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Abstract

The research method applies robust feature selection approaches to ultra-high-dimensional survival data records from Renal Cell Carcinoma
patients through deep learning methodologies. The linear methods LASSO and Elastic Net encounter failure when processing data because they
face simultaneous multicollinearity issues in addition to overfitting effects and produce marginal survival outcome variability prediction at 54%.
We suggest combining ISIS with deep learning architectures featuring PCA-RFA-RSIS models as a remedy to handle these present limitations.
Among all evaluated methods PCA-RFA-RSIS is proved most accurate with an MSE measurement of 24.39 and R2 value of 0.89. PCA improved
the model’s dimensionality reduction power and robust ISIS maintained model stability despite outliers present in the data. The discovery holds
significant value in precision medicine because it creates opportunities to develop individualized therapy for kidney failure patients. Further
research needs to enhance hybrid models and expand their utilization between different diseases as well as complex biological systems.
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1. Introduction

High-throughput technology advances produced high-
dimensional and ultra-high-dimensional (UHD) data, providing
strong tools for studying disease-influencing factors, and open-
ing the possibility to study intricate gene-environment-human-
action relationships that assist in building patient-specific dis-
ease management strategies. The enormous volume of data

∗Corresponding author Tel. No: +60-14-9543-405.
Email address: majidkhanmajaharali@usm.my (Majid Khan Majahar

Ali )

poses complex challenges to researchers who need advanced
analytical methods to find hidden patterns that improve health-
care delivery while advancing precision medical approaches
[1].

The statistical method of survival analysis models transi-
tions between states through survival time, which works as a
random variable to estimate events, particularly death. Survival
data in healthcare mechanisms deals with three main difficul-
ties:

(a) Survival data analysis experiences challenges when the
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number of predictors (p) exceeds numerous times the
number of observations (n) during investigations such as
genetic studies (p > n) and ultra-high-dimensional con-
ditions (p > 105).

(b) Meager recording of time-to-event characteristics pro-
duces observations that are censored as incomplete data.

(c) Several models depend on the Proportional Hazards As-
sumption, yet this assumption does not always maintain
its validity throughout time-based studies [2].

The analysis becomes more complex when the data vol-
ume increases because it introduces additional unnecessary, dis-
torted, and insignificant data. The estimated accuracy declines
when the number of model parameters exceeds the number of
observations. Model performance suffers from both the effects
of multicollinearity and the existence of outliers (such real-
world datasets contain 1–10% unexpected data points which
differ significantly from the primary dataset) [3].

Standalone survival regression methods fail to handle UHD
data sets because they produce inadequate results or inaccu-
rate predictions. Kaplan-Meier analysis and Cox proportional
hazards (CPH) models originated when researchers dealt with
small datasets, making them unfit for modern high-dimensional
or ultra-high-dimensional applications. Modern strategies cre-
ate new ways to choose risk factors while forecasting survival
outcomes [4].

Analyzing complicated variable relationships in risk predic-
tion scenarios benefits from machine learning (ML) techniques,
which process substantial complex datasets. Feature selection
is a crucial element of ML applications because it provides a
means to lower model overfitting, enhancing operational speed
and measurement precision. Recent research in machine learn-
ing brings new possibilities for analyzing vital risk components
through patient survival prediction based on clinical data, de-
spite current implementations of ML for these tasks [5] .

Many regularized approaches exist for selecting vari-
ables within high-dimensional data, such as Dantzig Selec-
tor, LASSO, Smoothly Clipped Absolute Deviation (SCAD),
Adaptive LASSO, and the Minimax Concave Penalty. These
methods struggle to work on UHD datasets because the vari-
able count substantially exceeds the number of observations.
The techniques exhibit challenges when operating under these
conditions because they fail to find a satisfactory number of
predictive variables while selecting one variable from related
groups of predictors, making LASSO ineffective for UHD ap-
plications [6].

Penalized methods such as SCAD and Adaptive LASSO
encounter difficulties with ultra-high-dimensional datasets be-
cause these data present both statistical precision, computa-
tional speed, and algorithm reliability challenges. The Elastic
Net (EN) represents an enhanced version of LASSO, which Zou
and Hastie developed for managing high correlations between
variables. Still, its implementation requires extensive model
tuning, which makes analysis of large datasets computationally
expensive. The UHD data analysis suffers from implementa-

tion difficulties because there is no standardized technique for
choosing the λ1 and λ2 values [7].

Real-life biological systems made of two components, in-
cluding kidneys, eyes, and lungs, demonstrate how system com-
ponents dynamically affect disease development and system
stability. Loss of a kidney due to cancer, disease, or injury
causes the functioning remaining kidney to face higher fail-
ure rates, which increases medical complications. Research
demonstrates that these interactions occur in the lung and ear
tissue systems [7].

The primary focus of survival analysis models pertains
to single-component systems, leading to restricted application
with two-component structures. The complex nature of high-
dimensional data requires better approaches than traditional
stepwise regression because conventional methods, such as
stepwise regression and all subsets regression, along with ridge
regression, have shown unsatisfactory results. Multiple mod-
ern regularized approaches, such as LASSO, Elastic Net, and
SCAD, fail to handle the complex nature of UHD survival mod-
els in interacting systems [8].

The analysis includes a comparison of specialized variable
selection techniques designed particularly for UHD renal cell
carcinoma (RCC) survival data because it belongs to a two-
component system. Freund’s model, which emerged in 1961, is
efficient for life testing purposes in biological systems contain-
ing two-component hazards. New hybrid models result from
Freund’s baseline hazard function, deep learning, and itera-
tive sure independence screening approaches. The study an-
alyzes four different analytical approaches: RFA-RISIS (Ran-
dom Feature Attention with Robust ISIS), Autoencoder-Robust
ISIS, Dense-Robust ISIS, as well as PCA-RFA-RISIS (Princi-
pal Component Analysis with Random Feature Attention and
Robust ISIS) [9].

RCC, along with its 90% dominance among kidney malig-
nancies, serves as the primary case with a specific emphasis on
clear cell RCC (KIRC or ccRCC), which represents 70–75%
of renal cancers worldwide [10]. This article develops a com-
plete innovative framework for UHD survival analysis in two-
component biological systems through the combination of the
Freunds’ model baseline hazard function and advanced ma-
chine learning concepts, including random feature attention,
autoencoders, dense networks, and PCA. These novel hybrid
approaches achieve efficient identification of vital variables and
enhanced assessment of survival patterns in RCC and analogous
complex study systems.

2. Related works

Researchers have previously investigated different complex
techniques to examine survival patterns and characteristics for
renal cell carcinoma and other cancer patients. Medical re-
searchers have applied deep learning analysis of CT images and
Cox and Kaplan-Meier statistical methods, alongside which hy-
brid models demonstrated superior outcomes compared to stan-
dard clinical models. The Feature selection algorithms Lasso
Freund and Elastic Net Freund operated on genetic data with
many features to reveal the genes influencing survival rates.

2



Ahmed et al. / J. Nig. Soc. Phys. Sci. 7 (2025) 2772 3

The single-cell gene expression data analysis received assis-
tance from two deep learning-based models, deep variational
transformers and graph neural networks, for therapeutic com-
pound discovery. Evaluation of RAF2Net with deep learning
and feature selection resulted in more accurate cancer classifi-
cation than standard methods because it used deep learning ef-
fectively. Interpretable predictive models such as DyS emerged
as a solution to combine accurate predictions with the ability to
understand the decision-making process. This research applied
different predictive models to melanoma and colorectal cancer
datasets to show how they achieved effective survival predic-
tions while performing feature selection operations. Deep neu-
ral networks utilizing 3D CNN models have enhanced survival
prediction accuracy by uniting medical imaging with clinical
data. The relevant studies are presented in Table 1.

3. Materials and methods

The examination pursued through Figure 1 depicts our
thoughtful workflow design for achieving our goal. The re-
search built a hybrid model for choosing features from ultra-
high-dimensional data using the integration process between
the Weibull-Freund baseline hazard function and the Cox pro-
portional hazards model to create the Hybrid Cox-Weibull-
Freund Model. The UHD RCC dataset underwent processing
that split its contents into training at 90% and validation at 10%.

After applying the hybrid model for deep learning-
based feature selection approaches. Elastic Net-Robust SIS
(EN-Robust SIS) provided process refinement through se-
lection enhancement in two primary hybrid method cate-
gories, which included (ENRISIS-Auto ANN), (ENRISIS-
Dense ANN), (ENRISIS-RFA), and (ENRISIS-PCA-RFA),
as well as (ENRISIS-Auto ANN), (ENRISIS-Dense ANN),
(ENRISIS-RFA), and (ENRISIS-PCA-RFA). The evaluation
of all eight selected methods focused on MAPE, SSE, MSE,
RMSE, and R2 assessments.

The best selection method emerged from the performance
evaluation process. Researchers applied the optimal technique
to obtain important features or genes linked to RCC. The final
stage incorporated extracted features analysis to improve sur-
vival analysis accuracy and interpretation, which used a struc-
tured methodology that combined deep learning hybrids to im-
prove RCC patient survival predictions.

3.1. Data description
The ‘kidpack’ R package provided the obtained gene ex-

pression data access. The data frame consists of 4224 DEG
records from 74 subject profiles that the system identifies as
potential kidney cancers. Many predictors in this dataset qual-
ify it as ultra-high-dimensional data. The investigation included
74 kidney tumor samples exhibiting diverse histological types,
differentiation grades, chromosomal abnormalities, and stages,
as well as available follow-up data. Patients’ survival status
and survival rates are present in the provided dataset. A refer-
ence was constructed by combining kidney tumor samples to
perform hybridization analysis. Researchers can find database-
wide information through E-DKFZ-1 < Array Express < Bio

Studies < EMBL-EBI and download the data from that loca-
tion. The study investigates survival hazard as an outcome mea-
sure where patient death equals one and survival stands at zero
during the research period, using 4224 genes as predictive indi-
cators.

3.2. Data processing

The dataset contained training and validation parts, 90%
used for training purposes and 10% for technique validation.

3.3. Cox proportional hazards model

In their studies, survival analysts predominantly use the Cox
proportional hazards model to analyze right-censored observa-
tions. The model operates with an unspecified independent life-
time distribution and a preset hazard function. The Cox model
presents the hazard function as a measure that determines the
probability of an event occurring during time t:

h(t) = h0(t) × exp (β1x1 + β2x2 + . . . + βpxp), (1)

or

h(t) = h0(t) × exp (xTβ). (2)

Here, t serves as the time of survival, h(t) represents
the function of hazard and {x1, x2, . . . , xp} considered as p
covariates values. In contrast, coefficients are denoted as
{β1, β2, . . . , βp}, which calculate the impact of explanatory fac-
tors on the time to survival, and h0(t) is the unknown baseline
hazard function. The unknown parameters are calculated from
the partial likelihood by maximizing it.

3.3.1. Weibull Freund- Cox Proportional Hazard Model
(WFCPH)

The Hybrid Weibull-Freund-Cox Proportional Hazard
(WFCPH) survival model provides essential improvements for
analyzing kidney failure duration [11]. The new hybrid model
unites Cox proportional hazards properties with all the ben-
efits of the Weibull distribution and the Frechet distribution
performance. Analyzing hazard rates over time requires the
Weibull component because clinicians need this property when
observing risk behavior in kidney failure patients, for exam-
ple, graft failure and mortality rates evolving at various disease
stages [12]. The Freund distribution component adds additional
strength to the model’s reliable operations [13]:

hC1(t1, t2 | X) =
(
βC2
θC2

) (
t2
θC2

)βC2−1
(
β′C1
θ′C1

) (
t1−t2
θ′C1

)β′C1−1
exp(βX) (3)

The hazard function analysis for the system requires both
kidney assessment based on the Weibull-Freund model and the
Cox proportional hazards model [14].

h(t1, t2 | X) = hC1(t1, t2 | X) + hC2(t1, t2 | X).

h(t1, t2 | X) =


(
βC2
θC2

) (
t2
θC2

)βC2−1
(
β′C1
θ′C1

) (
t1−t2
θ′C1

)β′C1−1

+
(
βC1
θC1

) (
t1
θC1

)βC1−1
(
β′C2
θ′C2

) (
t1−t2
θ′C2

)β′C2−1

 exp(βX), (4)
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Table 1. Summary of studies related to feature selection and prognosis in cancer datasets.
SL No Authors Data Source Methods Findings

1 Lu et al. [15] CT images of 822 ccRCC
patients

Radiomics + DL; Cox re-
gression; KM analysis

Fusion nomogram outper-
forms radiomics signature.
C-index ↑ by 20% over clin-
ical nomogram.

2 Salma et al. [16] RCC survival data Lasso, RLF, SIS, ISIS RLF-ISIS/SIS outperform
others. Identified 49–68
prognostic genes.

3 Chin and Goh [17] – rMI-SVM feature selection Improves classification in
high-dimensional data. Op-
timal features selected effi-
ciently.

4 Ying et al. [18] – Deep variational trans-
former, gradient-based
selection

No hyperparam tuning.
Deep generative model
effective for FS.

5 Kundu et al. [19] KMC dataset RAF2Net + TL with Ima-
geNet

Outperforms 9 classifiers.
Accuracy, Recall, F-score ¿
92%.

6 Wang et al. [20] SKCM dataset PANDA: Prior-assisted DL
+ FS layer

PANDA outperforms in FS.
Effective on SKCM data.

7 Ness and Udell [21] – DyS: Sparse GAM Discriminative + inter-
pretable for survival data.
Suitable for healthcare
studies.

8 Wang et al. [22] GEO scRNA-seq (6 pa-
tients)

DL-based compound selec-
tion via graph NN

Identified 5 ccRCC-specific
drugs using DL on scRNA-
seq.

9 Le et al. [23] TCGA colorectal cancer
gene data

Ensemble FS + group Lasso Better survival prediction.
Identifies key high-dim fea-
tures.

10 Mahootiha et al. [24] KiTS21 dataset 3D CNN + Spearman + RF
+ DL survival network

Predicts survival with C-
index of 0.84 using CT +
clinical data.

Note: FS = Feature Selection, DL = Deep Learning, KM = Kaplan–Meier, TL = Transfer Learning, CNN = Convolutional
Neural Network, RF = Random Forest.

Table 2. Performance of LASSO and elastic net as feature selection techniques.
Method MSE SSE RMSE R2 Selected Variables Num.
LASSO 626.5871 8499.337 25.0317 0.4782 X134, X3218, X1728, X3671,

X1871, X1866, X2017, X690 8
Elastic Net 625.2725 53600.16 25.9309 0.9063 X134, X3218, X1728, X3671,

X1871, X1866, X2017, X166, X690 9
Variables selected by LASSO and Elastic Net. RMSE: Root Mean Square Error, SSE: Sum of Squared Errors, MSE: Mean
Squared Error.

where hC1(t1, t2 | X) is the hazard function that incorporates
two time points for a particular kidney. t1 and t2, given a set
of covariates X, βC1, βC2. The Weibull distribution relates to the
shape parameters that describe kidneys 1 and 2 using the Freund
models. Here, θC1, θC2 are the scale parameters of the Weibull
distribution for the Weibull Freund model, corresponding to
kidneys 1 and 2, β′C1, β

′
C2 are more shape parameters accom-

pany the model structure to modify or combine variables in the
hazard function [25], possibly related to kidney specific factors

so θ′C1, θ
′
C2 are corresponding scale parameters associated with

the additional shape parameters β′C1, β
′
C2 and t1, t2 The variable

time points indicate particular time intervals during which the
hazard functions interact with their coefficients β according to
equations (1),(2). [26], Synthesize the covariates’ effect with
the Weibull Frequentist Cox Proportional Hazard Model struc-
tural elements and the dependency treatment by the Frequentist
model for two components. [27], where the failure of one af-
fects the failure rate of the other depend on Figure 2, where
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Figure 1. Flowchart of the study’s overall methodology.

Dashed Lines represent the baseline hazard rates for compo-
nents C1 and C2 before any failure occurs, Solid Lines repre-
sent the increased hazard rates after one component fails. For
example, the blue solid line shows the increased hazard rate for
C1 after C2 fails, and the green solid line shows the increased
hazard rate for C2 after C1 fails.

Building on this interaction-based hazard modeling, Fig-
ure 3 presents the overall architecture of the proposed hybrid
survival model. The model integrates both genomic and clin-
ical data to account for such dependent failure behaviors. It

begins with gene expression and clinical data preprocessing,
followed by feature selection to isolate the most relevant pre-
dictors. These selected features are then passed into a hybrid
modeling that combines Cox PH, Weibull, and Freund mod-
els—each capable of capturing different types of hazard dynam-
ics. This comprehensive structure enables the model to reflect
complex dependency patterns, such as those illustrated in Fig-
ure 2, and ultimately improves the accuracy of survival predic-
tions.
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Figure 2. Freund model: hazard functions before and after dependency.

Table 3. Performance of SVM, random forest, and gradient boosting as feature selection techniques.
Method MSE SSE RMSE R2 Selected Variables Num.
SVM 2.3858 19.0864 1.5446 0.9034 x26, x3, x17, x6, x11, x34, x20, x28,

x21, x1, x12, x25, x8, x9, x15, x4,
x2, x13, x18, x19 20

Random Forest 3.0813 24.6506 1.7554 0.8088 x1, x6, x11, x29, x3, x26, x7, x25, x12,
x28, x9, x24, x13, x2, x5, x33, x16,

x10, x32, x34 20
Gradient Boosting 2.9036 23.2286 1.7040 0.8733 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 15, 14, 16, 17, 18, 19, 20 20
Variables selected by the respective methods. RMSE: Root Mean Square Error, SSE: Sum of Squared Errors, MSE: Mean
Squared Error.

Table 4. Comparison of survival analysis methods with performance metrics for SIS with deep learning.
Methods MSE RMSE SSE MAE MAPE R2 N.S.G
Autoencoder - RSIS 107.363 10.36162 3972.439 8.23908 6.42465 0.468028 575
Dense - RSIS 92.4763 9.616461 3421.624 7.71147 5.99083 0.550675 620
RFA - RSIS 94.6529 9.728972 3502.157 7.61398 5.29993 0.535903 620
PCA-RFA - RSIS 24.3927 4.938896 902.5296 3.43729 2.81193 0.891191 900

Table 5. Comparison of survival analysis methods with performance metrics for ISIS with deep learning.
Methods MSE RMSE SSE MAE MAPE R2 N.S.G
RFA-RISIS 105.7942 10.28563 3914.38 7.88155 5.32588 0.485893 240
Autoencoder - RISIS 124.9884 11.17982 4624.57 8.83818 4.67498 0.416952 475
Dense - RISIS 83.52711 9.139317 3090.5 6.62065 3.45732 0.682089 320
PCA RFA - RISIS 62.00967 7.874622 2294.36 4.32675 1.17373 0.773123 540

3.3.2. Proposed methods
Real-world data analysis for large-scale datasets presents

significant difficulties during multi-component system studies,
such as kidney, lung, and eye evaluation. There is no estab-
lished worldwide framework to effectively handle survival data
operating across ultra-high dimensions of multi-component
systems. This study evaluated multiple specialized variable se-
lection techniques that focus on survival data analysis of high-
dimensional multi-component systems to determine efficient

methods for these conditions.
Two method groups exist for analysis: conventional ap-

proaches and proposed methodologies. The research adopted
LASSO with Elastic Net (EN) as one of its selected tradi-
tional analytical procedures. The proposed methods include:
Lasso Weibull Freund-Sure Independence Screening (Weibull
Freund-SIS), Robust Lasso Weibull Freund-Sure Independence
Screening (RLF-SIS), Elastic Net Weibull Freund-Sure In-
dependence Screening (ENF-SIS), Elastic Net-Sure Indepen-
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Figure 3. Proposed hybrid model architecture.

dence Screening (EN-SIS), Lasso Weibull Freund-Iterative
Sure Independence Screening (Weibull Freund-ISIS), Robust
Lasso Weibull Freund-Iterative Sure Independence Screening
(RLF-ISIS), Elastic Net-Iterative Sure Independence Screening
(EN-ISIS), Elastic Net Weibull Freund-Iterative Sure Indepen-
dence Screening (ENF-ISIS), RFA-RISIS, Autoencoder-RISIS,
Dense-RISIS, and PCA RFA-RISIS.

Elastic net
The performance capability of LASSO diminishes substan-

tially when the number of variables (p) surpasses the available
sample points [28], the sample size restriction limits the num-

ber of predictor variables that can be selected in such cases.
The LASSO procedure produces limited results when variable
groups show strong correlations. The Elastic Net approach by
Chamlal et al. [7] introduces an improved version of LASSO to
handle its existing restrictions. Forecasting accuracy increases
through the EN method because it unites the best features of L1
and L2 regularization. The method chooses variables automat-
ically while performing continuous shrinkage procedures. The
technique operates similarly to a versatile fishing net, which re-
tains essential covariates (big fish) yet drops unimportant ones.
The Elastic Net estimator exists as the following mathematical

7
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definition:

J(β, λ1, λ2) =
p∑

j=1

[
λ1|β j|+λ2β

2
j

]
. (5)

The equation implements Lasso penalties for sparse vari-
ables at the beginning, while it applies Ridge penalties for ad-
dressing correlated features in the second term to generate more
accurate computations. The Elastic Net penalty is a regulariza-
tion technique suitable for linear models of classification and
regression types [1].

β̂elasticnet = (1 + λ2) arg minβ∈Rp

[ 1
N

∑N
i=1(yi − xiβ)2

+λ1
∑p

j=1|β j|+λ2
∑p

j=1 β
2
j

]
, (6)

where λ1 and λ2 are the elastic net’s parameters. This method
demands finding proper levels of multiple parameters instead
of using one individual parameter, and usually adds their val-
ues together. The penalty method minimizes the regression loss
function for Elastic Net coefficient estimation [29].

p∑
j=1

[
α|β j|+(1 − α)β2

j

]
≤ κ, (7)

where κ denotes the extra parameter, which is the total of λ1 and
λ2.

3.4. Robust Sure Independence Screening (RSIS)

Our approach uses Tukey weights to fortify the robustness
of Sure Independence Screening (SIS) when analyzing data af-
fected by outliers and heavy-tailed distributions. The modified
screening approaches ensure that the identification and selec-
tion procedure becomes less dependent on extreme values, im-
proving variable selection accuracy in high-dimensional appli-
cations.

β̂ =

arg minβ
{
−

∑n
i=1 wiδi(xT

(i,M∗)β(M∗))
+

∑n
i=1 wiδi log

(∑
j∈R(yi) exp(xT

( j,M∗)β(M∗))
)

+pλ(β)} ,
(8)

where wi are the Tukey weights computed from the residuals of
the initial model, x(i,M∗) is the sub-vector of xi corresponding to
the selected covariates M∗, and pλ(β) is a penalty function (e.g.,
LASSO penalty) [30].

3.4.1. Robust SIS Hybrid with Dense Neural Network (RSIS-
DNN)

The study has put forward a combination of Robust Sure
Independence Screening (SIS) with Tukey weights and Dense
Neural Network (DNN) to handle high-dimensional survival
data, including its nonlinear relationships and outliers. This ap-
proach benefits from the SIS variable selection strengths com-
bined with the DNN’s ability to model complex relationships,
making it an appropriate method for survival prediction evalua-
tion [31].

The DNN loss function integrates the Weibull Freund-Cox
partial likelihood after its modification with DNN prediction
results:

L(θ) = −
n∑

i=1

δi

 fθ(xi) − log

 ∑
j∈R(yi)

exp
(

fθ(x j)
)

 , (9)

where fθ(xi) is the output of the DNN for the i-th observation,
and θ represents the parameters of the DNN [32].

3.4.2. Robust SIS Hybrid with Autoencoder Neural Net work
(RSIS-ANN)

The approach combines Robust Sure Independence Screen-
ing (SIS) with Tukey weights to address high-dimensional sur-
vival data, complex nonlinear relationships, and Autoencoder
Neural Networks to determine the Weibull Freund-Cox propor-
tional hazard model. The method unites three key features: ro-
bust variable selection, nonlinear feature learning, and survival
prediction into a coherent framework.

A neural network generates transformations from d-
dimensional covariates to z ∈ Rk (where k < d) within a la-
tent space, training the autoencoder to minimize reconstruction
error using Mean Squared Error [33]:

Lrecon =

n∑
i=1

∥xi − Decoder(Encoder(xi))∥2. (10)

Using the encoder to transform selected covariates xi into
latent features zi, we feed zi into a Weibull Freund-Cox propor-
tional hazard layer to predict the log-hazard function [19]:

fθ(zi) = wT zi + b. (11)

The model includes parameters w and b, using the Weibull
Freund-Cox partial likelihood loss with regularization as its loss
function:

LCox = −
∑n

i=1 δi
(

fθ(zi) − log
∑

j∈R(yi) exp
(

fθ(z j)
))
+ λ∥w∥2 . (12)

The optimization process jointly handles both the autoen-
coder and Weibull Freund-Cox Proportional Hazard Model lay-
ers:

Ltotal = LCox + αLrecon, (13)

where α balances survival prediction and reconstruction accu-
racy [19].

3.4.3. Robust Sure Independence Screening - Principal Com-
ponent Analysis (RSIS- PCA)

Few observations and numerous covariates in survival data
create analytical difficulties due to outliers, multicollinearity,
and noise [34]. The proposed approach, Robust Sure Indepen-
dence Screening - Principal Component Analysis (RSIS-PCA),
combines robust variable selection techniques with principal
component analysis to develop a three-stage method that mit-
igates the effects of outliers and multicollinearity in survival
analysis [23, 35]. The parameter γ is estimated by maximizing
the partial likelihood:

L(γ) =
n∏

i=1

 exp(zT
i γ)∑

j∈R(yi) exp(zT
j γ)

δi . (14)
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3.5. Random Feature Attention (RFA)
Random Feature Attention relies upon an unbiased estima-

tion of exp (⟨·, ·⟩) From Theorem 1 to work properly:

exp
( x · y
σ2

)
= exp

(
∥x∥2

2σ2 +
∥y∥2

2σ2

)
exp

(
−
∥x − y∥2

2σ2

)
≈ exp

(
∥x∥2

2σ2 +
∥y∥2

2σ2

)
ϕ(x) · ϕ(y).

The last line does not have any nonlinear interaction between
ϕ(x) and ϕ(y), allowing for a linear time/space approximation
to attention. We assume the query and keys are unit vectors for
clarity[36].

attn(qt, {ki}, {vi}) =
∑

i

exp
(

qt ·ki
σ2

)
∑

j exp
( qt ·k j

σ2

)v⊤i

≈
∑

i

ϕ(qt)⊤ϕ(ki)v⊤i∑
j ϕ(qt) · ϕ(k j)

=
ϕ(qt)⊤

∑
i ϕ(ki) ⊗ vi

ϕ(qt) ·
∑

j ϕ(k j)
= RFA(qt, {ki}, {vi}).

⊗ denotes the outer product between vectors, and σ2 corre-
sponds to the temperature term τ in Eq. 1. RFA can be used as
a drop-in replacement for softmax-attention.

(a) The input is fully revealed to cross-attention and encoder
self-attention. Here, RFA calculates attention using Eq.
5.

(b) In causal attention, RFA attends only to the prefix.3 This
allows for a recurrent computation. The tuple (S t ∈

R2D×d, zt ∈ R2D) is used as the ”hidden state” at time step
t to keep track of the history, similar to those in RNNs.
Then, RFA (qt, {ki}i≤t, {vi}i≤t) =

ϕ(qt)⊤S t
ϕ(qt)·zt

, where

S t = S t−1 + ϕ(kt) ⊗ vt, zt = zt−1 + ϕ(kt). (15)

2D denotes the size of ϕ(·). Appendix A.1 summarizes
the computation procedure of RFA, and Figure 1 com-
pares it against softmax attention. Appendix A.3 derives
causal RFA in detail [36].

3.5.1. Robust SIS Hybrid with Random Feature Attention
(RSIS-RFA)

We recommend a hybrid method which utilizes Robust Sure
Independence Screening (SIS) together with Tukey weights and
Random Feature Attention (RFA) for the Weibull Freund-Cox
proportional hazard model (SO) to handle high-dimensional
survival data features along with outliers and complex nonlin-
ear patterns [25].

The Weibull Freund-Cox partial likelihood loss with regu-
larization is given by:

LCox = −

n∑
i=1

δi

 fθ(z̃i) − log

 ∑
j∈R(yi)

exp
(

fθ(z̃ j)
)
 + λ∥w∥2.

(16)

The system should optimize its random feature mapping to-
gether with its attention system and Weibull Freund-Cox Pro-
portional Hazard Model layer for minimal operation results,
LCox.

3.6. Robust Iterative Sure Independence Screening (RISIS)
Our proposal involves applying Tukey weight integration to

Iterative Sure Independence Screening (ISIS) methods for [30]
the Weibull Freund-Cox proportional hazard (WFCPH) model,
which enhances resistance to outliers and heavy-tailed data con-
ditions. The modification reduces the sensitivity of the screen-
ing and selection processes to extreme observations, increasing
the reliability of high-dimensional survival analysis (16). Then,
we can write the Penalized Weibull Freund-Cox proportional
hazard (WFCPH) model as follows:

Combine the previously selected covariates M̂1 with the
newly selected subset L2 to form an updated set M̂2 = M̂1 ∪

L2. Estimate the regression coefficients β̂ using a weighted
penalized Weibull Freund-Cox proportional hazard (WFCPH)
model:

β̂ =

arg minβ
{
−

∑n
i=1 wiδi(xT

(i,M̂2)
β(M̂2))

+
∑n

i=1 wiδi log
(∑

j∈R(yi) exp(xT
( j,M̂2)
β(M̂2))

)
+pλ(β)} ,

(17)

where pλ(β) is a penalty function.
Also, the refinement process and penalized regression steps

should be repeated until a defined stopping criterion, such
as multiple iterations or convergence of selected variables, is
reached [37].

3.6.1. Robust Iterative Sure Independence Screening Hybrid
with Dense Neural Network (RISIS-DNN)

High-dimensional survival data often present challenges
such as outliers, noise, and complex nonlinear relationships.
We have developed Robust Iterative Sure Independence Screen-
ing Hybrid with Dense Neural Network (RISIS-DNN) to re-
solve these data challenges by integrating robust variable se-
lection and iterative refinement with deep learning technology.
The framework utilizes RISIS, which protects against outliers
while leveraging DNNs to enhance survival outcome predic-
tions when working with large sets of variables [28, 32].

Using these weights, the robust marginal utility Um for each
covariate is computed as:

Um =
maxβm

(∑n
i=1 wiδiximβm

−
∑n

i=1 wiδi log
(∑

j∈R(yi) exp(x jmβm)
))
,

(18)

where R(yi) is the risk set at time yi. Appointment involves
the application of a penalized Weibull Freund-Cox Proportional
Hazard Model (with LASSO included) to calculate β̂ using
marginal utility evaluation. Screening and refinement methods
execute repetitive cycles that end through convergence or at-
tainment of their defined iteration limit, so the chosen variables
that display nonzero coefficients undergo updates:

LCox =
−

∑n
i=1 δi

(
fθ(xi) − log

∑
j∈R(yi) exp( fθ(x j))

)
+λ∥θ∥2,

(19)
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where θ represents the DNN parameters, and λ serves as the
regularization parameter. The DNN obtains its training using
gradient-based optimization, while dropout and weight decay
are applied to avoid overfitting [16].

3.6.2. Robust Iterative Sure Independence Screening Hybrid
with Autoencoder Neural Network (RISIS-ANN)

High-dimensional survival data requires special treatment
because it features outliers and signal contamination with noise
and unknown nonlinear dependencies. We develop Robust
Iterative Sure Independence Screening Hybrid with Autoen-
coder Neural Network (RISIS-ANN), which merges robust
variable selection with iterative refinement and deep learning
while resolving these issues. RISIS-ANN unites the resistance
to outliers of Robust Iterative Sure Independence Screening
with Autoencoder Neural Networks (ANNs) capabilities for
feature learning to improve survival predictions among high-
dimensional datasets [38], the loss function of Weibull Freund-
Cox partial likelihood loss with regularization:

LCox = −

n∑
i=1

δi

 fθ(zi) − log
∑

j∈R(yi)

exp( fθ(z j))

 + λ∥w∥2, (20)

where λ represents the regularization term. The optimization
process unites ANN with the Weibull Freund-Cox Proportional
Hazard Model through a joint minimization of the combined
loss function, with λ serving as the regularization term:

Ltotal = LCox + αLrecon, (21)

where α balances the survival prediction and reconstruction ob-
jectives [39].

3.6.3. Robust Iterative Sure Independence Screening Hybrid
with Random Feature Attention (RISIS-RFA)

High-dimensional survival data often present challenges
such as outliers, noise, and complex nonlinear relationships.
The proposed hybrid method, Robust Iterative Sure Inde-
pendence Screening Hybrid with Random Feature Attention
(RISIS-RFA), includes robust variable selection, iterative re-
finement, and attention mechanisms to solve existing data
issues. Survival prediction accuracy in high-dimensional
data improves through using RISIS-RFA, which combines the
outlier-resistant methods of Robust Iterative Sure Independence
Screening (RISIS) with the efficiency from Random Feature At-
tention (RFA) [21] Then, Weibull Freund-Cox partial likelihood
loss with regularization:

LCox = −
∑n

i=1 δi
(

fθ(z̃i) − log
(∑

j∈R(yi) exp( fθ(z̃ j))
))
+ λ∥w∥2, (22)

where λ is a regularization parameter, the Cox loss is minimized
through a joint training process between RFA and the Cox PH
model.

3.6.4. Robust Iterative Sure Independence Screening - Princi-
pal Component Analysis (RISIS-PCA)

High-dimensional survival data often present challenges
such as outliers, noise, and multicollinearity. The proposed
framework, Robust Iterative Sure Independence Screening -
Principal Component Analysis (RISIS-PCA), utilizes robust
variable selection methods alongside iterative refinement while
performing dimensionality reduction for these problems. Sur-
vival prediction is enhanced in high-dimensional cases through
RISIS-PCA because it combines robust variable selection from
RISIS with principal component analysis to maintain data vari-
ance [40], the Weibull Freund-Cox partial likelihood loss func-
tion is used to estimate the parameters:

LCox = −
∑n

i=1 δi
(

fθ(zi) − log
(∑

j∈R(yi) exp( fθ(z j))
))
+ λ∥w∥2. (23)

3.7. Performance Evaluation Criteria
Four metrics were utilized for predictive model accuracy

analysis through R2 coefficient of determination, MSE mean
squared error, SSE sum of squares error, and RMSE root mean
squared error. Regression tasks form the basis of this analysis
because such tasks need metrics that include R2, MSE, SSE,
and RMSE. [41, 42].

MSE =
1
n

n∑
i=1

(Yi − Ŷi)2, (24)

where Yi is the i-th true value, Ŷi denotes the i-th estimated
value, and n represents the overall count of the dataset. An
MSE score closer to zero indicates that the model aligns better
with the data [43].

The SSE is given by:

SSE =
1
n

n∑
i=1

(Xi − X̄)2. (25)

In this case, Xi denotes the i-th observation’s value, and n is
the overall count of the dataset [43]

The RMSE is defined as:

RMSE =

√√
1
n

n∑
i=1

(Yi − Ŷi)2 =
√

MSE. (26)

The R2 coefficient is calculated as:

R2 = 1 −
SSR
SST

= 1 −
∑

(y − ŷ)2∑
(y − ȳ)2 . (27)

R2 has two possible values: 0 (the least) and 1 (the largest).
To put it in simple terms, a model’s R2 will approach one as the
model becomes more successful at predicting outcomes [42].

Also, we used mean absolute percentage error (MAPE),
the most frequently utilized summary measure for population
forecast error evaluation, and meets all testing criteria[38–43].
MAPE obtains its definition through the following mathemati-
cal formula [44] :

MAPE =
1
n

n∑
t=1

|ŷt − yt |

yt
× 100, (28)
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where n is the size of the sample, ŷt is the value predicted by
the model for time point t, and yt is the value observed at time
point t.

4. Results and discussion

The interpretation of analysis results is essential in predic-
tive modeling, as it enables the evaluation of model perfor-
mance and supports data-driven decision-making. The perfor-
mance evaluation of the proposed models was conducted using
a set of statistical measures that assess both prediction accu-
racy and the ability to explain data variance, such as the mean
squared error (MSE) and the coefficient of determination (R2).
All analyses and model implementations were performed using
the R programming language (version 4.3.2). The computations
were carried out on a workstation equipped with an Intel(R)
Core(TM) i7-12700 CPU @ 2.10GHz, 32 GB RAM, running
Windows 11. Given the moderate dataset size and model com-
plexity, execution time per model ranged from a few seconds
to several minutes. This computational environment was suffi-
cient to ensure efficient training and evaluation of the predictive
models.

Table 2 shows a performance analysis between LASSO and
Elastic Net at the feature selection task. Elastic Net proved
superior to LASSO in data explanation since its coefficient of
determination (R2R2) achieved 0.9062844 while LASSO only
reached 0.4782. Both approaches’ prediction accuracy remains
similar according to their equivalent RMSE and MSE results.
Elastic Net presented an SSE value of 53600.16, which ex-
ceeded the LASSO SSE value of 8499.337 due to including the
X166 attribute, which increased its model complexity. Elastic
Net leads to better variance explanation than LASSO, although
LASSO shows stronger capabilities in error reduction for indi-
vidual predictions.

The selected genes represent a spectrum of biological func-
tions relevant to cellular integrity and signaling. NCAM1
(X134) and CDH8 (X166), both members of the cell-adhesion
molecule family, are implicated in maintaining tissue structure
and mediating neural growth signals. COL5A1 (X1871) en-
codes the α-chain of collagen V, contributing to extracellular
matrix formation and connective tissue remodeling—functions
potentially altered in chronic kidney conditions. ATP1B3
(X3671) is a key component of the Na+/K+-ATPase pump, es-
sential for ionic homeostasis and cellular metabolism. The
EST corresponding to X1866 exhibits sequence similarity to
oxysterol-binding proteins, suggesting a possible involvement
in lipid transport and cholesterol regulation. TSC501 (X3218)
remains poorly characterized, but its consistent selection in-
dicates potential biological relevance. Finally, unannotated
transcripts such as X690, X1728, and X2017 may repre-
sent novel regulatory RNAs or yet-to-be-characterized protein-
coding genes, offering exciting avenues for future exploration
in the context of survival outcomes.

Table 3 shows that feature selection and prediction of SVM
delivered superior performance through its highest R2 value
of 0.903, along with minimum RMSE and MSE values, thus

demonstrating the best results versus other methods. Gradi-
ent Boosting offered performance metrics balanced between
the other predictors (R2=0.873), and Random Forest exhibited
slightly lower results (R2=0.809). Nodes selected by SVM
achieve outcomes similar to Elastic Net variants in explain-
ing variance and accuracy, while matching LASSO results, but
slightly outperforming them. SVM produces the best results
when seeking maximum accuracy combined with variance ex-
planation, but Gradient Boosting is a suitable alternative.

Scientists need specific methods to handle biological data
from gene expression studies since these data sets contain
extensive dimensions and complex structures. According to
the table, the chosen techniques demonstrate efficient fea-
ture selection processes during effective management of high-
dimensional information. Healthcare practitioners require in-
novative approaches to improve survival prediction accuracy
within their intense professional environment. The selected
genes cover a wide array of cellular functions: CDKN2D (X1)
encodes p19INK4d, a cyclin-dependent kinase inhibitor that reg-
ulates cell-cycle checkpoints; FGFR1 (X6) is a receptor tyro-
sine kinase mediating fibroblast growth factor signaling and
cell proliferation; VCAM1 (X11), ICAM1 (X7), and SELE
(X28) are key adhesion molecules orchestrating leukocyte–
endothelial interactions during inflammation; CTNNB1 (X29)
(β-catenin) integrates Wnt signaling with adherens-junction sta-
bility; DLG2 (X3) and L1CAM (X32) are neural cell-adhesion
proteins crucial for synaptic architecture and neuronal migra-
tion; ITGB4 (X26) and LRP1 (X25) serve as transmembrane
receptors linking the extracellular matrix to intracellular sig-
naling cascades; JUNB (X9) is an AP-1 transcription fac-
tor that modulates gene expression in response to growth and
stress signals; CBLB (X12) functions as an E3 ubiquitin lig-
ase attenuating tyrosine-kinase pathways; MCL1 (X24) is an
anti-apoptotic Bcl-2 family member safeguarding mitochon-
drial integrity; KISS1 (X13) acts as a metastasis suppressor
in various cancers; EPOR (X5) is the erythropoietin recep-
tor driving erythroid differentiation; GRIN2C (X33) encodes
an NMDA-receptor subunit essential for excitatory synaptic
transmission; COL18A1 (X16) produces collagen XVIII, a
basement-membrane component whose endostatin fragment in-
hibits angiogenesis; EPLG8 (X10) is a putative ephrin-like lig-
and modulating cell–cell communication; and ADAM17 (X34)
is the TNF-α–converting metalloprotease that sheds cytokine
precursors. The EST represented by X2 remains uncharacter-
ized, highlighting an opportunity for future discovery of novel
regulators in survival pathways.

4.1. Proposed methods performance
In this section, we will review the results of the proposed

methods as follows: Table 4, Autocoder-RSIS and Dense-RSIS,
together with RFA-RSIS and PCA-RFA-RSIS, undergo evalua-
tion for predictive performance. The assessment relies on Mean
Squared Error (MSE), together with Root Mean Squared Error
(RMSE), Sum of Squared Errors (SSE), Mean Absolute Error
(MAE), and Mean Absolute Percentage Error (MAPE). Both
the Coefficient of Determination (R2) and the Number of Se-
lected Genes (N.S.G) evaluate the efficiency of the models.
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The Autoencoder-RSIS method produces the most extreme
error results, amounting to an MSE of 107.3632, an RMSE of
10.361622, and an SSE of 3972.4386. The predictive accuracy
is unsatisfactory when considering the obtained MAE value of
8.23908 and MAPE value of 6.424651. According to the R2

value of 0.4680276, the survival predictions show only 46.80%
variance explained by this methodology. This approach weak-
ens performance in analysing complex high-dimensional gene
expression data because of its high MAPE value.

The Dense-RSIS approach provides better results than
Autoencoder-RSIS through lower error measurement values.
The calculation outcomes demonstrate an MSE value of
92.47632, while the RMSE reaches 9.616461, and the SSE
value amounts to 3421.624. The predictive accuracy improves
according to the 7.71147 value for MAE and the 5.990825 value
for MAPE. The R2 value rises to 0.5506746, thus offering a
55.07% variance explanation. The higher number of selected
genes in the model (N.S.G = 620) enables better performance
because it provides a larger set of features for effective data
modelling.

RFA-RSIS methodology leads to predictive performance
levels identical to Dense-RSIS, although it produces higher er-
ror measurement results. The error results from MSE were
94.6529, while the RMSE value stood at 9.728972, and the SSE
reached 3502.1572. The model demonstrates better percent-
age error reduction since it produces an MAPE of 5.299932.
The R2 value reaches 0.5359027 to explain 53.59% of the vari-
ance. While producing marginally higher total errors, the en-
hanced MAPE measurement suggests that RFA-RSIS could
provide better outcomes when survival modelling requires min-
imum relative error assessment. PCA-RFA-RSIS is the most
effective method in producing the best error performance in-
dicators. Model performance demonstrates excellence through
MSE value 24.39269, RMSE value 4.938896, and SSE value
902.5296. The measurement accuracy of the developed system
is supported by the MAE value of 3.43729 and the MAPE value
of 2.81193. Among all four methods, the PCA-RFA-RSIS de-
livers the best explanation of variance since its R2 value reaches
0.8911911, which translates to 89.12% of explained variance.
Implementing Principal Component Analysis (PCA) leads to
improved performance because it simplifies dimensions with-
out losing any essential features. The higher number of selected
genes (N.S.G = 900) also supports improved model precision.

Although the FA-RSIS algorithm has error metrics that
match those of Dense-RSIS, it still demonstrates increased met-
ric values. The method produces MSE results of 94.6529, while
RMSE stands at 9.728972 and SSE reaches 3502.1572. The R2

value for this method amounts to 0.5359027, which indicates a
53.59% variance explanation rate. Among the initial three pre-
diction methods, the FA-RSIS method shows the lowest value
of 5.299932 for MAPE, thus suggesting an effective decrease
in percentage errors. RFA-RSIS demonstrates enhanced pre-
dictive capabilities for survival analysis because it effectively
decreases the relative errors found in predictions.

PCA-RFA-RSIS is the most superior technique because it
delivers superior prediction accuracy, surpassing every other
method. The PCA-RFA-RSIS method establishes optimal re-

sults because its error metrics reach 24.39269 MSE, 4.938896
RMSE, and 902.5296 SSE. The prediction accuracy peaks be-
cause the model exhibits the lowest MAE value of 3.43729
alongside the lowest MAPE value of 2.81193. This method
demonstrates an R-squared value of 0.8911911, which indicates
it accounts for 89.12% of survival outcome variance. The per-
formance achievements result from Principal Component Anal-
ysis (PCA) integration because it handles dimensionality reduc-
tion and preserves key features in the analysis. The predictive
model attains better precision and robustness due to the large
number of features (N.S.G = 900) selected in this approach.

Table 5 shows that performance evaluation metrics compris-
ing MSE, RMSE, SSE, MAE, MAPE, R2, and N.S.G. of the
methods undergo evaluation to determine their performance in
survival function prediction by processing tactical gene expres-
sion information.

Autoencoder-RSIS produced the highest errors from all
methods when applied to survival data because it yielded an
MSE of 107.3632 and an RMSE of 10.361622 alongside an
SSE of 3972.4386. The MAE value is 8.23908, and the MAPE
value reaches 6.424651, demonstrating limited prediction accu-
racy. A predictive model with an R-squared value of 0.4680276
clarifies 46.80% of measured changes in the dependent vari-
able. The high MAPE indicates that the method fails to detect
crucial patterns embedded within the gene expression database
due to its complex and high-dimensional characteristics.

The error metrics from the So Dense-RSIS method surpass
the Autoencoder-RSIS metrics, thus proving superior perfor-
mance. The model performs with a 92.47632 MSE, 9.616461
RMSE, and 3421.624 SSE. The MAE score is 7.71147, while
the MAPE shows 5.990825, indicating more accurate predic-
tions. Calculations estimate survival prediction variance at
55.07% through the R2 value of 0.5506746. Better data fea-
ture utilization occurs through the increased number of selected
genes (N.S.G = 620), enhancing data modelling accuracy.

5. Conclusion

The research deals with survival analysis problems in re-
nal cell carcinoma (RCC) ultra-high-dimensional (UHD) data
through deep learning methods integrated with robust feature
selection techniques. Traditional methods, including LASSO
and Elastic Net, faced two main difficulties while assessing data
with strong relationships and overfitting conditions, which re-
sulted in a 54% explanation of the variance. PCA-RFA-RSIS
demonstrated superior predictive accuracy through its perfor-
mance metrics, such as MSE of 24.39 and R2 value of 0.89.
PCA maintained key information through its ability to simplify
data dimensions, and Robust ISIS provided resistance against
measurement errors. The research results support new ad-
vanced medical treatments since they allow individualized kid-
ney failure treatment strategies. The proposed research requires
additional development to extend these models for diverse de-
ployment purposes.
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Data availability

No additional data was used beyond those presented in the
submitted manuscript.
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