
J. Nig. Soc. Phys. Sci. 7 (2025) 2810

Journal of the
Nigerian Society

of Physical
Sciences

Machine learning-based feature selection for
ultra-high-dimensional survival data: a computational approach

Nahid Salma a,b, Majid Khan Majahar Ali a,∗, Raja Aqib Shamim a,c

aSchool of Mathematical Sciences, Universiti Sains Malaysia, 11800, Pulau Penang, Malaysia
bDepartment of Statistics and Data Science, Jahangirnagar University, Savar, 1342, Dhaka, Bangladesh

cDepartment of Mathematics, University of Kotli, 11100, Azad Jammu and Kashmir, Pakistan

Abstract

Ultra-high-dimensional (UHD) survival data presents significant computational challenges in biomedical research, particularly in Renal Cell
Carcinoma (RCC), where genomic complexity complicates risk assessment. Effective feature selection is crucial for identifying key biomarkers
that improve RCC diagnosis, prognosis, and treatment. This study evaluates machine learning (ML)-based feature selection methods to address
limitations in scalability, feature redundancy, and predictive accuracy in UHD RCC survival data. Gene expression data from 4,224 differentially
expressed genes across 74 individuals was analyzed using LASSO, EN, Adaptive LASSO, Group LASSO, SIS, ISIS, SCAD, and SVM. Models
were assessed using Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R² values. SCAD demonstrated the best predictive
performance (MSE: 529.00, RMSE: 23.00, R²: 0.69), surpassing ISIS (R²: 0.61), SIS (R²: 0.60), and EN (R²: 0.57). LASSO and Adaptive
LASSO underperformed. SCAD identified 14 key genes—NCAM1, ATP1B3, NAT8, MT2A, GTF2F2, X4197, GUCY2C, SLC3A1, CRYZ,
DES, MT1L, NFYB, PRKAR2B, and CLIP1—as potential RCC biomarkers. Gene interaction network analysis confirmed their role in RCC
progression. Despite SCAD’s strong performance, 31% of variability remained unexplained, underscoring the need for hybrid ML models.
Combining deep learning approaches like CNNs with interpretable methods such as SCAD or Elastic Net could improve predictive accuracy
and reveal complex gene interactions in RCC prognosis.This research supports SDG 3 (Good Health and Well-being) and SDG 9 (Industry,
Innovation, and Infrastructure) by advancing precision medicine, early RCC detection, and biomedical data-driven innovations for improved
clinical decision-making.
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1. Introduction

The rapid expansion of high-throughput computing and big
data analytics has transformed computational biology and med-
ical informatics. Modern biomedical research increasingly re-
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Ali )

lies on ultra-high-dimensional (UHD) datasets, such as gene ex-
pression profiles, which contain thousands of features but are
constrained by limited sample sizes. Processing such datasets
presents significant computational challenges, including the
curse of dimensionality, multicollinearity, high computational
costs, and feature selection difficulties [1]. Traditional statisti-
cal methods struggle with these issues, often leading to over-
fitting, loss of relevant information, and reduced model gener-
alization [2]. Machine learning (ML)-based feature selection
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has emerged as a powerful solution, improving dimensionality
reduction, computational efficiency, and predictive accuracy in
survival analysis [3, 4].

Despite these advancements, several computational chal-
lenges remain unresolved. Scalability is a major limitation,
as increasing data dimensionality leads to excessive computa-
tional costs and memory inefficiencies [5]. Feature redundancy
and correlation further complicate selection, as models like
LASSO tend to favor one variable from correlated groups while
discarding others, potentially omitting crucial information [6].
While deep learning models and ensemble learning techniques
enhance predictive performance, they often lack interpretabil-
ity, which is crucial for biomedical applications where model
decisions must be explainable [7]. Furthermore, no standard-
ized benchmarking framework exists for hybrid and ensemble-
based feature selection methods, making it difficult to deter-
mine the optimal approach for UHD survival data [8]. Addi-
tionally, small biomedical datasets are prone to overfitting, and
although regularization techniques help mitigate this risk, they
can introduce biases that limit generalizability [5]. Lastly, the
computational intensity of ML-based feature selection methods
remains a major bottleneck, making real-time or streaming data
analysis impractical [9].

To evaluate these computational challenges in a real-world
biomedical context, we use Renal Cell Carcinoma (RCC) as a
case study. RCC, the most common form of kidney cancer, ac-
counts for 90% of kidney tumors [10] and 5% of all cancers
worldwide [11]. In 2020, it contributed to 430,000 new cases
and 179,368 deaths globally, with U.S. projections estimating
81,800 new cases and 14,890 deaths annually by 2025 [12–16].
RCC is often detected incidentally, but prognosis depends heav-
ily on tumor stage and metastasis, with a five-year survival rate
as low as 12% in advanced cases [15, 16]. The disease orig-
inates in the kidney’s urine-producing tubules and frequently
spreads to other organs, complicating treatment [17, 18]. Famil-
ial RCC, which accounts for 2–3% of cases, further increases
the risk among first-degree relatives [19]. Genetic mutations
in VHL [20, 21], c-MET [16], and PBRM-1 influence tumor
growth, treatment response, and prognosis [22]. As RCC inci-
dence continues to rise with advancements in diagnostics and
imaging, there is a growing need for improved predictive mod-
els and targeted therapies [1].

Several ML-based approaches have been explored to en-
hance RCC diagnosis, prognosis, and survival prediction. Some
studies have combined filtering methods (e.g., XGBoost, GBM,
Rpart) with wrapper techniques (e.g., mRMR, RFE, Boruta)
to identify gene signatures [7]. Others have applied RNA-seq
data and Cox regression to construct survival risk scores [9] or
leveraged CT scan-based AI models for RCC prognosis predic-
tion [4]. Additional approaches include ML models for tumor
classification [23, 24], texture-based RCC grading [24], and
RCC post-surgical outcome prediction [5]. While these studies
demonstrate the potential of ML in RCC research, they often
lack scalability, standardized evaluation metrics, and real-time
feasibility, leaving uncertainty about the most effective compu-
tational strategy for survival analysis.

This study presents a comprehensive benchmarking frame-

work that systematically evaluates ML-based feature selection
methods for UHD survival data, using RCC as an experimental
case study. We apply and compare multiple ML-driven feature
selection methods—including LASSO, Elastic Net (EN), Adap-
tive LASSO, Group LASSO, SCAD, SVM, SIS, and ISIS—to
identify the most effective approach for reducing dimensional-
ity and improving survival prediction models. The evaluation is
based on key performance metrics such as Sum of Square Er-
ror (SSE), Mean Square Error (MSE), Root Mean Square Error
(RMSE), and the coefficient of determination (R²).

By systematically benchmarking these methods, this re-
search aims to enhance the efficiency and reliability of ML-
driven feature selection in UHD datasets, addressing challenges
in big data processing, feature redundancy, model generaliza-
tion, and real-time feasibility. This work aligns with the United
Nations Sustainable Development Goals (SDGs), particularly
SDG 3 (Good Health and Well-being) and SDG 9 (Industry,
Innovation, and Infrastructure). Enhancing computational fea-
ture selection methods will contribute to early disease predic-
tion, precision medicine, and improved digital healthcare in-
frastructure, fostering advancements in both biomedical infor-
matics and global healthcare innovation.

2. Methodology

2.1. Flowchart of the study
In order to achieve our goal, we meticulously created a

study plan, which we adhered to religiously (Figure 1). Shortly
after, the investigation began by importing an RCC dataset with
the goal of extracting the optimal feature selection method of
UHD RCC data. A few simple descriptive analyses, such as
frequency analysis and chi-square testing, were performed on
the dataset in order to gain a better understanding of it. After
that, the UHD RCC gene-expression data was pre-processed
and divided into a 70:30 ratio, with the remaining 30% be-
ing utilized to validate all methodologies and the remaining
70% being used for training. Eight machine learning feature
selection techniques (LASSO, EN, Adaptive LASSO, Group
LASSO, SCAD, SVM, SIS and ISIS) were subsequently ap-
plied to the UHD data and 10-fold cross-validation. SSE, MSE,
RMSE, and R2 were used to assess each of the ten feature selec-
tion techniques’ performances. After selecting the best feature
selection methodology, the most effective way was used to ex-
tract significant features. GeneMANIA was used to examine
the gene interaction of the relevant RCC genes that were ex-
tracted.

2.2. Data description
The gene expression dataset, sourced from the R tool “kid-

pack,” comprises 4224 differentially expressed gene entries
across 74 individuals at risk for kidney cancer. It includes renal
tumor samples with diverse histological types, grades, stages,
chromosomal abnormalities, and survival data. Multiple tu-
mor samples were pooled to establish a hybridization refer-
ence. Accessible via E-DKFZ-1 < ArrayExpress < BioStudies
< EMBL-EBI, the dataset tracks survival outcomes, indicating
whether a patient has died (1) or remains alive (0).
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Figure 1: Overall methodology of the study.

2.3. Data preprocessing
The dataset was then split into training (70%) and validation

(30%) sets, ensuring that all methodologies were evaluated on
an independent test set to mitigate overfitting.

2.4. Feature selection methods
The choice of feature selection methods in this study was

guided by the specific challenges associated with ultra-high-
dimensional (UHD) genomic data, where the number of predic-
tors (4,224 genes) far exceeds the number of observations (74
individuals). In such scenarios, it is critical to employ methods
that can reduce dimensionality, control overfitting, and improve
model generalizability. To this end, we applied a diverse set of
eight feature selection techniques: LASSO, Elastic Net (EN),
Adaptive LASSO, Group LASSO, SCAD, SVM, SIS, and ISIS.
LASSO was employed due to its widely recognized ability to
perform variable selection and regularization through L1 pe-
nalization, encouraging model sparsity [25, 26]. Elastic Net
was selected to address multicollinearity by combining L1 and
L2 penalties, which is especially useful in genomic data where
many genes are highly correlated [27]. Adaptive LASSO ex-
tends the basic LASSO approach by introducing data-adaptive

weights to enhance selection consistency and achieve oracle
properties [22]. Group LASSO was included to allow for se-
lection at the group level, reflecting potential biological struc-
tures such as gene pathways [28]. SIS and ISIS were used as
efficient screening techniques. SIS filters variables based on
their marginal correlation with the response, significantly re-
ducing the dimensionality prior to model fitting [29, 30]. ISIS
enhances SIS by iteratively refining variable selection to cap-
ture joint effects, improving robustness in identifying relevant
predictors [30, 31]. Particular emphasis was placed on SCAD,
a penalized regression method with a non-convex penalty that
effectively balances sparsity and estimation accuracy. SCAD
addresses limitations of LASSO by avoiding over-shrinkage of
large coefficients, thus preserving the influence of truly signif-
icant predictors. Its oracle properties and reduced bias make it
particularly suited for small-sample, high-dimensional contexts
like ours [22, 28]. SVM was included for comparative pur-
poses due to its strong performance in high-dimensional clas-
sification tasks, particularly through the maximization of deci-
sion boundaries. Although not a feature selection method in the
traditional sense, linear SVMs provide interpretable coefficient
estimates that can be used to identify important features. We ac-
knowledge that SVM is sensitive to outliers, a known limitation
[32, 33].

2.4.1. Least absolute shrinkage and selection operator
(LASSO)

For the purpose of doing cross-validation analysis utilizing
the L1 norm as a penalty mechanism and identifying impor-
tant variables, the collected data were analyzed by the LASSO
[25, 34]. In this big-data age shrinkage techniques are be-
coming more and more popular in biosystems due to their
advantageous features for selecting factors and regularization.
The LASSO technique computes coefficients by increasing log-
partial likelihood while modifying the tuning value to control
the penalty parameter. It is simple to state Lasso’s general
meaning as follows:

Let {1xi, yi}, i = 1, 2, . . . ,N denote a sample of N Indepen-
dent and Identically Distributed (IID) randomly generated vec-
tors. Where xi = (xi1, xi2, . . . , xip) signifies the row vector of
data with respect to the p-explanatory factors of the i-th sample
element and 1xi ∈ Rp where yi ∈ R implies the corresponding
respond vector. Thus, the LASSO algorithm estimator’s overall
shape is as follows:

β̂LAS S O = arg min
β∈Rp

 1
N

n∑
i=1

(yi − xiβ)2 + λ

p∑
j=1

|β j|

 , (1)

where λ stands for both the multiplier of Lagrange and the
penalty component. The matrix forms of the formula men-
tioned above can be further expressed as follows:

β̂LAS S O = arg min
b∈Rp

 1
N

N∑
i=1

∥Y − Xβ∥22 + λ
p∑

j=1

∥β∥1

 . (2)

Y corresponds to the final results’ column vectors of size n × 1,
X designates the matrix n×p holding the pertinent variables that
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were discovered to be of concern, and, correspondingly, ∥ · ∥1,
∥ · ∥2 indicate the L1 and L2 vector norms.

2.4.2. Elastic net (EN)
Although LASSO performs well for many different variable

selection problems, it breaks down when there are noticeably
more predictors (p) than samples [19]. An improved version
of LASSO was first proposed by [25] for managing strong cor-
relations, provided that the maximum sample size for the total
number of predictor variables selected is not exceeded and that
there are strong correlations between several sets of variables:
Elastic Net (EN) methodology. The EN uses correction phases
L1-LASSO and L2-right, self-identifying the factors, and per-
forms continuous shrinkage to improve forecasting accuracy.
This technique removes irrelevant variables while keeping all
the larger fish (important covariates) intact, much like a stretchy
fishing net. This is the definition of the Elastic Net Estimator:

J(β, λ1, λ2) =
p∑

j=1

[
λ1|β j| + λ2β

2
j

]
. (3)

The equation uses Lasso (left part of the above equation)
and Ridge penalties (right part of the above equation) for sparse
variables and highly correlated features, promoting average
computation in linear models like regression or classification
approaches [35]:

β̂elastic net =(1 + λ2) arg min
β∈Rp

 1
N

N∑
i=1

(yi − xiβ)2

+λ1

p∑
j=1

|β2
j | + λ2

p∑
j=1

β2
j

 .
(4)

The parameters of the elastic net, denoted by λ1 and λ2,
necessitate an optimal ratio instead of just one value, frequently
culminating in the combined value of the two parameters. To
obtain an estimation of the elastic-net coefficient, the regression
loss function is minimized using the elastic-net cost.

p∑
j=1

[
α|β j| + (1 − α)β2

j

]
≤ κ, (5)

where κ represents the additional α parameter, that makes up
the sum of λ1 and λ2.

2.4.3. Adaptive LASSO
The Adaptive Least Absolute Shrinkage and Selection Op-

erator (Adaptive LASSO) is a regression method that enhances
the standard LASSO by assigning adaptive weights to penalize
coefficients differently. It retains the ability of LASSO to per-
form variable selection and regularization but mitigates some of
its shortcomings, such as inconsistent variable selection when
true coefficients are small [22]. Let us assume a linear regres-
sion model:

Let us assume a linear regression model:

y = Xβ + ϵ, (6)

where y ∈ Rn : Response vector (dependent variable), X ∈ Rn×p

Design matrix with n observations and predictors, Coefficient
vector, ϵ: Error term, assumed to be N(0, σ2).

The Adaptive LASSO estimator solves the following opti-
mization problem:

β̂ = arg min
β∈Rp

 1
2n
∥y − Xβ∥22 + λ

p∑
j=1

w j|β j|

 , (7)

where ∥y − Xβ∥22 =
n∑

i=1
(yi − Xiβ)2 : Residual sum of squares,

λ > 0: Regularization parameter controlling the trade-off be-
tween the fit and penalty; w j > 0: Adaptive weights for each
coefficient β j , computed as: w j =

1
|β̂int

j |
γ . With β̂int

j being an

initial estimate of β j (e.g., from ordinary least squares or Ridge
regression), and γ > 0 is a tuning parameter.

2.4.4. Group LASSO
Group LASSO is a regularization technique designed for

scenarios where predictors (features) are naturally organized
into predefined groups. Instead of penalizing individual coeffi-
cients as in standard LASSO, Group LASSO applies penalties
at the group level. This approach ensures that entire groups
of predictors are either selected or excluded together, making
it suitable for problems where predictors within a group are
correlated or have a shared interpretation. In group LASSO,
the predictors are partitioned into G groups, {G1,G2, . . . ,GG}

such that each group Gk corresponds to a subset of indices
of β (e.g., group Gk contains indices Gk{ j1, j2, . . . , j|Gk |}). The
Group LASSO optimization problem is defined as [22]:

β̂ = arg min
β∈Rp

 1
2n
∥y − Xβ∥22 + λ

G∑
k=1

∥βGk∥2

 . (8)

Here ∥y − Xβ∥22 =
n∑

i=1
(yi − Xiβ)2 : Residual sum of squares,

λ > 0: Regularization parameter controlling the trade-off be-

tween the fit and penalty, ∥βGk∥2 =
√∑

j∈Gk
β2

j : l2 norm of the
coefficients in group Gk, βGk : subsectors of β corresponding
to the indices in group Gk. The key difference from standard
LASSO lies in the penalty term. By summing the l2-norms of
the coefficient groups, Group LASSO encourages sparsity at the
group level rather than individual coefficients [22, 28].

2.4.5. Smoothly clipped absolute deviation (SCAD)
SCAD is a regularization method designed to address some

limitations of LASSO, such as excessive bias in large coeffi-
cients and inconsistent variable selection. SCAD achieves this
by using a nonconvex penalty function that reduces bias for
large coefficients while still maintaining sparsity for smaller
ones. It is particularly useful for high-dimensional data and
variable selection tasks. The SCAD estimator is obtained by
solving the optimization problem [22, 28]:

β̂ = arg min
β∈Rp

 1
2n
∥y − Xβ∥22 +

p∑
j=1

Pλ(|β j|)

 . (9)
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Where Pλ(|β j|): SCAD penalty function, which depends on
λ > 0:(regularization parameter) and a > 2 (a parameter con-
trolling the nonconvexity). The SCAD penalty function is de-
fined as:

Pλ(t) =


λt, if 0 ≤ t ≤ λ,
− t2−2aλt+λ2

2(a−1) if λ < t ≤ aλ,
(a+1)λ2

2 if t > aλ,

(10)

where t = |β j|.

2.4.6. Support vector machines (SVM)
SVM are popular machine learning algorithms for classi-

fication and regression tasks. When applied to survival data,
SVMs are adapted to handle censored data and predict survival
times or risks. Survival data involves observations with two
components: the survival time (T ) and the event indicator δ,
where δ = 1 indicates the event (e.g., death, failure) and δ = 0
indicates censoring. SVMs for survival analysis combine ideas
from regression and survival models by creating a hyperplane
or decision boundary in the feature space, optimized based on
survival-specific loss functions. Let, {(xi,Ti, δi)}ni=1 represent
the survival data, where: xi ∈ Rp : Feature vector for the i-th
observation, Ti: Observed survival or censoring time, and δi is
the Event indicator. The goal is to estimate a function f (x) that
relates the features x to the survival outcome [32, 33].

2.4.7. Sure independence screening (SIS)
SIS is a two-step process for selecting meaningful covari-

ates for high-dimensional data [29, 30, 36]. This approach con-
sists of two steps, which are as follows: Phase one: The pre-
liminary screening stage in which marginal utilities are used to
roughly examine the main consequences. In the second phase,
known as the selection stage, variables and parameter estima-
tion are done using a penalized regression with LASSO penalty.
These are the steps that make up SIS:

1. Let’s start by assuming that the sample size for the data
acquisition {(xi, yi), i = 1, . . . , n} is n and x ∈ R. The
following method can be used to calculate the covariate-
specific marginal benefits Xi, i = 1, 2, . . . , p:Lm =

min
β0,β j

1
n
∑

L(yiβ0+xmβm); where L(·, ·) is the representation

of a generalized loss function. More simply, fit p bivari-
ate models, like the generalized linear model (GLM), to
determine the marginal benefits.

2. To find the utility, the partial likelihood of each parameter
is maximized in the following way:

Um =max
βm

∑
i=I

δximβm

−
∑
i=I

δi log

 ∑j∈R(yi)

exp(ximβm)


 ,

(11)

where R(yi) hazards are established before the occurrence
yi. xim is the m-th factor is an indicator of censorship

that present among the p components. Assemble the co-
variates according to this marginal utility in an ascend-
ing sequence. Thus, the most important covariate is the
one with the minimal marginal value, U for the feature or
variable.

3. According to their respective marginal utilities, arrange
the indicators in order of chronology. Hence, based on
the feature or variable’s marginal utility, the most signif-
icant predictors are those with the lowest L j.

4. Describe the first few d attributes. The formula d =
⌊n/ log(n)⌋ is widely used, where ⌊·⌋ is the floor func-
tion. Ã is thus defined as a subset of components that
have been pre-approved.

5. The final step in the SIS technique is to estimate the
model’s parameters of the regression with repercussions
as the following demonstrates:

(
β̂0, β̂m

)
= arg min

(β0,βm)∈Rd+1

1
n

n∑
i=1

L
(
i, β0 + xi,M∗βM∗

)
+
∑
j∈M∗
λ
(
|β j|
)
, (12)

where xi,M∗ ∈ Rd indicates that the sub-vector returned
xi ∈ Rp through d < p specified variables M∗. λ

(
|β j|
)

stands for the LASSO penalty, and [30] explains why the
approach’s name (SIS) makes sense. When d is suffi-
ciently large, there is a good likelihood that the first sort-
ing phase of the procedure stated will choose all the im-
portant predictors. The penalized equation of LASSO,
that additionally evaluates the main effects of the other
covariates, is used in the following stage to choose the
variables.

2.4.8. Iterative sure independence screening (ISIS)
One major problem with the SIS approach is that if ele-

ments are disregarded in the first round, they won’t be found
in the subsequent one. Stated differently, if a marker is jointly
connected with the outcome but marginally unconnected, or if
a predictor is simultaneously uncorrelated but has a stronger
peripheral association to the result over specific relevant com-
ponents in the section [29, 37]. Introduced by [38], ISIS is a
continuous SIS technique meant to fortify SIS and deal with
the previously listed problems. The following is a summary of
the ISIS technique’s workflows, per [30, 31, 39–42]:

1. Using the SIS technique, all statistically significant fac-
tors are retrieved with a likelihood of one. Nevertheless,
when several significant factors are only weakly uncorre-
lated by the response, ISIS approach is used [39, 43].

2. While an index Î1 is selected using the Sure independence
screening procedure, the iterative SIS uses a penalty-
based choosing of features step to produce regression pa-
rameter estimations βi1. The variation in the positive por-
tion of β̂i1 affects the estimate M̂1 in Î1. The following
describes the coefficient’s m conditional utility, assuming

5
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that M is not part of the covariate.

Um|M̂1
=max
βmβM̂

 n∑
i=1

δi

(
ximβm + xT

M̂1,i
βM̂1

)
−

n∑
i=1

δi log

 ∑
j∈R(yi)

exp
(
xT

jmβm + xT
M̂1, j
βM̂1

)
 .
(13)

3. Using the following formula, we calculate each factor’s
marginal utility in order to apply the second SIS step
within this ISIS step.

4. Utilizing penalized regression, researchers minimize the
previously described equation to determine the parame-
ters of the model. The outcome of using the penalized
regression approach is as follows: a median model that
bears a striking resemblance to the actual model

−

n∑
i=1

δi

(
xT

M̂1∪Î2,i
βM̂1∪Î2

)

+

n∑
i=1

δi log

 ∑j∈R(yi)

exp
(
xT

M̂1∪Î2, j
βM̂1∪Î2, j

)
+
∑

m∈M̂1∪Î2

Pλ(β j).

(14)

The magnitudes of βM̂1∪Î2
that are bigger than zero result

in a smaller subset M̂2 of the selected factors.
5. Finally, we execute steps 3 and 4 when we reach the set

or D’s specified set, that is,
(
M̂ j = M̂ j−1

)
.

2.5. Performance evaluation
Assessing the accuracy and performance of a model is a

fundamental aspect of regression analysis. In this study, Mean
Square Error (MSE), Sum of Square Errors (SSE), Root Mean
Square Error (RMSE), and Coefficient of determination or R-
squared are employed as key evaluation metrics to determine
the model’s reliability and predictive accuracy. These metrics
facilitate the comparison of different regression models, help-
ing to identify the one that best fits the data while achieving
the desired level of prediction accuracy. Generally, lower val-
ues of MSE, SSE, and RMSE indicate higher prediction accu-
racy [44], whereas a higher R-squared value suggests a better
fit between the model and the data. Following the guidelines
outlined by Arsad [45], where R-squared values are classified
into specific ranges—85%-100% as very good, 70%-85% as
good, 50%-70% as reasonably good, 30%-50% as reasonably
bad, 15%-30% as bad, and 0%-15% as very bad—this study
uses these classifications to assess the quality of the models,
reflecting a decreasing ability to explain data variability.

The formulas for these evaluation metrics are presented in
Table 1, where yi represents the actual observations, ŷi denotes
the predicted values, ȳ is the mean of all observations, and n
represents the total number of observations. To further enhance
the reliability of our results, we implemented 10-fold cross-
validation, ensuring that model performance is not influenced
by data partitioning biases.

2.6. Gene interaction network analysis using GeneMANIA

GeneMANIA (http://genemania.org) is a versatile and easy-
to-use website designed to help generate hypotheses about gene
function, analyze gene lists, and prioritize genes for functional
assays. When provided with a list of query genes, GeneMANIA
identifies genes with similar functions by leveraging a wide
range of genomics and proteomics data. It assigns weights to
each functional genomic dataset based on its predictive value
for the query. Additionally, GeneMANIA can predict gene
functions by finding genes that are likely to share similar func-
tions with a single query gene based on their interactions. Re-
searchers utilize GeneMANIA to identify related genes, visu-
alize interaction networks, and prioritize candidate genes for
further investigation. This tool aids in uncovering potential
gene associations that may contribute to disease mechanisms
and therapeutic development [46, 47].

3. Results and discussion

3.1. Demographic data

Table 2 illustrates the demographic and clinical characteris-
tics of the patient cohort and their association with survival sta-
tus. The analysis reveals notable differences in clinical and de-
mographic characteristics between patients who were deceased
(“Dead”) and those who were alive (“Alive”) at the time of the
study. Tumor type showed a significant association with sur-
vival status. Clear cell RCC (ccRCC) was the most prevalent
type among deceased patients, accounting for 88.89%, com-
pared to 69.05% among alive patients. Chromophobe RCC
(chRCC) was absent among deceased patients but constituted
7.14% of alive patients. Papillary RCC (pRCC) was also less
common among deceased patients (11.11%) compared to alive
patients (23.81%). These differences were statistically signif-
icant with a p-value of <0.001. Sex distribution did not show
a significant association with survival. Among deceased pa-
tients, males constituted 61.11%, while females accounted for
38.89%. Among alive patients, males were slightly more preva-
lent at 71.42%, with females at 28.58%. The p-value for this
comparison was 0.706, indicating no significant difference in
survival based on sex. Tumor grade also did not show a sta-
tistically significant association with survival status. Deceased
patients primarily had Grade 2 tumors (72.22%), with the re-
mainder being Grade 3 (27.78%) and none in Grade 1. In
contrast, alive patients were distributed across all grades, with
Grade 2 being most frequent (73.81%), followed by Grade 1
(19.05%) and Grade 3 (7.14%). The p-value for this com-
parison was 0.084. Clinical stage demonstrated a strong as-
sociation with survival. The majority of deceased patients
were in Stage 4 (83.33%), with smaller proportions in Stages
3 (11.11%) and 1 (5.56%). Alive patients had a more even
distribution across stages, with 28.57% in Stage 1, 14.29% in
Stage 2, 42.85% in Stage 3, and 14.29% in Stage 4. These
differences were highly significant, with a p-value of <0.001.
Disease progression was another factor significantly associated
with survival. All deceased patients experienced disease pro-
gression (100%), whereas alive patients were predominantly
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Table 1: Equations for performance metrics (as in Ref. [44]).

Used Metrics Description

Mean Square Error (MSE) MS E = 1
n

n∑
i=1

(yi − ŷi)2 .

Sum of Square Error (SSE) S S E =
n∑

i=1
(yi − ŷi)2 .

Root Mean Square Error (RMSE) RMS E =
√

1
n

n∑
i=1

(yi − ŷi)2 =
√

MS E

R-squared R2 = S S R
S S T =

S S T−S S E
S S T = 1 − S S E

S S T = 1 −

n∑
i=1

(yi−ŷi)2

n∑
i=1

(ŷi−ȳ)2

non-progressive (59.52%), with 38.10% showing progression
and 2.38% having missing progression data. This difference
was statistically significant, with a p-value of <0.001. Tumor
size and age were not significantly associated with survival.
The mean tumor size was slightly larger in deceased patients
(7.78 cm, SE = 0.824) compared to alive patients (7.11 cm,
SE = 0.53), but this difference was not significant (p-value =
0.901). Similarly, the mean age of deceased patients was 61
years (SE = 2.79), comparable to 61.93 years (SE = 1.81) for
alive patients, with a p-value of 0.519. Finally, survival time
showed a highly significant difference between the groups. De-
ceased patients had a much shorter mean survival time of 12.61
years (SE = 4.25) compared to 24.17 years (SE = 2.69) for alive
patients, with a p-value of <0.001. This emphasizes the critical
role of factors like tumor type, clinical stage, and disease pro-
gression in influencing patient outcomes, highlighting the im-
portance of early diagnosis and effective management in RCC.
The findings of this study are consistent with those of previous
studies [2, 7, 9, 23, 24].

3.2. Performance evaluation

This study seeks to identify the most effective machine
learning feature selection method for ultra-high-dimensional
(UHD) RCC survival data, with a particular focus on
related genes. A range of advanced feature selection
techniques—including LASSO, Elastic Net (EN), Adaptive
LASSO, Group LASSO, SCAD, SVM, SIS, and ISIS—were
applied and thoroughly evaluated to assess their performance
in improving RCC prognosis and patient outcomes.

Table 3 presents a comparative analysis of various feature
selection methods applied to the RCC dataset, evaluating their
performance across four key metrics: Sum of Squared Errors
(SSE), Mean Squared Error (MSE), Root Mean Square Error
(RMSE), and the coefficient of determination (R²). Among
these methods, SCAD demonstrates the highest performance,
achieving the lowest SSE (39,146.00), MSE (529.00), and
RMSE (23.00), along with the highest R² value of 0.69. This
indicates that SCAD is the most effective in capturing vari-
ance within the dataset, explaining 69% of the variability in
RCC-related features [45]. ISIS follows closely, with SSE
(42,846.74), MSE (579.01), RMSE (24.06), and R² (0.66),
demonstrating strong predictive capabilities, benefiting from an
integrated selection process that enhances accuracy [30, 36].

SIS also performs well, achieving SSE (46,250.00), MSE
(625.00), RMSE (25.00), and an R² of 0.64, highlighting its
effectiveness in selecting informative features while maintain-
ing relatively low error values. However, while SIS is computa-
tionally efficient, it may overlook important feature interactions
[22].

In contrast, ISIS addresses this limitation by iteratively re-
fining feature selection, capturing complex dependencies, and
improving predictive accuracy [44]. Elastic Net (EN) and
LASSO show competitive performance, with EN achieving
SSE (48,304.72), MSE (652.78), RMSE (25.55), and R² (0.57),
while LASSO follows with SSE (48,400.44), MSE (654.06),
RMSE (25.59), and R² (0.53). These results suggest that
EN slightly outperforms LASSO by reducing errors and ex-
plaining more variance. This is evident from the fact that as
the data dimensionality increases, LASSO’s performance de-
clines [27]. Moreover, since genes are often interrelated, the
dataset comprises 4,224 differentially expressed genes, which
may lead to multicollinearity. A previous study [46] found that
LASSO’s effectiveness is significantly impacted by strong cor-
relations among both relevant and irrelevant features. In such
cases, Elastic Net (EN) offers a solution [27]. By incorpo-
rating both L1 (LASSO) and L2 (ridge) penalties, EN identi-
fies important variables while maintaining continuous shrink-
age, enhancing predictive accuracy. As a result, EN outper-
formed LASSO in this scenario. Adaptive LASSO exhibits
moderate performance, with SSE (48,849.62), MSE (660.13),
RMSE (25.69), and R² (0.54), offering slight improvements
over standard LASSO by assigning adaptive penalties to fea-
tures [22]. Group LASSO, however, performs less effectively,
with SSE (53,263.01), MSE (719.77), RMSE (26.83), and an
R² of 0.54, indicating higher error rates and a reduced ability to
explain variance. SVM achieves an SSE of 49,393.01, an MSE
of 667.43, an RMSE of 25.83, and an R² of 0.55, performing
comparably to EN and Adaptive LASSO [22].

The consistently low R² values across all methods suggest
the presence of outliers in the dataset, which is common, as
one to ten percent of an actual dataset may contain outliers, ac-
cording to Ref. [1, 48]. Outliers are data points that deviate
significantly from the overall pattern of the data and can dis-
proportionately influence statistical models, potentially distort-
ing results [44, 49]. Given the presence of 4,224 genes, multi-
collinearity is also expected, as ultra-high-dimensional datasets
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Table 2: Demographic characteristics of patients and association with their status.

Characteristics Patient’s Status p-value
Dead Alive

Type
ccRCC 16 (88.89) 29 (69.05)
chRCC 0 (0) 3 (7.14) <0.001
pRCC 2 (11.11) 10 (23.81)

Sex n (%) n (%)
Male 11 (61.11) 30 (71.42) 0.706

Female 7 (38.89) 12 (28.58)
Grade n (%) n (%)

1 0 (0) 8 (19.05) 0.084
2 13 (72.22) 31 (73.81)
3 5 (27.78) 3 (7.14)

Clinical Stage n (%) n (%)
1 1 (5.56) 12 (28.57)
2 0 (0) 6 (14.29) <0.001
3 2 (11.11) 18 (42.85)
4 15 (83.33) 6 (14.29)

Progress n (%) n (%)
0 0 (0) 25 (59.52)
1 18 (100) 16 (38.10) <0.001

NA 0 1 (2.38)
Tumor Size (cm) Mean = 7.78 Mean=7.11 0.901

SE= 0.824 SE= 0.53
Age (year) Mean = 61 Mean = 61.93 0.519

SE = 2.79 SE =1.81
Survival Time (year) Mean =12.61 Mean =24.17 <0.001

Se = 4.25 SE =2.69

Table 3: Performance of feature selection methods of RCC.

Methods SSE MSE RMSE R2

LASSO 48400.44 654.06 25.59 0.53
EN 48304.72 652.78 25.55 0.57
Adaptive LASSO 48849.62 660.13 25.69 0.54
Group LASSO 53263.01 719.77 26.83 0.54
SCAD 39146.00 529.00 23.00 0.69
SVM 49393.01 667.43 25.83 0.55
SIS 46250.00 625.00 25.00 0.64
ISIS 42846.74 579.01 24.06 0.66

often exhibit correlations between features [44, 48, 50]. Multi-
collinearity refers to a situation in which two or more predictor
variables in a model are highly correlated, making it difficult to
determine the individual contribution of each variable [38, 51].
The behavior of these methods varies significantly in the pres-
ence of outliers and multicollinearity. LASSO is particularly
sensitive to outliers, as its L1 penalty tends to heavily penalize
coefficients associated with extreme values. It also struggles
with multicollinearity, selecting only one feature from corre-
lated groups, which may result in the loss of important infor-
mation [48, 51, 52]. Elastic Net (EN) is more robust to mul-
ticollinearity due to its combination of L1 and L2 penalties,

though it remains somewhat influenced by outliers [49, 50].
Adaptive LASSO offers improved handling of multicollinear-
ity by assigning different penalties to features but remains vul-
nerable to outliers [22, 28]. Group LASSO addresses multi-
collinearity by selecting entire groups of correlated variables,
though outliers within any group can lead to incorrect selec-
tion [53, 54]. SCAD is less sensitive to outliers compared to
LASSO, as its non-convex penalty reduces bias, and it better
handles multicollinearity by allowing larger coefficients for rel-
evant features [28, 32, 53, 55]. SVM are highly sensitive to
outliers, as they can drastically shift the decision boundary, and
multicollinearity can reduce the model’s ability to distinguish
between classes [33, 38]. SIS is less robust to outliers and may
miss key interactions between correlated features, whereas In-
tegrated ISIS, which combines SIS with methods like LASSO
or EN, improves robustness but still inherits some weaknesses
[48, 50, 56].

Overall, methods such as Elastic Net, SCAD, and
Group LASSO handle multicollinearity more effectively, while
LASSO and SVM are more affected by outliers, requiring care-
ful tuning to mitigate these challenges [22, 28, 32, 54, 56].
Based on the findings of this study, SCAD emerges as the top-
performing method for reducing prediction errors and explain-
ing variance in the RCC dataset, though its relatively low ex-
planatory power limits its suitability for ultra-high-dimensional
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survival data. ISIS and SIS also perform well, but further re-
finement is needed to enhance accuracy.

3.3. Selected genes identified by all considered methods

Table 4 presents the genes selected by the considered meth-
ods, listing both the number of selected genes and their corre-
sponding names.

LASSO selects a larger set of eight genes, including
NCAM1, PRKAR2B, CLIP1, NFYB, GUCY2C, MT1L, DES,
and ATP1B3. EN stands out by selecting the largest set of 27
genes, such as PFDN5, NCAM1, GTF2H3, RHOG, ZNF148,
PRKAR2B, STK17A, LUM, MT1X, CLIP1, ANXA13, NFYB,
GUCY2C, SRSF11, SLC3A1, ALG2, ACAA2, MT1L, MT2A,
DES, SLC6A3, NAT8, ATP1B3, OVGP1, and ZNF783. Adap-
tive LASSO selects 13 genes, including RPA3, FGF1, RHOG,
CDKL1, CLIP1, GUCY2C, TUBA3C, PNMA2, DES, NAT8,
ATP1B3, and PPP4C. Group LASSO, on the other hand, se-
lects 10 genes, focusing on NCAM1, PRKAR2B, MT1X,
ANXA13, NFYB, MT2A, MT1L, DES, NAT8, and ATP1B3.
SCAD selects 9 genes, including NCAM1, ATP1B3, NAT8,
MT2A, GTF2F2, GUCY2C, SLC3A1, CRYZ, and MT1L.
The SIS method selects 20 genes, covering a broad range
such as CTNNB1, RPA3, ROR1, RAC2, CDKL1, GMFB,
FGF5, E2F6, PAX2, NFYB, GUCY2C, HGD, MT2A, IL2RG,
DCI, COX4, FGFR3, and others. ISIS selects 7 genes, in-
cluding NCAM1, MITF, OSBP, APOB, FGFR3, RHOG, and
GUCY2C. Lastly, the SVM method selects 6 genes with identi-
fiers such as GATA3, CDKN2C, RPLP1, KIAA0281, and EST
(Expressed Sequence Tag). This variation in selected genes
demonstrates the differences in sensitivity and selection crite-
ria across methods, highlighting how each approach captures
distinct features in the dataset, particularly when handling high-
dimensional survival analysis in RCC.

3.4. Overlapping genes across the feature selection methods

The heatmap (Figure 2) visualizes gene selection consis-
tency across various Feature Selection Methods, with Gene
Names on the Y-axis and methods on the X-axis. It employs
a cool-warm color scale, where darker red hues indicate the
presence (1) of a gene in multiple methods, reflecting higher
agreement and potential biological significance in RCC prog-
nosis. Conversely, lighter shades or white represent absence (0)
or selection by fewer methods, suggesting lower consensus or
method-specific relevance.

Notably, genes such as NCAM1, ATP1B3, NAT8,
GUCY2C, CLIP1, DES, and MT2A exhibit strong red col-
oration across several methods, reinforcing their consistent se-
lection and highlighting their potential as robust prognostic
markers or therapeutic targets. The methods LASSO, EN,
Group LASSO, and SCAD show dense red patterns, indicat-
ing substantial overlap in gene selection, which may reflect
methodological similarities or shared sensitivity to key biolog-
ical signals. In contrast, SVM, shown in white across all genes,
did not select any overlapping genes, suggesting distinct selec-
tion criteria or lower sensitivity to these signals. Additionally,
scattered red cells in methods like SIS and Adaptive LASSO

reflect more individualized selection behavior. This color dis-
tribution effectively visualizes how different methods converge
on key genes while also revealing method-specific differences.
The intensity and clustering of red shades help identify the most
consistently selected genes, which may serve as robust prognos-
tic markers or therapeutic targets in RCC.

The most overlapping genes across multiple feature selec-
tion methods, as indicated by the heatmap, include NCAM1,
ATP1B3, NAT8, GUCY2C, DES, MT2A, CLIP1, PRKAR2B,
NFYB, GTF2F2, SLC3A1, and MT1L. NCAM1 is the most
consistently identified gene, being selected by LASSO, EN,
Group LASSO, SCAD, and ISIS, highlighting its significant
role in RCC progression. Similarly, ATP1B3 appears across
LASSO, EN, Adaptive LASSO, Group LASSO, and SCAD,
emphasizing its importance in various cancer types. NAT8,
GUCY2C, and DES also show strong overlap, being se-
lected by multiple methods such as EN, Adaptive LASSO,
Group LASSO, and SCAD, underlining their potential as robust
biomarkers. MT2A and CLIP1, although slightly less recurrent,
still demonstrate significant selection across methods like EN,
Group LASSO, and SCAD, suggesting their relevance in RCC.
These overlapping genes, identified through the heatmap, are
key candidates for further research and may serve as critical
prognostic markers or therapeutic targets in RCC.

3.5. Final Selected Genes and Their Connection With RCC
Based on the above analysis, this study considered the

genes selected by the best-performing method, SCAD, along
with the most overlapping genes across different methods,
identifying 14 key genes: NCAM1, ATP1B3, NAT8, MT2A,
GTF2F2, X4197, GUCY2C, SLC3A1, CRYZ, DES, MT1L,
NFYB, PRKAR2B, and CLIP1. These genes play crucial
roles in various biological processes, including cell adhesion,
ion transport, transcription regulation, and cancer progression,
with several serving as prognostic markers in RCC and other
malignancies. NCAM1 (X134), a cell adhesion molecule in
the immunoglobulin superfamily, is essential for cell interac-
tions, migration, and immune regulation, activating key sig-
naling pathways such as MAPK and PI3K. It has been impli-
cated in glioblastoma multiforme and pancreatic adenocarci-
noma [57]. ATP1B3 (X3671), a subunit of Na+/K+-ATPase,
is vital for maintaining ion gradients and cell excitability, mak-
ing it significant in multiple cancers, including cervical, liver,
and glioblastoma [58]. NAT8 (X3218), primarily expressed
in the kidney and liver, is associated with cell adhesion and
tissue-specific expression and has been identified as a prognos-
tic marker in kidney renal clear cell carcinoma (KIRC) [59].
MT2A (X2663), a member of the metallothionein family, plays
a role in metal homeostasis, detoxification, and oxidative stress
response, and it has been linked to multiple cancers, including
glioblastoma, lung, liver, pancreatic, and RCC [60]. GTF2F2
(X1247) is involved in RNA polymerase II transcription initi-
ation and serves as a prognostic marker in RCC, cervical, and
liver cancers [61]. However, limited information is available
for the variable X4197 in the dataset for which its gene name
could not be identified, suggesting the need for further investi-
gation. GUCY2C (X1728), a transmembrane receptor involved
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Table 4: Selected genes by considered methods.

Methods NGS Selected Variables (Genes) Gene Name
LASSO 8 X134, X524, X1364, X1654, X1728, NCAM1, PRKAR2B, CLIP1, NFYB, GUCY2C,

X2465, X3206, X3218, X3671 MT1L, DES, NAT8, ATP1B3

EN 27 X128, X134, X317, X358, X491, PFDN5, NCAM1, GTF2H3, RHOG, ZNF148,
X524, X936, X1037, X1136, X1364, PRKAR2B, STK17A, LUM, MT1X, CLIP1,
X1558, X1654, X1728, X1838, ANXA13, NFYB, GUCY2C, SRSF11, SLC3A1,
X2027, X2189, X2235, X2335, ALG2, ACAA2, No info, No info, MT1L, MT2A,
X2397, X2465, X2663, X2679, No info, DES, SLC6A3, NAT8, ATP1B3, OVGP1,
X3206, X3215, X3218, X3671, ZNF783
X3696, X3890

Adaptive LASSO 13 X67, X168, X358, X428, X1364, RPA3, FGF1, RHOG, CDKL1, CLIP1, GUCY2C,
X1728, X1740, X1887, X2389, TUBA3C, PNMA2, No info, DES, NAT8,
X3206, X3218, X3671, X3951 ATP1B3, PPP4C

Group LASSO 10 X134, X936, X1364, X1654, X1728, NCAM1, PRKAR2B, MT1X, ANXA13, NFYB,
X2465, X2663, X3206, X3218, X3671 MT2A , MT1L, DES, NAT8, ATP1B3

SCAD 9 X134, X3671, X3218, X2663, X1247, NCAM1, ATP1B3, NAT8, MT2A, GTF2F2, No
X4197, X1728, X2027, X146 info, GUCY2C, SLC3A1, CRYZ

SIS 20 X29, X67, X135, X252, X428, X687, CTNNB1, RPA3, ROR1, RAC2, CDKL1, GMFB,
X690, X1352, X1499, X1654, X1728, FGF5, E2F6, PAX2, NFYB, GUCY2C, No info,
X2017, X2036, X2465, X2664, HGD, MT2A, IL2RG, DCI, COX4, No info,
X2745, X3004, X3181, X3405, X3946 FGFR3, No info

ISIS 7 X134, X1156, X1866, X2249, X2831, NCAM1, MITF, OSBP, APOB, FGFR3, No info,
X3341, X358 RHOG

SVM 6 X133, X1246, X2026, X2662, X3217, GATA3, CDKN2C, No info, RPLP1, KIAA0281,
X3670 EST (Expressed Sequence Tag)

in ion transport regulation, has mutations associated with hered-
itary diarrheal disorders and serves as a prognostic indicator in
liver hepatocellular carcinoma [62]. SLC3A1 (X2027), a trans-
porter of amino acids in the renal tubule, has mutations linked
to cystinuria and functions as a prognostic marker in both clear
cell and papillary RCC subtypes [63]. Lastly, CRYZ (X146), a
crystallin protein with enzymatic activity, plays a role in main-
taining eye lens transparency and possesses NADPH-dependent
quinone reductase activity, making it a prognostic marker in
glioblastoma and RCC [64]. This analysis underscores the bi-
ological significance of these genes in RCC progression, em-
phasizing their potential as prognostic markers and therapeutic
targets.

The most overlapping genes across multiple feature selec-
tion methods, as indicated by the heatmap, include NCAM1,
ATP1B3, NAT8, GUCY2C, DES, MT2A, and CLIP1. NCAM1
is the most consistently identified gene, being selected by
LASSO, EN, Group LASSO, SCAD, and ISIS, highlighting its
significant role in RCC progression have emerged as significant
prognostic markers in various cancers, including RCC. Each
gene plays a distinct role that contributes to disease progres-

sion and could serve as a potential target for therapeutic inter-
vention. The roles of NACM1, NAT8, GUCY2C have already
been discussed. Another critical gene, CLIP1 (CAP-Gly Do-
main Containing Linker Protein 1), is involved in microtubule
dynamics and intracellular trafficking, making it a noteworthy
prognostic indicator in RCC [65]. Similarly, TRMT1L (tRNA
Methyltransferase 1 Like), which is associated with tRNA mod-
ification and affects protein translation, has been linked to RCC,
further emphasizing its relevance [66]. Finally, DES (Desmin),
a type III intermediate filament protein crucial for muscle in-
tegrity, has shown promise as a prognostic marker in vari-
ous cancers, including bladder urothelial carcinoma, glioblas-
toma multiforme, kidney renal papillary cell carcinoma, and
lung squamous cell carcinoma [67]. The repeated identifica-
tion of NCAM1 across multiple methods underscores its poten-
tial significance in RCC progression, while NAT8 and CLIP1
also emerge as important markers in RCC. The association of
TRMT1L and DES with several cancers further supports their
relevance.

Previous studies on RCC and other healthcare disorders of-
ten overlooked the use of ML models. For example, [68, 69]
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Figure 2: Heatmap of overlapping genes across feature selection methods.

identified 32 genes via microarray analysis without incorporat-
ing machine learning, while [70] pinpointed six hub genes (e.g.,
SUCLG1, PCK2, GLDC) linked to reduced survival in RCC
patients. Berglund et al. (2020) identified nine genes, six of
which had prior associations with RCC. These studies, although
valuable, relied on conventional models that lacked the com-
putational depth required for ultra-high-dimensional datasets.
More recent efforts have incorporated machine learning: [9]
utilized a random forest algorithm to identify a five-gene sig-
nature, and [42] applied eight machine learning models to dis-
cover a 13-gene signature. An ensemble-based approach by

[8] identified just two genes, NOP2 and NSUN5, while [25]
used LASSO-SVM RFE to pinpoint four key genes (ACPP,
ANGPTL4, SCNN1G, SLC22A7) in KIRC-related datasets.
Notably, [44] identified 49 genes using RLF-ISIS, though with-
out accounting for outliers, demonstrating that the relevance of
selected genes is often more critical than the total number iden-
tified. However, unlike previous studies, none of them utilized
as many machine learning approaches as we did in this study,
where we applied a total of eight different methods.
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Figure 3: Gene interaction network of 14 SCAD-selected genes
and common genes across all methods.

3.6. Gene interaction network analysis
Further analysis using GeneMANIA revealed interactions

among these 14 genes, showcasing their interconnectedness
through co-expression, co-localization, genetic and physical in-
teractions, pathway involvement, and shared protein domains.
Figure 3 presents the GeneMANIA-derived interaction net-
work, highlighting the nine genes identified by SCAD along-
side the common genes selected across all feature selection
methods. In this network, nodes represent gene names, while
edges depict their functional relationships based on various in-
teraction types. The visualization reinforces the potential func-
tional relationships of these selected genes in RCC development
and progression. This study suggests that these genes play a
direct and indirect role in RCC development and progression.
Their consistent identification across multiple methods high-
lights their potential significance in RCC pathology and ther-
apeutic strategies, underscoring the need for further research to
elucidate their individual and collective roles as potential ther-
apeutic targets.

Finally, it can be concluded that this study highlights 14
genes—NCAM1, ATP1B3, NAT8, MT2A, GTF2F2, X4197,
GUCY2C, SLC3A1, CRYZ, DES, MT1L, NFYB, PRKAR2B,
and CLIP1—identified through the SCAD method and an over-
lapping gene list, suggesting their direct and indirect involve-
ment in RCC development and progression.

4. Conclusion

This study systematically evaluated ML-based feature se-
lection methods for UHD survival data, using RCC as a case
study. By benchmarking LASSO, Elastic Net (EN), Adaptive

LASSO, Group LASSO, SCAD, SVM, SIS and ISIS, we identi-
fied SCAD as the most effective method, achieving the best pre-
dictive performance (MSE: 529.00, RMSE: 23.00, R²: 0.69).
However, SCAD left 31% of data variability unexplained, high-
lighting the need for hybrid ML models that integrate multiple
feature selection techniques to improve gene selection, predic-
tion accuracy, and RCC prognosis. This study identified 14 key
genes—NCAM1, ATP1B3, NAT8, MT2A, GTF2F2, X4197,
GUCY2C, SLC3A1, CRYZ, DES, MT1L, NFYB, PRKAR2B,
and CLIP1—as potential RCC biomarkers. Gene interaction
network analysis confirmed their involvement in RCC progres-
sion, reinforcing their relevance for future biomarker discovery
and clinical applications. Additionally, tumor type, stage, and
progression significantly influenced survival outcomes. Clear
cell RCC (ccRCC) was the most prevalent among deceased pa-
tients, while chromophobe RCC (chRCC) and papillary RCC
(pRCC) exhibited better survival rates.

While this study provides valuable insights, several limi-
tations remain. One major challenge is the reliance on pub-
licly available datasets, which may have constraints in sam-
ple size, diversity, and data quality. These factors can limit
the generalizability of the findings due to potential biases in
patient demographics and tumor characteristics. Moreover,
the R² values suggest room for improvement, indicating the
potential benefit of more complex models or additional fea-
tures. Additionally, the study focused on a specific set of fea-
ture selection techniques, and exploring alternative approaches
may yield better results. Future research should prioritize
the development of hybrid ML frameworks that combine the
strengths of classical statistical models with advanced deep
learning techniques. In particular, Convolutional Neural Net-
works (CNNs) hold promise for modeling complex, nonlin-
ear interactions in ultra-high-dimensional gene expression data.
Although originally developed for image processing, CNNs
can be adapted to analyze structured gene expression matri-
ces, capturing spatial or correlated patterns among genes that
conventional methods may miss. When integrated with in-
terpretable models such as SCAD or Elastic Net, CNNs can
contribute to hybrid pipelines that not only improve predic-
tive accuracy but also preserve biological interpretability, which
is crucial in clinical genomics. Moreover, ensemble learning
approaches—which combine multiple feature selection strate-
gies with deep learning-based representation learning—can fur-
ther enhance model stability and generalizability. These hy-
brid frameworks offer a promising path toward capturing the
full complexity of RCC-related genomic variability, improv-
ing biomarker discovery, and advancing personalized prognosis
models in oncology.

Importantly, this research makes a meaningful contribu-
tion to Sustainable Development Goal (SDG) 3: Good Health
and Well-being by enabling more precise and individualized
risk assessment in patients with RCC. Through the identifi-
cation of key genetic biomarkers associated with disease pro-
gression, clinicians are better equipped to personalize treat-
ment plans, track patient responses with greater accuracy, and
ultimately improve survival outcomes. In parallel, the study
advances SDG 9: Industry, Innovation, and Infrastructure by
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demonstrating the practical integration of sophisticated ma-
chine learning techniques—particularly interpretable models
like SCAD—into biomedical data analysis pipelines. This rep-
resents a pivotal move toward the development of AI-driven
clinical decision support systems capable of managing and
extracting insights from ultra-high-dimensional genomic data.
Moreover, embedding SCAD within a broader machine learn-
ing framework paves the way for scalable, reproducible ana-
lytic workflows that can be deployed across diverse healthcare
environments. As these computational tools evolve and are in-
tegrated with electronic health records and large-scale genomic
repositories, they hold the potential to transform research out-
puts into real-world clinical protocols. In doing so, this study
not only addresses a complex challenge in oncology but also
contributes to the evolution of a data-driven, patient-centered
healthcare ecosystem aligned with global sustainability and in-
novation goals.
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