise, which is also an uncertainty that surrounds the
parameters of the model.

Analyzing responsiveness and vulnerability is essential for inves-
tigating the behaviour of some complex models, as predicting the po-
tential drawbacks of some information limits is fraught with risk due
to the models’ inherent complexity. In this section, the effects of each
model boundary were assessed using the partial rank correlation coef-
ficient (PRCC) and Latin Hypercube Sampling (LHS). The strongest
and most intense factors that either raise or lower (transmission) the
control parameter are found through sensitivity analysis. The most
sensitive indicators of the spread of the disease are those that produce
favourable outcomes for the number of infected individuals and suc-
cessful reproduction; if these parameters increase or decrease, pertus-
sis transmission will follow suit. The parameters that show negative
values for the control reproduction number and the number of infected
individuals are the most susceptible to stopping the spread; if these pa-
rameters increase, the rate of transmission of Pertussis will decrease.

5. Optimal control problem analysis

Finding the optimal control that minimizes or maximizes an ob-
jective functional that is dependent on the original purpose of adding
the control to the model is the aim of optimal control optimization.
Currently, reducing vulnerability among unvaccinated, exposed, and
infected individuals through health education, vaccination, and treat-
ment. Reducing the population of vulnerable people who are not vac-
cinated, exposed and infectious persons through three (3) controls,
health education, vaccination, and treatment, is the goal of optimisa-
tion. The reformed model below identifies time-dependent controls,
such as the influence of health education, vaccination, and treatment,
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which are now functions of time. The model (2) remains unchanged.

dS u

dt
= Π(1 − p1) + ωS v − (1 − u1(t))λS u

− (µ + p2)S u,

dS v

dt
= Πp1 + p2S u − (1 − u2(t))(1 − θ)λS v

− (ω + µ + p3)S v,

dE
dt
= (1 − u1(t))λS u + (1 − u2(t))(1 − θ)λS v

− (µ + σ)E,
dI
dt
= σ(1 − γ1)E − (µ + δ + α + γ2)I,

dIt

dt
= σγ1E + γ2I − (µ + u3(t) + τ)It,

dR
dt
= p3S v + αI + (u3(t) + τ)It − µR.

(46)

Currently, the following initial values of the state variables are as-
sumed for biological reasons: Assuming S u(0) = S u0, the following
state variables also apply: S u0 > 0, S v0, E0 > 0, I0 > 0, It0 >, and
R0 > 0. Assuming t f as the terminal time, we optimize the objective
functional as follows.

J[x(t), u(t)] =
∫ t f

0

(
a0S u(t) + a1E(t) + a2I(t) + a3It(t)

+
a4

2
u2

1 +
a5

2
u2

2 +
a6

2
u2

3

)
dt.

(47)

The final time is denoted by t f . Finding the best control for u∗1, u
∗
2, and

u∗3 is necessary such that

J(u∗1, u
∗
2, u
∗
3) = min{J

(
u∗1, u

∗
2, u
∗
3
)
|u1, u2, u3 ∈ U}, (48)

where the control set is U = {u∗1, u
∗
2, u
∗
3}, such that u∗1, u

∗
2, u
∗
3 are mea-

surable with 0 ≤ u∗1, u
∗
3 ≤ 1 and 0 ≤ u∗2 ≤ 0.9 for t ∈ [0, t f ]. This is

because, on average, vaccination programs should cover no more than
approximately 90% of susceptible individuals. Now, the Hamiltonian
is given by

H = a0S u(t) + a1E(t) + a2I(t) + a3It(t) +
a4

2
u2

1 +
a5

2
u2

2 +
a6

2
u2

3

+

6∑
i=1

λi(t) fi(t, S u, S v, E, I, It,R),
(49)

where fi(t, S u, S v, E, I, It,R) is the right-hand side of (46) and λi are
the adjoint vectors.

λ : [0, t f ]→ R7, λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t). (50)

Considering the proper partial derivatives of the Hamiltonian (49) with
respect to the related state variable, the system of equations can be
constructed.

5.1. Existence of optimal control
Now, we prove that there is a solution for optimum control such

that the objective functional J is minimized.

theorem. [35, 36]
An ideal control exists u∗ = (u∗1, u

∗
2, u
∗
3) of the model (46), the control

set piece-wise (48), objective functional (47) and the state solutions(
S ∗u, S

∗
v , E

∗, I∗, I∗t ,R
∗
)

such that:

J(u∗) = min
∈U

J(u)

if each of the below circumstances is true:

• Z ̸= ∅ whereZ is the initial conditions set in conjunction with
the control u∗.

• U is closed and convex.

• | f (t, x, u)|≤ χ1|x|+χ2|u|

• g(t, x, u) in (47) is convex with respect to u.

• g(t, x, u) ≥ χ2|u|ν−χ1, where χ1 > 0 and χ2 > 0.

proof.

• The positivity and boundedness of model (2) were shown from
Theorem 3.1. In contrast, the set of controls u is bounded, pos-
itive, and continuous, with 0 ≤ u ≤ 1. A positive, bounded
function is created by multiplying or combining two bounded,
positive functions. This suggests that the control model, (46), is
bounded and continuous. After careful consideration, we con-
clude that an initial condition with control u exists and is not
empty. Consequently, the first condition is met.

• Recall that,

U = {0 ≤ ui(t) ≤ 1, i = 1, 2, 3 and t ∈ [0, t f ] and ui(t) : ui(t) is Labesgue measurable set}.(51)

Assume u1, u3 ∈ U and 0 ≤ α ≤ 1 we therefore have,

|αu1 + (1 − α)u2|≤ α|u1|+(1 − α)|u2|, (52)

αu1 ∈ U and (1 − α)u2 ∈ U are proof. This confirms that U is
closed and convex. As a result, condition 2 is met.

• The matrix form of the control model (46) is as follows:

f (t, x, u) =



Π(1 − p1) − λS u − (µ + p2)S u

Πp1 + p2S − (1 − θ)λS v − (µ + ω + p3)S v

λS u + (1 − θ)λS v − (σ + µ)E

σ(1 − γ1)E − (µ + δ + α + γ2)I

σγ1E + γ2I − (µ + τ)It

p3S v + αI + τIt − µR



+



λS u 0 0

0 (1 − θ)λS v 0

−λS u −(1 − θ)λS v 0

0 0 0

0 0 −It

0 0 It





u1

u2

u3

0

0

0


.

(53)

With respect to the controls u1, u2, and u3, (53) shows the RHS
(right-hand side) linear dependence of the control model (46),
where the coefficients are functions of time and state. The Ja-
cobian matrix of (53) and S ≤ N are responsible for the bound-
edness inequality.
| f (t, x, u)|

≤

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



−λ − k1 ω 0 −
(1−ϵ)βS u

N −
(1−ϵ)βηS u

N 0
p2 −(1 − θ)λ − k2 0 −

(1−ϵ)β(1−θ)S v
N −

(1−ϵ)β(1−θ)ηS v
N 0

λ (1 − θ)λ −k3
(1−ϵ)β(S u+(1−θ)S v)

N
η(1−ϵ)β(S u+(1−θ)S v)

N 0
0 0 σ(1 − γ1) −k4 0 0
0 0 σγ1 γ2 −k5 0
0 p3 0 α τ −µ





S
S u

S v

E
I
It

R



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



λS u 0 0
0 (1 − θ)λS v 0
−λS u −(1 − θ)λS v 0

0 0 0
0 0 −It

0 0 It


 u1

u2

u3


∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(54)

This demonstrates that in addition to the state and the bounded
controls, f (t, x, u) is bounded. The third criterion is satisfied.
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Figure 43. Influence of treatment control on infected individuals under
treatment.

• In (47), the integrand function concerning u is quadratic. Since
both the integrand and the quadratic function are convex, 4
holds.

•

g(t, x, u) = a0S u(t) + a1E(t) + a2I(t) + a3It(t)

+
a4

2
u2

1 +
a5

2
u2

2 +
a6

2
u2

3

≥
a4

2
u2

1 +
a5

2
u2

2 +
a6

2
u2

3

≥
a4

2
u2

1 +
a5

2
u2

2 +
a6

2
u2

3 −
a4

2

= min
(a4

2
,

a5

2
,

a6

2

)
(u2

1 + u2
2 + u2

3) −
a4

2

= min
(a4

2
,

a5

2
,

a6

2

)
|u1, u2, u3|

2
−

a4

2

(55)

Let χ1 =
a4
2 ,χ2 = min

(
a4
2 ,

a5
2 ,

a6
2

)
while ν = 2, we have

g(t, x, u) ≥ χ2|u1, u2, u3|
ν−χ1 as expected.

Assuming that every prerequisite is met, u∗ is the optimal con-
trol.

5.2. Pontryagin’s maximum principle
Theorem. The related optimal state and the optimal solution u∗ have
adjoint variables λi (i = 1...6). S ∗u, S

∗
v , E

∗, I∗, I∗t ,R
∗ It reduced J(u(t))

above U so that

dλ1

dt
= −a0 + λ1k1 + (λ1 − λ3)

(1 − u1) (1 − ϵ) β (I + η It) (N − S u)
N2 − λ2 p2,

dλ2

dt
= −λ1ω + k2λ2 +

(λ2 − λ3)(1 − θ) (1 − u2) (1 − ϵ) β (I + η It) (N − S v)
N2 − λ6 p3,

dλ3

dt
= −a1 + λ3k3 − λ4σ (1 − γ1) − λ5σγ1,

dλ4

dt
= −a2 +

(λ1 − λ3) (1 − u1) (1 − ϵ) β S u(N − I)
N2

+
(λ2 − λ3)(1 − θ) (1 − u2) (1 − ϵ) β S v(N − I)

N2

+ λ4k4 − λ5γ2 − λ6α,

dλ5

dt
= −a3 +

(λ1 − λ2) (1 − u1) (1 − ϵ) β η S u(N − It)
N2

+
(λ2 − λ3)(1 − θ) (1 − u2) (1 − ϵ) β η S v(N − It)

N2

− λ5 (−u3 + k5) − λ6 (u3 − τ) ,

dλ6

dt
= µλ6,

(56)

and the transversality condition λi(t f ) = 0, in which i = 1...7. Further-
more,

u∗1 = min
(
max

(
0,

(λ1 − λ3) (1 − ϵ) β (I + ηIt)S u

a4N

)
, 1

)
, (57)

u∗2 = min
(
max

(
0,

(λ2 − λ3) (1 − ϵ) β (I + ηIt)S v

a5N

)
, 1

)
, (58)

u∗3 = min
(
max

(
0,

It(λ5 − λ6)
a6

)
, 1

)
. (59)

Proof. . Pontryagin’s Principle is used to find the adjoint variables
and control functions (transversality condition).

H = a0S u(t) + a1E(t) + a2I(t) + a3It +
a4

2
u2

1 +
a5

2
u2

2 +
a6

2
u2

3

+

6∑
i=1

λi(t) fi(t, S u, S v, E, I, It ,R)
(60)

= a0S u + a1E + a2I + a3It + 1/2 a4u1
2 + 1/2 a5u2

2 + 1/2 a6u3
2

+ λ1

(
Π (1 − p1) + ω S v −

(1 − u1) (1 − ϵ) β (I + η It) S u

N
− k1S u

)
+ λ2

(
Π p1 + p2S u −

(1 − θ) (1 − u2) (1 − ϵ) β (I + η It) S v

N
− k2S v

)
+ λ3

(
(1 − u1) (1 − ϵ) β (I + η It) S u

N
+

(1 − θ) (1 − u2) (1 − ϵ) β (I + η It) S v

N
− k3E

)
+ λ4 (σ (1 − γ1) E − k4I)

+ λ5 (σγ1E + γ2I − (u3 + k5) It)

+ λ6 (p3S v + α I + (u3 + τ) It − µR) .

(61)

Following the differentiation of Hamiltonian (61) with respect to the
adjoint variables or state variables, we obtain

dλ1

dt
= −
∂H
∂S u
= −a0 + λ1k1 + (λ1 − λ3)

(1 − u1)(1 − ϵ)β(I + ηIt)(N − S u)
N2

− λ2 p2,

dλ2

dt
= −
∂H
∂S v
= −λ1ω + k2λ2 + (λ2 − λ3)(1 − θ)(1 − u2)(1 − ϵ)

×
β(I + ηIt)(N − S v)

N2 − λ6 p3,

dλ3

dt
= −
∂H
∂E
= −a1 + λ3k3 − λ4σ(1 − γ1) − λ5σγ1,

dλ4

dt
= −
∂H
∂I
= −a2 +

(λ1 − λ3)(1 − u1)(1 − ϵ)βS u(N − I)
N2

+
(λ2 − λ3)(1 − θ)(1 − u2)(1 − ϵ)βS v(N − I)

N2

+ λ4k4 − λ5γ2 − λ6α,

dλ5

dt
= −
∂H
∂It
= −a3 +

(λ1 − λ2)(1 − u1)(1 − ϵ)βηS u(N − It)
N2

+
(λ2 − λ3)(1 − θ)(1 − u2)(1 − ϵ)βηS v(N − It)

N2

− λ5(−u3 + k5) − λ6(u3 − τ),
dλ6

dt
= −
∂H
∂R
= µλ6.

(62)

Using the optimality criteria provided with respect to the adjoint vari-
ables and ideal circumstances, we may determine the control u∗.

∂H
∂ui
= 0, i = 1, 2, 3. (63)

u∗1 = min
(
max

(
0,

(λ1 − λ3) (1 − ϵ) β (I + ηIt)S u

a4N

)
, 1

)
, (64)
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u∗2 = min
(
max

(
0,

(λ2 − λ3) (1 − ϵ) β (I + ηIt)S v

a5N

)
, 1

)
, (65)

u∗3 = min
(
max

(
0,

It(λ5 − λ6)
a6

)
, 1

)
. (66)

6. Numerical simulations

The numerical simulation of the model state variables is shown in
this section using the parameter values listed in Table 2. A numerical
simulation is carried out to get a thorough grasp of the transmission
dynamics of the model (2). The behaviour of the compartments and
the ways in which important factors affect the state variables are shown
using time series graphs.

6.1. Optimal control simulation
In this subsection, the control profile of the three controls and their

influence on the compartments that are expected to be minimized will
be tested.

6.2. Simulated results and discussion
Figure 6 shows the influence of awareness on infected individuals

receiving treatment. Figures 7, 8, 9, 10, 11, and Figure 12 show how
the state variables of the model (2) behave. Figure 13 describes the
impact of vaccination at recruitment on exposed individuals, varying
vaccination rates at recruitment, and shows no impact on exposed in-
dividuals. Figure 14 describes the impact of vaccination in recruitment
in infectious individuals, varying vaccination rates at recruitment, and
shows no impact on infectious individuals. Figure 15 describes the
impact of vaccination at recruitment on infectious individuals under
treatment, varying vaccination rates at recruitment, showing no im-
pact on infectious individuals under treatment. Figure 16 describes
the impact of vaccination due to awareness in exposed individuals,
varying vaccinations due to awareness causes exposed individuals to
decrease, this shows that vaccination due to awareness has an impact
on exposed individuals. Figure 17 describes the impact of vaccina-
tion due to awareness on infectious individuals, varying vaccinations
due to awareness causes the infectious individuals to decrease slightly;
this shows that vaccination due to awareness has little impact on infec-
tious individuals. Figure 18 describes the impact of vaccination due to
awareness on infectious individuals under treatment, varying vaccina-
tion due to awareness causes the infectious individuals under treatment
to decrease slightly, this shows that vaccination due to awareness has
little impact on infectious individuals under treatment.

Figure 19 describes the impact of vaccination boosters on ex-
posed individuals, varying vaccination boosters show little impact on
exposed individuals. Figure 20 describes the impact of vaccination
boosters on infectious individuals, varying vaccination boosters show
little impact on infectious individuals. Figure 21 describes the impact
of vaccination boosters on infectious individuals under treatment, and
varying vaccination boosters do not have an impact on infectious indi-
viduals under treatment. Figure 22 describes the impact of awareness
in exposed individuals, varying vaccination awareness rates cause ex-
posed individuals to decrease drastically, which shows that awareness
has much impact on exposed individuals. Figure 23 describes the im-
pact of awareness on infectious individuals, varying awareness makes
infectious individuals decrease greatly, this shows that awareness has
a significant impact on infectious individuals. Figure 24 describes the
impact of awareness on infectious individuals under treatment, varying
awareness rates make infectious individuals under treatment decrease;

this shows that awareness has an impact on infectious individuals un-
der treatment.

Figure 25 describes the impact of treatment due to awareness of
exposed individuals on exposed individuals, varying treatment due to
awareness of exposed individuals, shows a great impact on exposed
individuals. Figure 26 describes the impact of treatment due to aware-
ness of the exposed individuals on infectious individuals, varying treat-
ment due to awareness of the exposed individuals shows much impact
on infectious individuals. Figure 27 describes the impact of treatment
due to awareness of the exposed individuals on infectious individuals
under treatment, varying treatment due to awareness of the exposed
individuals, shows a significant impact on infectious individuals un-
der treatment. Figure 28 describes the impact of treatment due to
awareness of infectious individuals on exposed individuals, varying
treatment due to awareness of the infectious individuals rate makes ex-
posed individuals drastically decrease, this shows that treatment due to
awareness of infectious individuals has much impact on exposed indi-
viduals. Figure 29 describes the impact of treatment due to awareness
of infectious individuals on infectious individuals, varying treatment
due to awareness of infectious individuals makes the infectious indi-
viduals decrease greatly, which shows that treatment due to awareness
of infectious individuals has a much impact on infectious individu-
als. Figure 30 describes the impact of treatment due to awareness of
infectious individuals on infectious individuals under treatment, vary-
ing treatment due to awareness of the rate infectious individuals rate,
makes the infectious individuals under treatment decrease, this shows
that treatment due to awareness of infectious individuals has a signifi-
cant impact on infectious individuals under treatment.

Figure 31 describes the profile of the three controls proposed in
the model (46). Figure 32 describes when there is no control and when
there is only health education control on un-vaccinated susceptible in-
dividuals when there is no control, the un-vaccinated individual’s pop-
ulation is steady, but if health education control is introduced the popu-
lation keeps declining as time goes on. Figure 33 describes when there
is no control and when there are only controls of health education in
exposed individuals. When there is no control, the exposed individ-
ual’s population reduces to increase after some time, but if health edu-
cation control is introduced, the population keeps declining to almost
zero. Figure 34 describes when there is no control and when there
are only controls of health education in infected individuals. When
there is no control, the population of the infected individuals increases
unboundedly, but if control of health education is introduced, the pop-
ulation decreases. Figure 35 describes when there is no control and
when there are only controls of health education in infected individu-
als under treatment, when there is no control, the infected individuals
under treatment population is steady but if health education control is
introduced, the population keeps declining drastically as time goes on.
Figure 36 describes when there is no control and when there is only
vaccination control on un-vaccinated susceptible individuals. When
there is no control, the un-vaccinated individual’s population is steady,
but if vaccination control is introduced the population keeps declin-
ing as time goes on. Figure 37 describes when there is no control and
when there is only vaccinated control on exposed individuals. When
there is no control, the population of the exposed individuals decreases
to increase after some time, but if vaccination control is introduced, the
population keeps declining to almost zero. Figure 38 describes when
there is no control and when there is only vaccination control on in-
fected individuals. When there is no control, the infected individual’s
population increases unboundedly but if vaccination control is intro-
duced, the population decreases a little. Figure 39 describes when
there is no control and when there is only vaccination control on in-
fected individuals under treatment, when there is no control, infected
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individuals under treatment population are steady, but if vaccination
control is introduced, the population continues to decline drastically
as time goes on.

Figure 40 describes when there is no control and when there is
only treatment control on un-vaccinated susceptible individuals. When
there is no control, the un-vaccinated individual’s population is steady
but if treatment control is introduced the population keeps declining as
time goes on. Figure 41 describes when there is no control and when
there is only treatment control on exposed individuals, when there is
no control, the population of the exposed individual decreases and in-
creases after some time, but if vaccination control is introduced, the
population declines a little. Figure 42 describes when there is no con-
trol and when there is only treatment control on infected individuals.
When there is no control, the infected individual’s population increases
unboundedly but if treatment control is introduced, the population de-
creases significantly. Figure 43 describes when there is no control
and when there is only treatment control on infected individuals under
treatment, when there is no control, infected individuals under treat-
ment population are steady, but if treatment control is introduced, the
population continues to decline drastically as time goes on.

7. Conclusion and recommendation

A mathematical model of pertussis has been formulated, consid-
ering the effect of combining awareness with vaccination simultane-
ously. We assess the positivity and boundedness of the proposed
model. The threshold quantity has been computed. The local stability
of the disease-free equilibrium has also been evaluated, as well as the
global stability. The existence of endemic equilibrium points has been
ascertained, and the global stability of endemic equilibrium points has
been assessed. The proposed model fits real data on pertussis in Aus-
tria, which shows that the proposed model fits the data. Furthermore,
sensitivity analysis of all parameters of the proposed model has been
tested on the control reproduction number, which shows that aware-
ness rate is the most sensitive parameter in reducing the control re-
production number and the most sensitive parameter in increasing the
reproduction number is the effective contact rate. Numerical simula-
tion reveals that awareness is the most influential parameter in reduc-
ing infection in the population. In addition, vaccination and treatment
are very important in controlling pertussis in society. Optimal control
analysis showed that health education and vaccination are very im-
portant in controlling pertussis in society. We therefore recommend
this model for the government, health providers, and nongovernmen-
tal organizations to consider the results of this research, it will help to
control pertussis in the environment.
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