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Abstract

Accurate forecasting of photovoltaic (PV) power is essential for effective grid integration and energy management, particularly in solar-rich
regions such as Algeria. This study presents a robust forecasting framework that combines advanced feature selection techniques with deep
learning architectures—namely MLP, GRU, LSTM, BiLSTM, and CNN—to enhance daily PV power prediction accuracy. Three feature selection
methods—ReliefF, Minimum Correlation, and Minimum Redundancy Maximum Relevance (MRMR)—are employed to identify the most relevant
input variables from a dataset collected in the Ghardaı̈a region. Among the selected predictors, Global Solar Radiation (GSR) consistently proves
to be the most influential. To further enhance model inputs, Variational Mode Decomposition (VMD) is applied to extract informative Intrinsic
Mode Functions (IMFs) from the selected features. A comparative evaluation of the models indicates that recurrent neural networks, particularly
GRU and LSTM, deliver superior performance across various metrics, including RMSE, MAE, nRMSE, nMAE, R2, and the correlation coefficient.
The GRU model achieves the best results, with an RMSE of 3.246 and an R2 of 0.9550 using five IMFs. These findings highlight the effectiveness
of integrating optimal feature selection, signal decomposition, and deep learning for reliable PV power forecasting. The proposed hybrid approach
provides a practical and scalable solution for enhancing energy planning and operational efficiency in high-solar-potential regions.
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1. Introduction

As the world confronts the dual challenges of climate
change and the rapid depletion of fossil fuel reserves, the tran-
sition to renewable energy has become a critical global imper-
ative [1]. Among the various renewable energy sources, solar
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energy stands out due to its cleanliness, abundance, and sustain-
ability. Solar technologies harness the sun’s energy to produce
light, heat, and electricity, serving both residential and indus-
trial needs.

The continued extraction and consumption of conventional
energy resources—such as coal, oil, and natural gas—not only
accelerate their depletion but also contribute significantly to
environmental degradation. These realities underscore the ur-
gency of adopting cleaner energy alternatives. Solar energy,
in particular, offers immense potential with minimal ecological
impact.

Driven by international efforts to reduce carbon dioxide
(CO2) emissions [2, 3], the demand for renewable electric-
ity is steadily rising. Photovoltaic (PV) technology is emerg-
ing as one of the most promising renewable energy solutions
for both developed and developing nations. Its advantages are
numerous: it is environmentally friendly—producing electric-
ity without releasing greenhouse gases like CO2 and nitrogen
oxides (NO?); economically beneficial—reducing energy costs
and fostering job creation; and well-suited for decentralized en-
ergy production, especially in remote or underserved regions.

The electricity generation capacity of PV systems is highly
dependent on their geographical location, specifically on local
solar irradiation levels. As illustrated in Figure 1 [4]. solar en-
ergy exhibits significant production potential worldwide. How-
ever, the efficiency of most commercially available solar cells
remains within 10% to 20% [5]. Despite recent technologi-
cal advancements, this limited efficiency suggests considerable
room for improvement.

The efficiency of PV systems is closely tied to the geo-
graphic and climatic conditions of their deployment. Algeria,
for instance, possesses one of the highest solar energy poten-
tials in the world, with annual sunshine ranging from 2,000 to
3,900 hours and daily solar irradiation between 3,000 and 6,000
Wh/m² [6]. Despite this exceptional potential, the efficiency of
commercially available solar cells typically falls between 10%
and 20%, highlighting the need for ongoing advancements in
materials, design, and system optimization [7–10].

A key challenge in integrating solar power into electrical
grids is the variability and intermittency of solar radiation. To
maintain grid reliability and ensure efficient energy planning,
the development of accurate forecasting models and energy
storage systems is essential. Forecasting techniques are of-
ten categorized by time horizons: medium-term (days ahead),
short-term (hours ahead), and very short-term (minutes ahead),
each serving distinct purposes in energy management, grid op-
eration, and real-time decision-making [11].

In this context, artificial intelligence (AI) has emerged as
a powerful tool for solar forecasting. AI techniques are par-
ticularly adept at handling the nonlinear, dynamic, and often
noisy nature of solar energy data. Methods such as artificial
neural networks (ANN), support vector machines (SVM), deci-
sion trees, and advanced deep learning models—including con-
volutional neural networks (CNN) and long short-term memory
(LSTM) networks—have demonstrated significant promise in
improving forecast accuracy across various time scales.

Forecasting methods can generally be classified into four

main categories: physical, statistical, artificial intelligence
(AI)-based, and hybrid approaches. Hybrid forecasting meth-
ods combine elements of the three aforementioned techniques
to leverage their respective strengths and improve overall pre-
dictive performance Wan et al. [12].

To provide a clearer understanding of the core characteris-
tics of each method, a series of comparative tables is presented.
Table 1 provides an overview of physical forecasting methods,
which rely heavily on meteorological data and physical mod-
eling principles. Table 2 focuses on statistical techniques that
utilize historical data and regression-based approaches. Table
3 outlines AI-based prediction methods, emphasizing machine
learning algorithms that enhance forecasting performance.

A number of reviews have emphasized the rapid growth and
evolution of forecasting methodologies. Antonanzas et al. [13],
for example, provided a comprehensive classification of fore-
casting approaches by time horizon, input type, and application.
Similarly, Van der Meer et al. [14] underscored the growing im-
portance of probabilistic forecasting in managing uncertainty
and enhancing grid resilience.

Overall, Table 4 offers a valuable overview of contempo-
rary research trends, serving as a reference for selecting suit-
able forecasting strategies tailored to specific regional and op-
erational needs.

Selecting suitable predictors for accurate PV power fore-
casting is both challenging and time-consuming. The arbi-
trary choice of input features often leads to redundancy and
strong intercorrelations, which increase the input space and
model complexity—ultimately reducing forecasting accuracy.
This study aims to identify the most relevant predictors that
minimize model complexity while maximizing forecasting per-
formance. To achieve this, we apply several feature selec-
tion methods including ReliefF, Minimum correlation tech-
nique, and Minimum Redundancy Maximum Relevance tech-
nique MRMR to evaluate the importance of commonly used
variables. The selected optimal features are then used as inputs
to an Artificial Neural Network (ANN) model for PV power
forecasting.

Our approach is validated using a real-world dataset col-
lected from the Ghardaı̈a region in Algeria, covering the period
from 2018 to 2019. The model’s performance is evaluated us-
ing multiple objective metrics. Each input variable is ranked
according to its contribution to the forecast, and the top-ranking
features are then used to train various models, including Multi-
Layer Perceptron (MLP), Gated Recurrent Unit (GRU), Long
Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM),
and Convolutional Neural Network (CNN), for PV power pre-
diction.

The remainder of this paper is structured as follows: Section
2 introduces the PV plant and data used in the study. Section 3
presents the theoretical foundations and the proposed method-
ology. Section 4 describes the experimental design, including
data preprocessing, model development, and evaluation proce-
dures. Section 5 discusses the results and performance analysis.
Finally, Section 6 summarizes the conclusions and suggests po-
tential directions for future research.
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2. Overview of the solar photovoltaic plant

To validate the forecasting models, this study focuses on a
photovoltaic power plant located in the Ghardaı̈a region of Al-
geria. The facility, operated by SKTM, is situated about 15 kilo-
meters north of Ghardaı̈a city, near the village of Oued Nechou.
The site lies in a semi-desert environment, with geographical
coordinates of 32◦35

′

59
′′

N 3◦42
′

16
′′

E at an altitude of 566 me-
ters. Figure 2 illustrates the plant’s location on the map of Al-
geria.

Oued Nechou benefits from intense solar radiation, ranging
between 900 and 1000 W/m² during summer months, typical
of Saharan climates known for extreme heat and frequent sand-
storms. The plant functions as a pilot site designed to evaluate
the performance of photovoltaic technologies under local en-
vironmental conditions. Its installed capacity is around 1100
kWc.

Established in 2014 as part of Algeria’s National Renewable
Energy Program, this plant was one of the earliest PV facilities
developed before the construction of 23 additional plants across
the country’s high plateau and southern zones. Together, these
projects aim to contribute 400 megawatts to the national energy
grid. The Ghardaı̈a plant incorporates various PV technologies,
including thin-film amorphous silicon (a-Si), cadmium telluride
(Cd-Te), polycrystalline silicon, and monocrystalline silicon (a-
Si/n-type a-Si).

3. Theory

In this section, we present the theoretical background rel-
evant to the key aspects addressed in this study. We explore
the domain of feature selection techniques and discuss the fore-
casting models employed, namely the Multi-Layer Perceptron
(MLP), Gated Recurrent Units (GRU), Long Short-Term Mem-
ory (LSTM), Bidirectional LSTM (BiLSTM), and Convolu-
tional Neural Network (CNN).

3.1. Features selection

In typical forecasting scenarios, datasets for predicting PV
power include multiple predictors, such as temperature (T),
number of day (nD), number of hour (nH), and global solar radi-
ation (GSR), among others. Due to this abundance of features,
feature selection plays a critical role in identifying the most
relevant predictors for building an effective predictive model.
These techniques evaluate the importance of each predictor—
referred to as an input parameter—in relation to its contribution
to forecasting the output.

As outlined previously, the primary aim of this study is
to determine the optimal combination of input parameters that
enable accurate PV power prediction. To achieve this, three
feature selection techniques have been utilized. These meth-
ods help reduce data dimensionality, eliminate redundancy and
noise, decrease model complexity, and ultimately enhance pre-
dictive performance.

3.1.1. ReliefF technique
The ReliefF algorithm, proposed by Kira and Rendell in

1992 [15, 16], is a robust technique utilized in ML and data
mining to identify relevant features for classification tasks. It
systematically evaluates the discriminatory power of each fea-
ture by analyzing the differences in feature values between in-
stances of the same and different classes [17].

During each iteration of the algorithm, the weight (Wi) as-
signed to each feature (i) is updated based on the observed dif-
ferences. This update is governed by the following equation:

Wi = Wi − (xi − nearHITi)2 + (xi − nearMIS S i)2 (1)

where Wi is the weight for feature I, xi is the value of feature
i for the current instance, nearHITi and nearMIS S i are the
corresponding feature values of the nearest neighbors from the
same and different classes, respectively.

ReliefF iteratively updates feature weights, assigning
greater weight to features that better differentiate between
classes. One of its key strengths is its ability to handle both
categorical and continuous features, and its computational effi-
ciency makes it suitable for high-dimensional datasets.

3.1.2. Minimum correlation technique
The Minimum CFS method is a straightforward yet effec-

tive approach for feature selection. It identifies the most rele-
vant features by analyzing the correlation matrix C, where each
element Ci, j represents the correlation between features fiand
f j.

The correlation matrix C is:

C =


C1,1 C1,2 . . . C1,p
C2,1 C2,2 . . . C2,p
...

...
. . .

...
Cp,1 Cp,2 . . . Cp,p

 . (2)

The weight Wi of feature fi is computed as the average cor-
relation with all other features:

Wi = scorei =
1
p

p∑
j=1

Ci, j. (3)

The feature with the lowest mean correlation is selected:

Best fi = min(mean(C)). (4)

This technique helps to minimize redundancy, enhancing
model efficiency and performance [15, 18].

3.1.3. The minimum redundancy maximum relevance tech-
nique

The MRMR technique selects features by maximizing rel-
evance to the target while minimizing redundancy among fea-
tures [19–21]. Based on mutual information, it defines:

i. Redundancy:

Redundancy (S) =
1
|S |2

∑
fi, f jS

I( fi, f j). (5)
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Figure 1. Practical photovoltaic power potential at level 2 (long-term average)[4].

Table 1. Summary of physical prediction methods.
Method Description Input Features Authors Advantages Disadvantages
Simple
Physical
Model

Uses weather and
system param-
eters for basic
modeling

Weather data,
solar radiation,
satellite/cloud
images, system
parameters

Peder et al.
[22]

Basic setup,
conceptually
straightfor-
ward

Low accuracy,
needs detailed
input data, lacks
adaptability

Complex
Physical
Model

Incorporates
advanced weather
models with local
data for improved
prediction

NWP data, high-
res weather maps,
PV site-specific
info

Lorenz et al.
[23], Inman
et al. [24]

Higher accu-
racy for local
applications

Requires ac-
curate weather
forecasts and
system charac-
terization

NWP (Nu-
merical
Weather
Predic-
tion)
Models

Use of mesoscale
and global cli-
mate models for
short- and wide-
area forecasts

Wind speed, hu-
midity, solar irra-
diance, etc.

Fernandez-
Jimenez et
al. [25],
Mathiesen
and Kleissl
[26], Lima
et al. [27]

Capable of
large-area
forecasting,
weather-
aware

High complex-
ity, dependent
on accurate
weather models
and computa-
tional resources

ii. Relevance:

Relevance (S,c)=
1
|S |

∑
fiS

I( fi, c) (6)

where S is the set of features, c is the sample class, and f rep-
resents individual features in S. The optimal feature subset is
determined by maximizing:

max ϕ (Relevance,Redundancy) =

Relevance − Redundancy (7)

This balance between relevance and redundancy makes MRMR
a powerful feature selection method for high-dimensional data.

3.2. Variational Mode Decomposition (VMD)

After identifying the key predictors for PV power forecast-
ing, Variational Mode Decomposition is applied to decompose
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Table 2. Summary of statistical prediction methods.
Method Description Input Fea-

tures
Authors Advantages Disadvantages

Linear Regres-
sion
(Unary/Multiple)

Establishes linear
relationships be-
tween power out-
put and influenc-
ing factors

Solar
irradiance,
tempera-
ture

Li et al.
[28]

Easy to im-
plement, inter-
pretable models

Limited ac-
curacy for
nonlinear or
complex dy-
namics

Support Vec-
tor Machine
(SVM)

Uses kernel-
based learning
with generaliza-
tion ability

Historical
power,
weather
data

Li & Li
(2008),
Zhu &
Tian [28]

Effective with
limited data,
avoids overfit-
ting

Computational
cost for large
datasets

ARIMA / ARI-
MAX

Time series-based
models for short-
term forecasting

Historical
PV output,
solar irra-
diance

Pedro &
Coimbra
[29]

Handles time
dependencies
well

Ignores other
weather-related
variables

SARIMA Seasonal ARIMA
model for time se-
ries data

Historical
PV output

Bouzerdoum
et al. [30]

Improved accu-
racy with sea-
sonality aware-
ness

Still limited by
weather vari-
able exclusion

NARX / NAR-
MAX

Nonlinear time-
series models

Irradiance,
tempera-
ture, time

Di Piazza
et al. [31]

Captures non-
linearities
effectively

Complex model
formulation

Table 3. Summary of AI-based prediction methods.
Method Description Input fea-

tures
Authors Advantages Disadvantages

BP Neu-
ral Net-
work

Multi-layer
network with
backpropagation
learning

Irradiance,
temperature,
time, histor-
ical power

Kaushika
et al. [32]

Good per-
formance
with enough
data

Requires large
datasets, sensitive
to overfitting

Extreme
Learning
Machine
(ELM)

Fast learning
single-layer feed-
forward network

Historical
power,
weather data

Tang et al.
[33]

High-speed
learning,
better gener-
alization

Structure determi-
nation is difficult,
less robust for small
datasets

General
Neural
Net-
works

Deep learning or
multilayer per-
ceptrons (MLPs)
with various
optimization
algorithms

Weather,
system data,
historical
power

Various
(Yang et
al. [34];
Huang et
al. [35])

Self-
learning,
adaptive to
complex
patterns

Risk of local
minima, needs
extensive tun-
ing, not ideal for
new/unknown
scenarios without
training data

the selected predictor into several Intrinsic Mode Functions
(IMFs). This decomposition facilitates a detailed analysis of
the impact of different numbers of IMFs on forecasting perfor-
mance [36].

VMD aims to decompose a signal f(t) into a set of IMFs
{uk(t)}, each associated with a specific center frequency ωk.
The decomposition is formulated as the following optimization
problem:

min{uk},{ωk}

∑
k

∥∥∥∂t(uk(t)e− jωk t)
∥∥∥2

2



subject to
∑

k

uk (t) = f (t), (8)

where uk (t) is the k-th mode, ωk is the corresponding center
frequency, ∂t is the partial derivative with respect to time, j is
the imaginary unit.

This process enables a refined exploration of the predictor’s
frequency components, enhancing the forecasting model’s abil-
ity to capture underlying patterns.

3.3. Forecast models
To accurately forecast the photovoltaic power, five models

are investigated including multilayer perceptron (MLP), Gated
5
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Table 4. Review of State-of-the-Art Studies.
Authors Focus Method(s) used Forecast

horizon
Key findings / Notes

Wan et al.
[12]

Review of forecast-
ing methods

Statistical, AI,
Physical, Hybrid
approaches

Varies
(very short
to long-
term)

Forecast category depends on data,
horizon, and application. Hybrid
models combine strengths of others.

Antonanzas
et al. [13]

Comprehensive re-
view of solar pre-
diction research

Classification by
time horizon, in-
put data, and fore-
cast types

Second to
weeks

Compared point vs probabilistic fore-
casts; metrics for performance mea-
surement reviewed.

Van der
Meer et al.
[14]

Probabilistic solar
and load forecast-
ing

Various proba-
bilistic methods

Not speci-
fied

No one model fits all; variability be-
tween load and production can differ
despite similar spatial/temporal reso-
lutions.

Hong et
al. [37]

GEFCom2014
competition

GB, k-NN, QRF,
MQR, RF, SVM

24-hour
forecast

Standardized datasets/metrics; top
performers used machine learning
(GB + k-NN).

Russo et
al. [38]

Short-term fore-
casting (1 hour
ahead)

Genetic algorithm
+ ”The Brain
Project”

1 hour Algorithms with 2 inputs outper-
formed naı̈ve ones.

Rana et al.
[39]

Short-term PV pro-
duction forecasting

ANN, SVM (Uni-
variate & Multi-
variate)

Short-term Univariate approach (production data
only) had better accuracy (MAPE
4.15%–9.34%).

Li et al.
[40]

PV park forecasting
in Florida

ANN, SVR
with hierarchical
model

15 min,
1h, 24h

Aggregated inverter-level forecasts
improved park-level predictions.

Golestaneh
et al. [41]

Probabilistic solar
forecasting

Extreme Learning
Machine (ELM)

Minutes to
1 hour

ELM provides both point and proba-
bilistic forecasts; tested across diverse
climates.

Bessa et
al. [42]

Probabilistic fore-
cast over 6-hour
horizon

Ensemble ap-
proach using
multiple PV
curves

6 hours Combined data improved accuracy by
8%–12% vs univariate model.

Hosain et
al. [43]

1-hour and 1-day
solar production
forecast

ELM vs ANN and
SVR

1 hour, 1
day

ELM outperformed others in both ac-
curacy and computation time.

Lonij et al.
[44]

Forecast under
cloudy skies using
spatial correlation

Sensor-based spa-
tial correlations

15-minute
intervals

Outperformed naı̈ve and satellite
image-based models.

Vaz et al.
[45]

Forecasting up to
one month

NARX >15 min
to 1 month

Historical data from nearby PV farms
improved accuracy; better than naı̈ve
model.

Lin and
Pai [40]

Monthly produc-
tion forecast in
Taiwan

Seasonal Decom-
position (SD) +
LS-SVR with Ge-
netic Algorithm

Monthly SD improved accuracy significantly
(MAPE 7.84%); LS-SVR+SD out-
performed ARIMA, SARIMA, ANN,
LSSVR without SD.

Recurrent Units (GRU), Long-Short Term Memory (LSTM),
Bidirectional BiLSTM, and Convolutional Neural Network
(CNN).

3.3.1. Multi-Layer Perceptron (MLP)
A Multi-Layer Perceptron (MLP) is a type of artificial neu-

ral network (ANN) composed of multiple layers of intercon-
nected neurons. These layers include an input layer, one or

more hidden layers, and an output layer. Each neuron in a layer
is fully connected to the neurons in the adjacent layers, with
each connection associated with a specific weight [2]. MLPs
employ nonlinear activation functions in the hidden layers to
capture complex patterns in the data. A general structure of the
MLP model is illustrated in Figure 3.

6
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Figure 2. Studied site’ location of the PV central.

3.3.2. Gated Recurrent Unit (GRU)
The Gated Recurrent Unit (GRU) is a type of recurrent neu-

ral network (RNN) architecture introduced to address the van-
ishing gradient problem observed in standard RNNs. GRUs
are designed to capture dependencies in sequential data by us-
ing gating mechanisms that regulate the flow of information.
Specifically, a GRU combines the hidden state and memory cell
into a single unit and introduces two gates: the update gate and
the reset gate [46]. These gates determine how much of the past
information should be carried forward and how much should be
forgotten. The relatively simple structure of GRUs allows for
faster training and comparable performance to LSTM networks.
The architecture of a typical GRU model is depicted in Figure
4.

3.3.3. Long Short-Term Memory (LSTM)
Long Short-Term Memory (LSTM) networks, introduced

by Hochreiter and Schmidhuber in 1997 [47], are a specialized
type of recurrent neural network (RNN) designed to address the
limitations of traditional RNNs, particularly the vanishing gra-
dient problem. LSTM networks are capable of learning long-
term dependencies by incorporating memory cells and gating
mechanisms.

Each LSTM unit consists of a cell, an input gate, a for-

get gate [48], and an output gate. These gates regulate the
flow of information into and out of the cell, allowing the net-
work to selectively retain relevant information over extended
time sequences while discarding irrelevant or outdated data
[49]. This selective memory mechanism makes LSTM archi-
tectures highly effective for sequential data analysis and time-
series forecasting tasks. The general architecture of the LSTM
model is shown in Figure 5.

3.3.4. Bidirectional Long Short-Term Memory (BiLSTM)
The Bidirectional Long Short-Term Memory network is an

enhanced version of the standard LSTM architecture, designed
to process sequential data in both forward and backward direc-
tions. This dual-directional structure enables the model to ac-
cess information from both past and future time steps, making
it particularly effective for capturing intricate temporal depen-
dencies [50].

In a BiLSTM, two independent LSTM networks are trained
in parallel: one processes the input sequence from start to
end, while the other processes it in reverse. Their outputs are
then combined—typically through concatenation—to produce
a more contextually informed final prediction [51].

This architecture is widely applied in various domains such
as energy forecasting, natural language processing, and time-

7
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Figure 3. MLP architecture.

Figure 4. GRU architecture.

series analysis due to its ability to leverage bidirectional context
[52–56]. An illustration of the BiLSTM model is presented in
Figure 6.

3.3.5. Convolutional Neural Network (CNN)
Convolutional Neural Networks (CNNs) are a powerful

class of deep learning models initially developed for image
classification tasks [57, 58], but they have since been success-
fully adapted for time-series prediction in various domains,
including energy forecasting [59], sizing of PV system [60],
speech and face recognition [61], and prediction of data in PV
applications [62].

The architecture of a CNN typically consists of a sequence
of convolutional layers that apply learnable filters to extract spa-

Figure 5. LSTM architecture.

Figure 6. LSTM architecture.

Figure 7. CNN architecture.

tial or temporal features, followed by pooling layers that reduce
the dimensionality of feature maps [63]. These layers are often
followed by fully connected layers for final output generation
[64, 65]. A key advantage of CNNs is their ability to perform
automatic feature extraction with minimal preprocessing, en-
abling efficient end-to-end learning [66–68].

In the context of PV power forecasting, CNNs can effec-
tively capture localized temporal patterns in sequential data,
improving the model’s ability to generalize and predict power
output. The CNN architecture used in this study is depicted in
Figure 7.

8
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Figure 8. PV power variation in function of the time for a period of one
day (01/01/2018).

4. Experimental setup

In this section, we present insights into the dataset used for
analysis, along with the data normalization process. Addition-
ally, we describe the configuration of the forecasting models
(MLP, GRU, LSTM, BiLSTM, and CNN) employed in this
work. Finally, we discuss the evaluation metrics adopted to
assess the robustness and predictive accuracy of the proposed
models.

4.1. Data pre processing
As outlined in the previous section, the dataset comprises

multiple input features, including temperature and global irradi-
ation, and a single output representing PV power. In this study,
each feature undergoes linear scaling to normalize its values
within the range [0, 1], following the equation:

min{uk},{ωk}

∑
k

∥∥∥∂t(uk(t)e− jωk t)
∥∥∥2

2

 (9)

subject to
∑

k

uk (t) = f (t),

where X denotes the input feature vector, Xnor
i is the normalized

value of featureXi, max (X) and min (X) are the minimum and
maximum values of X, respectively.

The output variable (PV power) is similarly normalized
within the [0,1] range.

Following normalization, the dataset is split into three sub-
sets: 70% for training, 15% for validation, and 15% for testing.
The training set is used to optimize model parameters, the val-
idation set helps prevent overfitting, and the test set evaluates
the model’s generalization capability.

Figures 8 and 99 illustrate samples of the PV power varia-
tions over time: Figure 8 shows the PV power variation over a
single day (January 1, 2018) and Figure 9 shows the PV power
variation over an entire month (January 2018).

These figures offer valuable insight into the temporal vari-
ability of photovoltaic (PV) power generation, a key factor in
developing reliable forecasting models.

Figure 9. PV power variation in function of the time for a period of one
Month (January 2018).

Figure 8 presents the PV power output for a single day—
January 1, 2018. The curve shows a typical bell-shaped pat-
tern, with power starting from zero at sunrise, increasing grad-
ually to a peak around solar noon, and then decreasing back
to zero at sunset. This pattern reflects clear sky conditions, as
the smooth curve lacks sudden fluctuations, suggesting mini-
mal impact from transient weather events such as cloud cover.
This daily profile is essential for short-term forecasting models,
especially those targeting hourly predictions.

Figure 9, on the other hand, illustrates the PV power varia-
tion over the entire month of January 2018. Unlike the single-
day profile, the monthly curve displays significant variability
from day to day. Some days exhibit high and smooth power
generation, similar to the pattern seen in Figure 8, while oth-
ers show reduced or irregular output, indicating the presence of
cloudy or overcast conditions. This variability emphasizes the
challenge in medium- to long-term forecasting and highlights
the importance of incorporating meteorological data—such as
irradiation and temperature—into the prediction models. It also
underlines the need for robust models capable of generalizing
across varying conditions.

4.2. PV forecast setup

The configuration settings for each forecasting model
(MLP, GRU, LSTM, BiLSTM, and CNN) are summarized in
Table 5. The MLP, GRU, LSTM, and BiLSTM models share
a similar structure with three layers containing 64, 32, and 16
units, respectively, with the Rectified Linear Unit (ReLU) acti-
vation function.For the CNN model, three consecutive Conv1D
layers are utilized with filter sizes of 64, 32, and 16, a kernel
size of 2, and ReLU activation. All models were trained using
the following parameters mentioned in Table 5.

4.3. Models Validation

Although the mathematical formulations of common error
metrics can be found in previous studies [69, 70], this section
highlights their physical interpretation and the improvements
they provide.In this work, six statistical metrics are used to eval-
uate the forecasting performance of the models: RMSE, MAE,

9
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Figure 10. Predictors’ importance Scores of the 4 predictors of the training input data of the used features selection techniques.

normalized RMSE (nRMSE), normalized MAE (nMAE), the
Coefficient of Determination (R2), and the Correlation Coeffi-
cient (R).

These metrics offer a comprehensive and scale-independent
evaluation of model accuracy, allowing for effective compari-
son across different algorithms.

4.3.1. Root Mean Square Error (RMSE)
The Root Mean Square Error (RMSE) measures the stan-

dard deviation of prediction errors, giving greater weight to
larger errors. It is defined as:

RMS E =

√√
1
n

n∑
i=1

(HE − HM)2, (10)

where HE is the estimated (predicted) value, HM is the mea-
sured (actual) value, n is the total number of samples. Lower
RMSE values indicate better forecasting performance.

4.3.2. Mean Absolute Error (MAE)
The Mean Absolute Error (MAE) quantifies the average

magnitude of errors in a set of predictions, without consider-
ing their direction. It is given by:

MAE =
1
n

n∑
i=1

|HE − HM |. (11)

Unlike RMSE, MAE treats all errors equally, providing a direct
measure of prediction accuracy.

10
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Figure 11. Correlation between measured and predicted PV power using 5 forecast models.

Figure 12. Forecast results on a typical sunny day.

4.3.3. Normalized RMSE (nRMSE)
The normalized RMSE (nRMSE) expresses the RMSE as

a percentage of the mean of the measured values, providing a
scale-independent measure:

nRS ME =
(

RMS E
HMax − HMin

)
× 100. (12)

The ranges of nRMSE define the model performance
as [71, 72]: Excellent if: nRMSE < 10%, Good if:
10% < nRMSE < 20%, Fair if: 20% < nRMSE < 30%, Poor

Figure 13. Forecast results on a typical cloudy day.

if: nRMSE > 30%.

4.3.4. Normalized MAE (nMAE)
Similarly, the normalized MAE (nMAE) relates the MAE

to the mean of the measured values:

nMAE =

 MAE
1
n
∑n

i=1 HM

 × 100. (13)

This metric also provides a percentage error independent of
the data scale.

11
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Table 5. Parameters of forecast models.
Model Parameters Values or

properties
MLP Number of hidden layers

Size of hidden layers
Activation function

3
64/32/16
ReLU

GRU Number of layers
LSTM cells in layer 1
Activation function

3
64/32/16
ReLU

LSTM Number of layers
LSTM cells
Activation function

3
64/32/16
ReLU

BiLSTM Number of layers
BiLSTM cells
Activation function

3
64/32/16
ReLU

CNN Number Conv1D layers
Number of filters
Kernel size
Activation function

3
64/32/16
2
ReLU

Learning parameters
Number of epochs
Batch size
Optimizer
Learning rate

50
32
Adam
0.001

4.3.5. Coefficient of Determination (R2)
The Coefficient of Determination (R2) assesses how well

the predicted values approximate the actual data. It is defined
by:

R2 = 1 −
∑n

i=1 (HM − HE)2∑n
i=1

(
HM − HM

)2 , (14)

where HM is the mean of the measured values. An R2 value
closer to 1 indicates a stronger fit between the predicted and
observed data.

4.3.6. Correlation Coefficient (R)
The Pearson Correlation Coefficient RRR quantifies the lin-

ear relationship between the predicted and measured values:

R =

∑n
i=1

(
HE − HE

)
.
(
HM − HM

)
√∑n

i=1

(
HE − HE

)
.
∑n

i=1

(
HM − HM

) , (15)

where HE and HM are the mean predicted and measured values,
respectively. An R value close to 1 signifies a strong positive
correlation.

5. Results and discussion

The core focus of this study is to examine the critical im-
pact of input predictor selection on the accuracy of photovoltaic
(PV) power forecasting. As detailed in Section 4.1, the dataset

comprises several potential predictors, including Global So-
lar Radiation, Number of Hours, Temperature, and Number of
Days. However, utilizing all available features may lead to
increased data dimensionality and introduce redundant or ir-
relevant information, which can degrade model performance
and complicate the forecasting process. To address this, the
study aims to systematically evaluate a range of feature selec-
tion techniques to identify the most relevant predictors, thereby
enhancing the accuracy and efficiency of daily PV power pre-
diction.

Figure 10 provides a comprehensive illustration of the rank-
ing scores assigned to the four predictors within the training
dataset, evaluated using a diverse set of feature selection tech-
niques. These techniques—ReliefF, Minimum Correlation, and
Minimum Redundancy Maximum Relevance (MRMR)—offer
distinct analytical perspectives on the relative importance of
each predictor in the context of photovoltaic (PV) power fore-
casting. By leveraging these complementary methods, the anal-
ysis highlights the varying degrees of influence that each input
variable exerts on prediction accuracy.

The ReliefF feature selection technique identifies global so-
lar radiation as the most significant predictor, with a score of
0.0082. Following closely is the hour number feature, scoring
0.0061. Conversely, both the day number and temperature fea-
tures rank lower, each obtaining an equivalent score of 0.0025.

In contrast, the Minimum Correlations technique highlights
“number of day” and “Number of Hour” as the most influential
predictors, both scoring 1. This is followed by the Global solar
radiation feature, which obtains a score of 0.98. The least com-
pelling feature, according to this technique, is “Temperature”,
scoring 0.75.

The MRMR feature selection technique prioritizes “global
solar radiation” as the most interesting feature, scoring 0.47,
followed by “Temperature” at approximately 0.18. The predic-
tor with the lowest importance score is “Number of the Day”,
scoring 0.02.

Table 6 serves as a comprehensive overview for understand-
ing the comparative importance of the four predictors under in-
vestigation across various feature selection methodologies. The
inclusion of the ”Mean rank” column offers valuable insights
into the overall ranking consensus achieved through the aggre-
gation of results from multiple techniques.

Upon closer examination of the table, it becomes evident
that ”Global Solar Radiation” consistently garners significant
attention across all feature selection approaches. With a mean
rank of 2, this predictor attains a prominent position, standing
out as a pivotal factor in predicting PV power production. Its
recurrent prominence, securing the top rank in two techniques
and a notable third place in one, underscores its robust influence
on the predictive models.

Following the lead is the “Number of the Hour” feature,
which maintains a commendable mean rank of 2. This obser-
vation underscores its substantive contribution to the predictive
accuracy of the models, positioning it as a crucial determinant
in forecasting PV power output.

Conversely, the “Number of the Day” predictor exhibits a
comparatively weaker performance, as reflected by its mean
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Table 6. Ranking of each of the four predictors according to Features selectors.
Predictor Ranking according to Mean

Rank
Ranking
according to
Mean rank

ReleifF Min Correlation MRMR
N Day 3 2 4 3 3
N Hour 2 1 3 2 2
GSR 1 3 1 1,6666 1
T 4 4 2 3.3333 4

Table 7. Performance of daily PV Power forecasting without decomposition.
Model RMSE MAE nRMSE nMAE R square R
MLP 5.0565 2.3520 9.9615 13.57 0.8908 0.9438
GRU 4.9558 2.3237 9.7632 13.41 0.8951 0.9461
LSTM 5.0128 2.2883 9.8755 13.20 0.8927 0.9448
BiLSMT 4.9740 2.3497 9.7991 13.56 0.8944 0.9457
CNN 5.7461 2.9761 11.3201 17.17 0.8590 0.9268

Table 8. The performance of daily PV Power forecasting in function of the number of IMFs using different forecasting models.
Number
of IMFs

RMSE MAE nRMSE nMAE R square R

ANN 1 5.0565 2.3520 9.9615 13.57 0.8908 0.9438
2 4.3986 2.2317 8.6654 12.88 0.9174 0.9587
3 3.9151 1.9225 7.7129 11.09 0.9346 0.9667
4 3.6704 1.9288 7.2309 11.13 0.9425 0.9708
5 3.2675 1.7258 6.4372 9.96 0.9544 0.9769

GRU 1 4.9558 2.3237 9.7632 13.41 0.8951 0.9461
2 4.3026 2.1089 8.4763 12.17 0.9210 0.9597
3 3.6191 1.7586 7.1299 10.15 0.9441 0.9716
4 3.4056 1.6481 6.7092 9.51 0.9505 0.9749
5 3.2460 1.6025 6.3948 9.25 0.9550 0.9772

LSTM 1 5.0128 2.2883 9.8755 13.20 0.8927 0.9448
2 4.4186 2.1831 8.7049 12.60 0.9166 0.9574
3 3.9612 2.1403 7.8038 12.35 0.9330 0.9659
4 3.5886 1.8379 7.0697 10.60 0.9450 0.9721
5 3.2482 1.6033 6.3990 9.25 0.9550 0.9772

BiLSTM 1 4.9740 2.3497 9.7991 13.56 0.8944 0.9457
2 4.3316 2.0749 8.5334 11.97 0.9199 0.9591
3 4.0508 2.0461 7.9802 11.81 0.9299 0.9643
4 3.7166 1.8460 7.3220 10.65 0.9410 0.9701
5 3.2750 1.6669 6.4519 9.62 0.9542 0.9768

CNN 1 5.7461 2.9761 11.3201 17.17 0.8590 0.9268
2 4.7728 2.5586 9.4027 14.76 0.9027 0.9501
3 4.8968 2.8528 9.6470 16.46 0.8976 0.9474
4 4.2006 2.4455 8.2754 14.11 0.9247 0.9616
5 4.0967 2.2994 8.0708 13.27 0.9283 0.9635

rank of 3. While still contributing to the predictive process, its
lower ranking suggests that it may not wield as much influence
as the other predictors in the dataset.

Table 7 presents the performance of different models for
daily PV power forecasting using the ”Global solar radiation”
feature. Among the models, GRU achieves the best overall
performance, showing the lowest RMSE (4.9558) and MAE

(2.3237), along with the highest R2 and R. LSTM and BiLSTM
also perform well, with errors close to GRU but slightly higher.
MLP, although slightly behind GRU, still shows strong perfor-
mance, particularly with a solid R2 value of 0.8908. CNN, in
contrast, shows the weakest performance, having the highest
RMSE (5.7461) and MAE (2.9761), along with the lowest R2

(0.8590), suggesting it is less reliable for forecasting daily PV
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Figure 14. R2 in function of the number of IMFs for the forecast models.

power compared to the recurrent neural network-based mod-
els. Overall, models based on recurrent architectures includ-
ing GRU, LSTM and BiLSTM outperform the MLP and CNN
models in this task.

Figure 11 exemplifies the regression between the measured
and predicted daily PV Power using the forecast models. This
illustration showcases the optimal results attained across all ex-
periments, achieved through the forecast models using the se-
lected predictor. Notably, the graph depicts minimal dispersion
between the measured and predicted data points, underscoring
the exceptional performance of our features selection approach.

Furthermore, Figure 12 shows the performance of different
forecast models against the ground truth on a typical sunny day.
Overall, MLP and GRU exhibit moderate performance with
some deviations from the ground truth, particularly at lower
values. LSTM and BiLSTM tend to perform well at higher val-
ues but show inaccuracies in the middle range. CNN has more
significant fluctuations, especially for lower values, although it
remains more stable at higher values. GRU and MLP are gener-
ally more consistent compared to LSTM and BiLSTM, which
are more sensitive to value fluctuations.

Figure 13 presents the forecast of PV power on a typical
rainy day, the models. The measured PV power fluctuates be-
tween negative and positive values, reflecting the varying solar
power during cloudy conditions. The MLP and GRU models
tend to underestimate the values in the beginning, especially
in lower power readings, but show better alignment with the
ground truth as the forecast progresses toward higher values.
LSTM and BiLSTM perform well during periods of higher
power but experience underestimation or large deviations in the
lower and medium ranges, particularly for very low power val-
ues. CNN, while exhibiting high volatility, especially in the low
power range, follows the trends better in the higher power re-
gions. However, it struggles with sudden transitions from low
to high values. Overall, the models’ predictions vary widely
in the early part of the day, where solar power is low, and are
closer to the ground truth as the day progresses and the power
output increases. CNN appears to perform the best in the higher
power regions but faces challenges at the start, while MLP and
GRU show more consistent performance throughout the fore-

Figure 15. The nMAE in function of the number of IMFs for the forecast
models.

cast period.
Table 8 provides a quantitative assessment of the perfor-

mance of five forecasting models including ANN, GRU, LSTM,
BiLSTM, and CNN for PV power forecast, evaluated using var-
ious metrics: including RMSE, MAE, nRMSE, nMAE, R2, and
correlation (R), across different numbers of IMFs (1 to 5).

As the number of IMFs increases, all models demonstrate
improvements in forecasting accuracy, reflected by a consistent
decrease in RMSE and MAE, and an increase in R2 and correla-
tion values. For instance, in the ANN model, RMSE decreases
from 5.0565 at 1 IMF to 3.2675 at 5 IMFs, while MAE drops
from 2.3520 to 1.7258. Similarly, in GRU, RMSE reduces from
4.9558 to 3.2460, and MAE drops from 2.3237 to 1.6025. This
trend is also observed in LSTM, BiLSTM, and CNN models.

Notably, GRU and LSTM consistently outperform the other
models, achieving the lowest RMSE and MAE values, along
with the highest R2 values, particularly when 3 or more IMFs
are used. For example, GRU shows an R2 increase from 0.8951
at 1 IMF to 0.9550 at 5 IMFs, and LSTM similarly improves
from 0.8927 to 0.9550. These models demonstrate stronger cor-
relation between predicted and actual values, with GRU reach-
ing a correlation of 0.9772 and LSTM matching that at 5 IMFs.
In contrast, CNN shows the least accuracy across all metrics,
with the highest RMSE and MAE values, indicating it is less
effective in forecasting PV power compared to the other mod-
els.

Overall, increasing the number of IMFs enhances forecast-
ing accuracy, improving both the fit of the model and the corre-
lation between predicted and actual data. GRU and LSTM are
the most effective models for PV power forecasting, achieving
the lowest errors and the highest correlation and R2 values as
the number of IMFs increases.

Moreover, Figure 14 shows that increasing the number of
IMFs generally improves the R2 values for all models, indi-
cating better data fitting. ANN performs the best, steadily in-
creasing with more IMFs. GRU follows a similar pattern but
with slightly lower values. LSTM and BiLSTM show similar
improvements, plateauing after 4 IMFs. CNN starts lower but
improves sharply, matching the other models by 5 IMFs. Over-
all, more IMFs enhance performance, with ANN achieving the
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highest R-squared values.
Figure 15 reveals that as the number of IMFs increases, the

nMAE error steadily decreases for all models. ANN, GRU,
LSTM, and BiLSTM show a smooth and consistent decline,
reflecting enhanced performance with more IMFs. GRU and
BiLSTM, in particular, exhibit quicker improvements beyond
the third IMF. CNN begins with the highest error and shows less
stable behavior, though its error drops notably after the fourth
IMF. Overall, ANN and GRU achieve the most stable and effi-
cient error reduction as the number of IMFs grows.

6. Conclusion

This study proposes a robust, data-driven framework for
enhancing daily photovoltaic (PV) power forecasting by inte-
grating advanced feature selection techniques, signal decompo-
sition, and deep learning models. The results underscore the
pivotal role of feature selection in improving forecasting ac-
curacy. Through the application and comparison of three fea-
ture selection methods—ReliefF, Minimum Correlation Feature
Selection (CFS), and Minimum Redundancy Maximum Rele-
vance (MRMR)—Global Solar Radiation (GSR) was consis-
tently identified as the most influential predictor. Incorporat-
ing the selected features into the forecasting pipeline, along
with Variational Mode Decomposition (VMD) as a preprocess-
ing step, significantly improved model performance. Among
the tested deep learning architectures, the Gated Recurrent
Unit (GRU) network delivered the highest predictive accuracy,
achieving an RMSE of 3.246 and an R2 of 0.9550. Graphi-
cal evaluations further validated the model’s reliability, demon-
strating close alignment between predicted and actual values.
Overall, the findings demonstrate that the integration of op-
timal feature selection and signal decomposition techniques
with deep learning offers a highly effective strategy for improv-
ing the precision and robustness of PV power forecasting—
particularly valuable for energy planning and management in
solar-rich regions.
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