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Abstract

This paper reports a feature selection comparison between Lasso, Elastic Net, and Mutual Information-Support Vector Machine (MI-SVM) that
are based on a hybrid Weibull-Freund-Cox Proportional Hazards (WFCPH) model when it is used with renal cell carcinoma (RCC) data. The
purpose is to determine which genes are dominant in RCC and evaluate the degree of efficiency of each method. Lasso, which performs rigorous
selection for features, obtained quite a small set of genes, and the advantage was made in the simplicity and interpretability of the classifier. Still,
the models had the lowest predictive ability. Elastic Net ‘averted’ some difficulties of Lasso combined with Ridge regression and selected more
or less different genes for better fitting of the model. MI-SVM was the optimal procedure for this task, considering the number of features chosen
and the performances obtained, with the highest R2 and the lowest MSE. The study provides valuable information on which approach to use in
survival analysis using the WFCPH model by contrasting the advantages and disadvantages of each approach covered.
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1. Introduction

Survival analysis is essential to any medical investigation,
particularly for studying prognostic factors and treatment out-
comes in renal failure. This analytical approach enables the
prediction of survival rates, a crucial element in managing end-
stage renal disease (ESRD) and planning effective interven-
tions. Among various statistical methods, survival analysis has
proven critical in kidney failure research, especially in evalu-
ating outcomes post-renal transplantation. Accurate predictive
models are valuable for identifying patients at increased risk of

∗Corresponding author Tel. No.: +60 149-543-405.
Email address: majidkhanmajaharali@usm.my (Majid Khan Majahar

Ali)

graft failure, facilitating preventive measures, and personalized
care plans [1].

When comparing the frequency of different statistical and
machine learning methods for predicting graft survival in renal
transplantation, Random Survival Forest and Stochastic Gra-
dient Boosting have demonstrated superior calibration and dis-
crimination. However, traditional methods such as the Cox pro-
portional hazards model remain vital for their interpretability
and accuracy, mainly when evaluating survival probabilities.
This highlights the principle of ”Parsimony in Model Perfor-
mance and Complexity” (PMPC), emphasizing that predictive
models must balance performance with explainability to ensure
their utility in clinical decision-making [2, 3].

Despite its importance, survival analysis provides only a
rough estimate of mortality risk in kidney failure. For exam-
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ple, a longitudinal study utilizing life table analysis found that
patients with kidney failure have significantly higher mortality
compared to the general population [4]. This underlines the ne-
cessity of adopting appropriate analytical techniques to address
and mitigate the problem [5].

Machine learning has recently become more popular in clin-
ical decision support systems, particularly regarding the pro-
gression and prognosis of renal failure. These models have
shown potential in enhancing patient outcomes by addressing
issues at the molecular level. A systematic review emphasized
the importance of feature selection and data preprocessing in
improving the predictive performance of models like logistic
regression, decision trees, and deep learning algorithms [6].
Similarly, a study developing a chronic kidney disease (CKD)
progression model using random survival forests achieved high
prediction accuracy [7].

Beyond kidney failure, machine learning is also used in
survival analysis. For example, when it comes to forecasting
unfavorable outcomes in heart failure, Seq2Seq models have
performed better than traditional methods [8]. However, the
lack of interpretability remains a significant challenge, limiting
the clinical applicability of even the most accurate models [9].
Therefore, there is an urgent need for models that combine both
predictive accuracy and interpretability in healthcare.

Survival analysis remains indispensable in kidney failure
research and clinical decision-making. Future efforts should
focus on developing predictive models that are both accurate
and easy to understand, addressing the high mortality associ-
ated with kidney failure. Although machine learning continues
to evolve, concerns regarding model explainability and clinical
relevance persist [10].

The Freund model, originating from reliability analysis, ef-
fectively handles data dependency issues and is valuable in
multi-risk analysis. In project risk assessments, the Additive
Risk Factor (ARF) models proposed by Byung Cheol Kim pro-
vide coherent correlation structures for managing numerous un-
certain units. In neuroimaging, mixed-effect models address
distribution dependencies and nonlinear age-related trajecto-
ries, introducing random effects based on latent brain age [11].

The versatility of the Freund model is evident in medical
research as well. Al-Rammahi and Dikheel combined the Fre-
und model with the Cox proportional hazards model to identify
significant genetic factors affecting cancer prognosis [12]. Sim-
ilarly, copula functions complement Freund’s approach by con-
structing multivariate distributions that account for risk factor
dependencies [13].

The Cox proportional hazards model remains a cornerstone
in survival analysis but has limitations, especially regarding the
proportional hazards assumption and handling time-dependent
covariates. Recent advancements, such as time-varying covari-
ate models and subsampling algorithms, have aimed to over-
come these challenges [14–16]. Alternative models, like the
double-Cox and federated Cox models, offer greater flexibility
and computational efficiency in big data contexts [14].

Hybrid models combining Weibull, Freund, and Cox ap-
proaches have been proposed to address these shortcomings.
These models leverage the flexibility of Weibull hazard shapes,

the interpretability of Cox models, and the risk management
capabilities of Freund models [17, 18]. Feature selection tech-
niques, such as LASSO and CoxBoost, further enhance predic-
tive accuracy in high-dimensional datasets [19, 20].

The rationale for this study is grounded in the need to de-
velop a hybrid model that improves survival prediction in pa-
tients with kidney failure undergoing dialysis. Previous studies
have demonstrated the benefits of using machine learning and
hybrid models for enhancing prediction accuracy in renal dis-
orders [21–23]. This study aims to build on these findings by
proposing a robust and interpretable hybrid model to support
clinical decision-making and improve patient outcomes. This
study aims to develop and evaluate a hybrid survival model that
integrates the Weibull distribution, Freund’s dependency struc-
ture, and Cox proportional hazards framework to enhance the
predictive accuracy and interpretability of survival analysis for
patients with kidney failure compared to existing models.

Given the critical need for accurate and interpretable sur-
vival predictions in patients with kidney failure, the primary
research question of this study is

”Can a hybrid survival model, integrating the Weibull dis-
tribution, Freund’s dependency structure, and Cox proportional
hazards framework, enhance both the predictive accuracy and
interpretability compared to existing survival analysis models
in clinical applications?” So, the notable contributions of this
study are centered around developing a novel hybrid survival
model that integrates the Weibull distribution, Freund’s depen-
dency structure, and Cox proportional hazards framework, aim-
ing to enhance both predictive accuracy and interpretability for
kidney failure survival analysis. This study addresses signifi-
cant challenges reported in previous research, including the lim-
ited interpretability of machine learning models and the strict
proportional hazards assumption in classical models. Advanced
feature selection methods, such as Elastic Net, Lasso, and Mu-
tual Information, are employed to improve model performance
and manage high-dimensional clinical data. Furthermore, the
proposed hybrid model is systematically compared with exist-
ing techniques to evaluate its effectiveness regarding calibra-
tion, discrimination, and clinical relevance. Ultimately, the
study contributes to developing more transparent and clinically
applicable survival models, supporting better decision-making
in managing patients with kidney failure.

2. Methods

Figure 1 depicts a flow diagram, providing an overview of
the procedure for constructing and testing a hybrid Weibull-
Freund-Cox PH model for survival analysis. It starts with deriv-
ing a basic bivariate Weibull distribution, after which Freund’s
model is used to develop the Weibull-Freund model. This is
then followed by integrating this hybrid model with the Cox
PH model [20, 24].

Variable selection is performed through normalization and
feature selection methods, such as the Elastic Net, Lasso, and
Mutual Information (MI) algorithms. These methods can be
verified using various criteria, including mean squared error
(MSE), sum of squared errors (SSE), root mean square error
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Figure 1: Flowchart of the proposed model.

(RMSE), and R2. Comparisons between the best techniques are
made, followed by variable selection and validation of the final
model for testing the best strategy for survival studies.

2.1. Data description

Renal cell carcinoma (RCC) is the most common form of
kidney cancer that begins within the lining of small tubes in
kidneys, accounting for about 80–90% of all types worldwide
and presenting a serious international public health burden [25].
The global statistics of RCC, released in 2020, counted a total
of over 430,000 new cases and nearly 179,368 deaths world-
wide, with the highest incidence observed in the USA, It ac-
counts for about 2-3% of adult tumors and approximately 7% of
childhood malignancies, making its burden remarkable. While
it is only 2- 3% of all cancers, overall incidence has been in-
creasing [15].

In the United States alone, it is anticipated that 81,800 new
cases of RCC and associated deaths will make a sharp leap to
14,890. Most RCCs are diagnosed incidentally on imaging, in-
dicating that the number of cases found represents a fraction
of those at risk. The stage of the tumor and whether or not
there are metastases is often determinative for survival. Addi-
tionally, 5-year survival estimates are only 12% in patients with

Table 1: Summary of RCC patient variables.

No Features Descriptive
1 Age 75, 70, 58, 74, 26, 64, 76, 62, 38,

59, 67, 46, 53, 66, 63, . . . 24. By
years.

2 Sex male, female
3 Genetic varia-

tion
Hypodiploidy, polyploidy, pseu-
dodiploidy

4 Survival time 3, 11, 26, 33, 25, 10, 23, 14, 38, 46,
28, 63, 12, 7, 20, . . . 21. Survival
years post-diagnosis.

5 Clinical stage 1, 2, 3, 4. Disease progression
phase in oncology.

6 Differentiation 1, 3, 2
7 Progress 1 (disease development)
8 Cell type chRCC, ccRCC, pRCC
9 Died 1, 0 (1: died, 0: live)
10 Genes (X’s) 4224 gene expressions associated

with tumor subtypes.

metastatic RCC [14]. Our datasets comprising 74 kidney tu-
mor samples of different histological type, differentiation grade,
stage and with data on chromosomal aberrations and follow-up.
Samples were hybridized against a common reference obtained
from pooling different kidney tumor samples and these datasets
are presented in.

2.2. Weibull Freund-Cox proportional hazard model (WFCPH)

In this paper, we propose a novel hybrid Weibull–Freund
Cox proportional hazards model (WFCPH). This model, em-
ployed in the analysis of kidney failure, signifies a consider-
able advancement in the field of survival modeling. This hybrid
model amalgamates the advantages of the traditional Cox pro-
portional hazards model with the adaptability of the Weibull
distribution and the robustness inherent in Freund’s distribu-
tion. The Weibull component facilitates the modeling of hazard
rates that fluctuate over time, a factor that is pivotal in clini-
cal scenarios such as kidney failure, wherein the risk of events
(e.g., graft failure, mortality) may escalate or diminish at var-
ious stages of the disease [26]. The Freund distribution com-
ponent enhances the model’s robustness, particularly in manag-
ing outliers and skewed data distributions, which are prevalent
in clinical datasets. So the hazard function hC1(t1, t2 | X), for
kidney one, incorporating the Weibull Freund baseline hazard
function and the Cox proportional hazards model with a com-
mon β is:

hC1(t1, t2 | X) =
(
βC2

θC2

) (
t2
θC2

)βC2−1 (
β′C1

θ′C1

) (
t1 − t2
θ′C1

)β′C1−1

exp(βX).

(1)

And the hazard function hC2(t1, t2 | X) for kidney two, incorpo-
rating the Weibull Freund baseline hazard function and the Cox
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Figure 2: Freund model: hazard functions before and after de-
pendency.

proportional hazards model with a common β is

hC2(t1, t2 | X) =
(
βC1

θC1

) (
t1
θC1

)βC1−1 (
β′C2

θ′C2

) (
t2 − t1
θ′C2

)β′C2−1

exp(βX).

(2)

Therefore, the hazard function for the system, considering
both kidneys and incorporating the Weibull-Freund model with
the Cox proportional hazards model

h(t1, t2 | X) = hC1(t1, t2 | X) + hC2(t1, t2 | X),

h(t1, t2 | X) =
(
βC2

θC2

) (
t2
θC2

)βC2−1 (
β′C1

θ′C1

) (
t1 − t2
θ′C1

)β′C1−1

exp(βX)

+

(
βC1

θC1

) (
t1
θC1

)βC1−1 (
β′C2

θ′C2

) (
t2 − t1
θ′C2

)β′C2−1

exp(βX),

(3)

where hC1(t1, t2 | X) represents the combined hazard function
for a specific kidney when considering both time points t1 and
t2, given a set of covariates X . βC1, βC2 are the shape parame-
ters associated with the of the Weibull-Freund Cox Proportional
hazard model for kidneys 1 and 2, respectively,θC1, θC2 are the
scale parameters of the Weibull-Freund Cox Proportional haz-
ard model, corresponding to kidneys 1 and 2, β′C1, β

′
C2 They

represent the shape parameters upon failure of one of the sys-
tem’s components so θ′C1, θ

′
C2 are corresponding scale parame-

ters upon failure of one of the system’s components and t1, t2
are denotes specific time points or intervals at which the hazard
is being evaluated so exp(βX) This term represents the expo-
nential of a linear combination of covariates X with their asso-
ciated coefficients β equations (1) and (2) account for the in-
teractions between the kidneys, the influence of covariates, and
the specific characteristics of the Weibull Freund Cox Propor-
tional Hazard Model and to understand how the Freund model
accounts for the dependency between two components, where
the failure of one affects the failure rate of the other depend
on Figure 2. In Figure 2, dashed Lines represent the baseline

hazard rates for components C1 and C2 before any failure oc-
curs, Solid Lines represent the increased hazard rates after one
component fails. For example, the blue solid line shows the in-
creased hazard rate for C1 after C2 fails, and the green solid
line shows the increased hazard rate for C2 after C1 fails.

2.3. Lasso

If we have Log-Likelihood Function for Weibull Freund
Cox Proportional Hazard Model:

L(θ; t1, t2, X) =
n∑

i=1

log

βC2

θC2

(
t2i

θC2

)βC2−1 β′C1

θ′C1

(
t1i − t2i

θ′C1

)β′C1−1
+ log

βC1

θC1

(
t1i

θC1

)βC1−1 β′C2

θ′C2

(
t2i − t1i

θ′C2

)β′C2−1
+βXi

]
−

n∑
i=1

[
exp(βXi) · h(t1i, t2i|Xi)

]
,

(4)

where h(t1, t2 | X) is the hazard function as specified in model
[27, 28] Then, Lasso Penalized Log-Likelihood for Cox Model:

LLasso(β) =
n∑

i=1

δi(βXi) − log

∑
j∈Ri

exp(βX j)


 − λ p∑

k=1

|βk |, (5)

where δi is the event indicator, Ri is the risk set at time ti, and λ
is the regularization parameter [29, 30].

2.4. Elastic net

Elastic Net is a regularization technique that combines
Lasso and Ridge regression. It introduces two penalties [31]:
one for the absolute value of the coefficients (Lasso, ℓ1) and
one for the square of the coefficients (Ridge, ℓ2). The Elastic
Net penalized log-likelihood for the Cox model is given by:

LElastic Net(β) =
n∑

i=1

δi(βXi) − log

∑
j∈Ri

exp(βX j)




− λ1

p∑
k=1

|βk |−λ2

p∑
k=1

β2
k , (6)

where δi is the event indicator, Ri is the risk set at time ti, λ1 con-
trols the Lasso penalty (absolute values of coefficients), and λ2
controls the Ridge penalty (squared values of coefficients) [32].

2.5. Hybrid algorithm (MI-SVM)

To integrate a hybrid Mutual Information (MI) algorithm
with Support Vector Machine (SVM) in the context of the
Weibull-Freund Cox Proportional Hazard (WFCPH) model, the
approach would involve the following theoretical steps.
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Step 1: Feature selection using mutual information

Mutual Information measures the amount of information
that one variable contains about another. In the context of fea-
ture selection, MI helps in identifying the most relevant features
(covariates) that have the highest dependence on the target vari-
able (e.g., survival time or event occurrence) [33, 34].

Given two random variables X (features) and Y (target), the
mutual information I(X; Y) is:

I(X; Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
(

p(x, y)
p(x)p(y)

)
, (7)

where p(x, y) is the joint probability distribution of X and Y ,
p(x) and p(y) are the marginal probability distributions of X
and Y , respectively.

Therefore, the MI algorithm selects the top features X∗ that
maximize the mutual information with the target variable Y .
These features are expected to be the most informative and thus,
most predictive [28].

Step 2: Integrating selected features with SVM

SVM is a powerful classification and regression algorithm
that finds the hyperplane that best separates data points into dif-
ferent classes. In survival analysis, SVM can be adapted to han-
dle censored data (time-to-event data) by treating it as a regres-
sion problem or a classification problem for event occurrence
[35].

For a set of features X∗ selected by MI, the decision function
f (X) in SVM is given by:

f (X) =
n∑

i=1

αiyiK(Xi, X) + b, (8)

where αi are the Lagrange multipliers, yi are the target labels
(e.g., event occurrence or survival status), K(Xi, X) is the kernel
function (e.g., linear, polynomial, RBF) that maps the input data
to a higher-dimensional space, and b is the bias term [36].

Therefore, SVM aims to minimize the following objective
function with respect to αi and b:

min
α

1
2

n∑
i, j=1

αiα jyiy jK(Xi, X j) −
n∑

i=1

αi, (9)

subject to:

0 ≤ αi ≤ C,
n∑

i=1

αiyi = 0,

where C is the regularization parameter that controls the trade-
off between maximizing the margin and minimizing classifica-
tion error.

Table 2: Comparison of feature selection methods for WFCPH
model.

Methods NOGS MSE RMSE SSE R2 PVS
Lasso 57 327.04 18.08 7522.02 0.34 1.35%
Elastic Net 593 241.34 15.54 5550.75 0.68 14.04%
MI-SVM 510 171.99 13.11 12727.43 0.89 2.37%

Step 3: Hybrid model incorporation

After selecting features using MI and training the SVM
model, the final hazard function in the hybrid WFCPH model
can be written as:

h(t1, t2|X) = exp(βX∗)
[
hWF(t1, t2|θ, β′) + hSVM(X∗|α, b)

]
, (10)

Where hWF is the hazard function derived from the Weibull Fre-
und model, as described in the previous section, and hSVM is the
hazard function or risk score derived from the SVM model, in-
corporating the selected features X∗.

3. Results and discussion

3.1. Performance analysis of two-component system

Evaluating the accuracy of the WFCPH model is a crucial
step in determining its effectiveness. It is important to remem-
ber that 2 is used to assess the quality of the models. Addi-
tionally, the R2 value, representing the fit quality, was included
to evaluate the efficiency of variable selection across different
approaches applied to the biosystems data of potential Renal
Cell Carcinoma. This is important to remember to see to it that
the criteria proposed for the new model do not suggest falla-
cious information. Decision-making based on a wrong model
is disastrous; therefore, the model needs to be appraised for its
performance.

Table 2 exhibits the results of three different regression tech-
niques, namely Lasso, Elastic Net, and MI-SVM, in terms of
the number of genes(NOGS), MSE, RMSE, SSE, R2, and per-
centage of variable selection(PVS). Each technique is assessed
to identify its effectiveness in handling the dataset, especially
regarding feature selection (genes) and the ability to generate
accurate predictions. the most sparse model in terms of se-
lected features is the Lasso regression with 57 features, which is
1.35% of the total number of genes. But this is a rather cautious
method, which deprives the predictions of most of the neces-
sary accuracy. The MSE index is relatively high, 327.0445, and
the RMSE is 18.0843. The SSE also supports the higher error
of 7522.0236. Therefore, the R2 value in the least, at 0.3412,
shows that about 34.12% of the variance in the data is explained
by Lasso.

However, Elastic Net Regression is more balanced and se-
lects 593 genes, which is 14.04 % of the total features. The
broader set of variables leads to a higher prediction accuracy
than Lasso. There was a significant decline in the MSE index
of 241.3368, which was equivalent to 15.5350 RMSE. SSE in-
dex also reduced to 5550.7485, while the R2 value was better
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Figure 3: Compare methods.

at 0.6843. This means that Elastic Net is capable of explain-
ing 68.43 % of the variation; it is more accurate than Lasso
in variance but involves a satisfactory level of feature selec-
tion. Despite this, MI-SVM (Mutual Information with Support
Vector Machine) is the most efficient method in terms of both
feature selection and prediction performance. It chooses 510
genes; this is only 2.37% of the features which are relatively
moderate compared to elastic net. Nevertheless, MI-SVM de-
tects fewer features and attains the highest predictive accuracy
of all the methods investigated in this study. MSE is the lowest
at 171.9924, RMSE 13.1146. The SSE index has also risen sig-
nificantly to 12727.4345 while the R2 is the highest at 0.8920.
This suggests that the MI-SVM can account for 89.20% of the
variability in the data, which is more accurate and efficient than
the other two models.

To sum up, Lasso is the most selective but offers the lowest
accuracy, while Elastic Net can be considered as providing the
best balance between feature selection and accuracy; MI-SVM
exhibits the highest accuracy, together with a moderate number
of initially selected features that would enable us to compare
the methods in Figure 3.

3.2. Important genes selections
Selecting significant genes is a fundamental step in our

comparative evaluation of three feature-selection methods:
Lasso, Elastic Net, and MI-SVM. Lasso regression, with its L1
penalty that drives negligible coefficients to zero, produces a
highly sparse solution of 57 genes, making it ideal when min-
imizing feature count is paramount. Elastic Net, which com-
bines L1 and L2 penalties to accommodate correlated predictors,
returns 593 genes, thereby capturing a broader set of poten-
tially relevant biomarkers. MI-SVM, which ranks variables by
mutual information before applying a support vector machine
classifier, yields 510 genes, striking a compromise between in-
formation gain and model complexity. These divergent gene-
selection profiles reflect each method’s inherent bias—whether
toward sparsity, correlation structure, or classification accuracy.
The twenty most influential genes identified by each algorithm
are displayed in Figures 4, 5, and 6.

It also demonstrated in Figure 4 the overall 20 genes fil-
tered by Lasso regression model with the highest absolute co-

Figure 4: Top 20 genes were selected by Lasso.

Figure 5: Top 20 genes were selected by elastic net.

efficients. Organism gene enriched at index 1176 is most im-
portant, while genes at indices 418, 1713 and 364 are of second
most importance. Here we have listed down the genes which
have carried high feature importance score suggested by the
Lasso model’s feature selection techniques.

The twenty genes with the highest absolute Elastic Net co-
efficients are shown in Figure 5 and have been selected as piv-
otal ones. Most weights gene have index 1176 followed by
genes at index 3417, 418 and 2783 respectively. These genes
are important as shown by numerical analysis and they were
further confirmed according to the Elastic Net method of fea-
ture selection.

Figure 6 illustrates the Twenty most important genes on
the basis of permutation feature importance for the MI-SVM
model. It is also seen that the genes presented at index 401
drawn the highest significance among all the other genes and
the genes of indices 2724, 2718 and 27. These genes affect the
accuracy of the model in question to a very large extent
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Figure 6: Top 20 genes were selected by MI-SVM.

4. Conclusion

Selecting an optimal subset of genes is critical for develop-
ing accurate and interpretable models in RCC analysis. Lasso,
with its L1 penalty that shrinks negligible coefficients to zero
and thus performs feature selection, identified 57 genes, max-
imizing interpretability but yielding a higher MSE and lower
R2. Elastic Net, which combines L1 and L2 penalties to ac-
commodate correlated predictors, selected 593 genes, improv-
ing sensitivity and predictive performance in high-dimensional,
correlated genomic data. MI-SVM, which ranks variables by
mutual information prior to SVM classification, identified 510
genes and achieved the highest sensitivity and specificity, the
lowest MSE, and the highest R2, while balancing accuracy with
computational efficiency. Thus, Lasso excels in model sparsity,
Elastic Net in handling multicollinearity, and MI-SVM in over-
all classification accuracy with a moderate feature set. The top
twenty genes selected by each method are presented in Figures
4, 5, and 6. The present study, therefore, emphasizes the impor-
tance of feature selection techniques namely Lasso, Elastic Net,
and MI-SVM in identifying key genes associated with renal cell
carcinoma (RCC).
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