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Abstract

Preserving agricultural products requires effective drying techniques to prevent spoilage and financial loss. Traditional sun drying is unreliable
due to variable weather, making hybrid solar dryers a viable alternative. However, predicting the drying behavior of crops like black pepper
remains challenging due to their unique characteristics. This study evaluates the accuracy of various models in forecasting the drying process of
black pepper in a V-Groove Hybrid Solar Dryer using a newly developed modeling framework inspired by the Finite Element Method (FEM).
Black pepper was dried over four days, with moisture ratio data collected every 30 minutes between 8 AM and 5 PM. Twenty-eight drying kinetics
models were tested, with the Alibus, Aghbashlo, and Infiltration Approximation models performing best. To enhance prediction accuracy, 220
hybrid models were created by combining pairs of the top 11 models using a weighted formula. Over thirty hybrid models outperformed individual
models, with Hybrid M28 (Logarithmic + Alibus), Hybrid M38 (Lewis + Alibus), and Hybrid M101 (Infiltration Approximation + Kaleemullah)
showing exceptional results. Additionally, a FEM-based model was developed and validated using MATLAB and CurveExpert Professional to
incorporate physical diffusion characteristics. It aligned well with experimental data and provided a physics-based foundation. The findings
demonstrate that combining hybrid and FEM-based models offers deeper insights into complex drying patterns, enabling the design of more
efficient and reliable solar drying systems for future optimization across various crop types.
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1. Introduction

Drying is a critical step in preserving premium agricul-
tural commodities like black pepper. However, conventional
open-sun drying methods are slow and heavily influenced by
weather conditions, often leading to inconsistent quality and
uneven drying. Hybrid solar dryers offer a more controlled en-
vironment and have shown improvements in thermal and ex-
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ergy efficiency, as well as product quality across various crops
[1–5]. Nevertheless, accurately modeling moisture removal
in these systems remains complex due to the nonlinear inter-
actions among temperature, humidity, airflow, geometry, and
product characteristics over time.

Extensive research has explored thin-layer drying mod-
els for food products, typically fitting one or more empirical
equations such as Lewis, Henderson & Pabis, Logarithmic,
Page/Modified Page, Midilli-Küçük, and Wang–Singh to ex-
perimental moisture ratio (MR) data. These studies reveal that
the most suitable model often depends on the specific crop and
drying conditions. For example, diffusion-type and Modified
Henderson & Pabis models frequently perform well for fruits
and passive solar drying [6–8], while other cases require alter-
native or newly developed models that outperform traditional
ones [2, 9, 10]. Beyond commonly studied items like tomatoes,
apricots, and leafy vegetables, recent findings continue to em-
phasize the influence of dryer design, operating regime, and the
choice of evaluation metrics such as R2, RMSE, MBE, and χ2

[2, 5–8, 10]. Specifically for black pepper, studies using con-
vective and solar drying systems highlight the impact of tem-
perature and airflow on drying rates and final product quality
[8, 11, 12].

In parallel, research has also focused on evaluating system-
level performance and modeling individual components. En-
ergy and exergy analyses of solar dryers and air collectors, in-
cluding v-groove designs, help quantify energy conversion and
losses [1, 3, 4], while thermal modeling of solar air collectors
informs boundary conditions for drying chambers [13]. Work
in related agricultural and bioproduct domains further shows
how factors like pre-treatment, ambient variability, and mea-
surement protocols influence material properties and model ac-
curacy [14, 15]. Although not directly focused on drying kinet-
ics, studies in thermogravimetric and pyrolytic behavior, as well
as CFD simulations, provide insights into multi-step reactions,
parameter estimation, and scale-up challenges relevant to deter-
mining effective diffusivity and transport coefficients [16–18].
Similarly, recent investigations into far-infrared and process-
specific drying methods demonstrate how changes in heat trans-
fer mechanisms affect drying behavior and model suitability
[19].

Physics-based modeling using the finite element method
(FEM) has also been explored to better represent moisture
diffusion by incorporating transport phenomena and material
transformations. Two-dimensional, time-dependent simula-
tions have successfully captured spatial and temporal varia-
tions in moisture and temperature, aligning well with experi-
mental results [20, 21]. However, many FEM studies still rely
on simplifying assumptions such as one-dimensional geometry,
uniform internal temperature, and constant or slowly changing
boundary conditions, which may limit their applicability to dy-
namic solar drying environments and complex product shapes.
Moreover, comprehensive experimental validation using multi-
ple error metrics (e.g., RMSD in addition to R2 and RMSE) is
not yet standard practice [20, 21].

Despite significant advancements, three key challenges re-
main as gap: (i) the need for systematic, side-by-side evalu-

ation of a broad range of thin-layer models on a single solar
drying dataset using consistent metrics; (ii) deeper investiga-
tion into hybrid or ensemble models that combine strengths
of individual empirical forms rather than relying on a single
model; and (iii) integration of a physics-informed FEM (or
FEM-inspired) model that clearly states its assumptions (e.g.,
1D geometry, uniform temperature, simplified boundaries) and
is quantitatively validated against experimental data. Addition-
ally, transparent documentation of experimental setups and op-
erating conditions is critical for reproducibility and fair cross-
study comparisons [1–8, 13].

In response to these gaps, this work compiles moisture ratio
data for black pepper dried in a v-groove hybrid solar dryer and:
(1) evaluates 28 established thin-layer models using a standard-
ized fitting and assessment protocol; (2) constructs 220 two-
model hybrids through weighted linear combinations to test
whether ensembles outperform individual models (see also gen-
eral hybrid/block-method motivations [22] and model evalua-
tion discussions [23] and (3) develops a FEM-inspired diffusion
model incorporating shrinkage and temperature-dependent dif-
fusivity for physics-based comparison. We report R2, RMSE,
correlation coefficient R, and RMSD for benchmarking, and
provide detailed documentation of the experimental setup to
support reproducibility. This integrated analysis positions em-
pirical, hybrid, and physics-informed models within a unified
framework, linking to prior work in solar drying, food kinetics,
and transport modeling [1–21, 24–27].

2. Materials and methods

In this study, a comprehensive modeling strategy involving
empirical, hybrid, and physics-inspired techniques was adopted
to evaluate and predict the drying behavior of black pepper in a
solar dryer.

2.1. Experimental data collection

The researchers gathered data, on moisture levels every
hour for a span of four days during the drying of black pepper
batches to determine when the desired moisture level was
reached each day This methodical technique enabled them to
create a dataset illustrating the fluctuations in moisture content
during the drying process Twenty seven models related to
agricultural product drying kinetics were chosen for analysis
based on their applicability, to this study. The models used
contained established equations that explain how moisture is
lost in drying processes. The moisture ratio reading obtained
from the dryer was input into CurveExpert Professional
software, made for fitting and assessing models automatically.
The software assessed how well each model matched the data
to decide whether they accurately described how black pepper
dries up.

To support reproducibility and clearly define boundary con-
ditions, Table 1 provides a concise overview of the v-groove
dryer configuration, including operational parameters (airflow
rates, temperature ranges, ambient settings) and sample details

2



Mohammed et al. / J. Nig. Soc. Phys. Sci. 7 (2025) 2933 3

Table 1: Experimental setup and operating conditions.

Parameter Value
Dryer type / geometry v-Groove hybrid

solar dryer; V-
groove absorber

Collector aperture area 221.90 m2

Collector thermal efficiency 60%
Average solar radiation 630 W/m2

Ambient temperature (avg) 29.8◦C
Drying chamber temperature (avg) 48.6◦C
Drying chamber relative humidity
(avg)

43%

Volumetric flow to chamber 1.89 m3/s
Mass flow rate (avg) 1.44 kg/s
Air speed through collector 0.90 m/s
Collector outlet temperature, To 50.74◦C
Initial / final moisture content
(w.b.)

66%→ 11%

Measurement interval Every 30 min
(08:00–17:00)

Drying time (total) 38 h

(mass, layering, initial and final moisture content) utilized in
this research.

2.2. Flowchart of the methodology
Figure 1 illustrates the complete workflow adopted in this

study: beginning with the experimental setup and data acqui-
sition; fitting 27 thin-layer drying models; selecting the top 11
models based on performance metrics (R2, RMSE, SE); con-
structing 220 hybrid models through weighted combinations;
validating against a physics-informed FEM model (1D slab in-
corporating shrinkage and temperature-dependent diffusivity);
and finally, comparing the predictions from hybrid and FEM
models with experimental observations.

2.3. Key indicators of performance
Twenty-seven drying models commonly employed in thin-

layer drying investigations underwent assessment through the
application of CurveExpert Professional software. Each model
underwent fitting to the MR dataset using nonlinear regression
methods. Evaluation metrics, like the coefficient of determi-
nation (R2 ) Standard Error (SE) and Root Mean Square Error
(RMSE) were utilized to gauge the adequacy of model fitting.

From Table 2, we can see Alibus is the best performing
model followed by Aghbashlo and Infiltration Approximation
using the black pepper experimental data.

Figures 2- 4 show how these three individual models align
with the data using the CurveEpert Professional software.

2.4. Development of hybrid models
In order to improve accuracy, 220 hybrid models were care-

fully crafted by blending the top 11 individual models using a
formula that involves a weighted linear combination.

Hybrid Model = A ×Model Xi + (1 − A) ×Model Yi, (1)

The value of A falls within a scale of 0 to 1. Model Xi and
Model Yi represent any pair among the 11 options provided.
There were 220 combinations that arose from the models’ com-
binations (11 combination 2). Each hybrid was tested and eval-
uated using the same statistical criteria. The top three (3) hybrid
models were identified, with Hybrid M26 emerging as the best
in terms of both statistical indicators and visual alignment.

As Table 3 indicated the performances of hybrid models
with Hybrid Model 26 taking the lead, Figures 5-7 affirm that
by presenting how the models align with the black pepper ex-
perimental data.

To enhance clarity and compare performance effectively.
Two more composite graphs were created. One showcasing the
three individual models, and another compares the top 3 hybrid
models.

2.5. Finite element modeling of black pepper drying
The drying of agricultural products such as black pepper

involves intricate heat and mass transfer processes. The FEM
provides an efficient framework to simulate moisture diffusion,
accounting for shrinkage and temperature-dependent diffusiv-
ity. This section outlines the development of an FEM model to
predict black pepper drying kinetics, facilitating a comparison
with experimental and hybrid model results.

2.5.1. Assumptions
1. Black pepper is modeled as a 1D slab geometry.
2. Shrinkage is considered proportional to moisture loss.
3. Effective moisture diffusivity is temperature-dependent

(Arrhenius type).
4. Initial moisture content: 66% (wet basis), Final moisture

content: 11% (wet basis).

2.5.2. Governing equations
Moisture diffusion is described by Fick’s second law:

∂M
∂t
=
∂

∂x

(
Deff(T )

∂M
∂x

)
, (2)

where M = Moisture content (kg water/kg wet basis) and
Deff(T ) = Effective diffusivity depending on temperature.

Shrinkage effect is modeled by:

L(t) = L0 (1 − β(M0 − M(t))) , (3)

where L0 = Initial half-thickness (m), β = Shrinkage coeffi-
cient, M0 = Initial moisture content, and M(t) =Moisture con-
tent at time t.

2.5.3. Discretization
The slab is discretized into n nodes using finite differences

(explicit scheme). At node i, the equation is:

Mt+1
i = Mt

i +
Deff ∆t
(∆x)2

(
Mt

i+1 − 2Mt
i + Mt

i−1

)
. (4)

Boundary condition:

∂M
∂x
= 0 at x = 0 and x = L.
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Experimental setup
(v-Groove Hybrid Solar Dryer)

Data collection
(Moisture ratio vs. time)

Model fitting
(27 thin-layer models)

Select top 11
(by R2, RMSE, SE)

Hybridization
(220 weighted pairs)

FEM validation
(1D slab, shrinkage, Deff(T ))

Comparison & evaluation
(Hybrid vs. FEM vs. Experimental)

Figure 1: Methodology flowchart: Experimental setup → Data collection → Model fitting (27 models) → Selection of top 11 →
Hybridization (220 models)→ FEM validation→ Comparison and evaluation.

Table 2: Performance of individual drying models.

No. Name Model Parameters SE R2 R
1 Alibus a exp((−kxn) + bx) + g a = 8.5174E − 01, k =

3.2814E+00, n = 1.0035E+
00, b = 3.2609E + 00, g =
1.1452E − 01

2.3616E-02 9.9074E-01 9.9536E-01

2 Aghbashlo exp(−k1x/(1 + k2x)) k1 = 1.5917E + 02, k2 =

1.5912E + 02
2.5016E-02 9.8917E-01 9.9457E-01

3 Infiltration Approximation a exp(−kx) + (1 − a) exp(−kbx) a = 1.0077E + 00, k =
4.5538E−02, b = 1.2379E−
01

2.5049E-02 9.8929E-01 9.9463E-01

4 Logarithmic a exp(−kx) + c a = 1.0073E + 00,
k = 4.5366E − 02,
c = −1.5740E − 04

2.5051E-02 9.8929E-01 9.9463E-01

5 Logistic a0
1+a exp(kx) a0 = 1.2521E + 01, a =

1.1501E+01, k = 4.7521E−
02

2.4959E-02 9.8937E-01 9.9467E-01

6 Summarised Fick’s Law a exp(−c(x/L2)) a = 1.0072E + 00, c =
2.2185E+03, L = 2.2110E+
02

2.5051E-02 9.8929E-01 9.9463E-01

7 Two Terms a exp(−k0x) + b exp(−k1x) a = 8.3105E − 01, k0 =

4.5380E−02, b = 1.7611E−
01, k1 = 4.5380E − 02

2.5225E-02 9.8929E-01 9.9463E-01

8 Silva exp(−ax − x1/b) a = −9.5883E − 01, b =
9.9874E − 01

2.4630E-02 9.8950E-01 9.9474E-01

9 Wang & Singh 1 + ax + bx2 a = −4.0058E − 02, b =
5.0361E − 04

2.4810E-02 9.8934E-01 9.9466E-01

10 Two Terms Exponential a exp(−kx) + (1 − a) exp(−kax) a = 1.3609E + 00, k =
5.0078E − 02

2.4833E-02 9.8933E-01 9.9465E-01

11 Lewis exp(−kx) k = 4.4965E − 02 2.4849E-02 9.8917E-01 9.9457E-01
12 Henderson & Pabis a exp(−kx) a = 1.0072E + 00, k =

4.5380E − 02
2.4881E-02 9.8929E-01 9.9463E-01

13 Modified Peleg M0 −
x

A1+A2
M0 = 7.0222E + 05,
A1 = 4.7639E + 01, A2 =

7.0222E + 05

5.8250E-02 9.4208E-01 9.7061E-01

14 Jena & Das a exp(−kx − x1/b) + c a = 1.3828E + 00, k =
4.3026E−02, b = 5.0177E+
00, c = 3.2552E − 01

1.5738E-01 5.8303E-01 7.6357E-01

15 Thompson Adaptation exp(a−
√

a2+4Bx)
2B a = 1.0000E + 00, B =

1.0000E + 00
5.2560E-01 0.0000E+00 0.0000E+00

16 Peleg 1−x
a+bx a = 1.0204E + 00, b =

1.4013E + 08
5.3553E-01 0.0000E+00 0.0000E+00

17 Wavy α cos(2x) + β sin(x) α = 1.3939E − 02, β =
3.0895E − 02

5.4698E-01 0.0000E+00 0.0000E+00

(Neumann boundary condition: no flux at both ends).

With the FEM model and discretization framework estab-
lished, we proceed to tune the effective diffusivity and shrink-
age parameters by aligning the physics-based simulation with
the experimentally observed moisture ratio, ensuring quantita-

tive agreement with the drying profile.

Calibration of FEM parameters. The effective diffusivity
Deff(T ) was determined through inverse modeling based on ex-
perimental moisture ratio (MR) data. An Arrhenius-type ex-
pression, Deff(T ) = D0 exp(−Ea/RT ), was employed, and the
parameters {D0, Ea} along with a shrinkage coefficient β were

4



Mohammed et al. / J. Nig. Soc. Phys. Sci. 7 (2025) 2933 5

Figure 2: Plot of experimental MR vs best performing individual model 1 (Alibus).

Figure 3: Plot of experimental MR vs best performing individual model 2 (Aghbashlo).

optimized by minimizing the mean squared error between the
FEM-predicted and observed MR values across each drying
day. To mitigate overfitting, we applied bounded least-squares
optimization within physically realistic limits (e.g., 10−11 to
10−8 m2/s for Deff under operating conditions) and validated the
model using hold-out segments from early and late falling-rate
periods. The finalized parameter set was then used for compar-
ative analysis at the daily scale.

The FEM inspired moisture diffusion model was initially

developed in MATLAB using a 1D slab geometry approach
with shrinkage and variable diffusivity. Due to limitations in
capturing the experimental behavior precisely, an exponential
function derived from FEM was implemented and optimized in
CurveExpert Professional. The FEM result was then compared
with the experimental and hybrid data as shown in Figures 8
and 9.

Having established the FEM formulation and discretization,
we next calibrate the effective diffusivity and shrinkage param-

5
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Figure 4: Plot of experimental MR vs best performing individual model 3 (infiltration approximation).

Figure 5: Plot of experimental MR vs hybrid model M26.

eters against the experimental MR so that the physics-based
curve aligns quantitatively with the measured drying trajectory

FEM parameter calibration. Effective diffusivity Deff(T ) was
identified by inverse fitting to experimental MR. We adopted an
Arrhenius form Deff(T ) = D0 exp(−Ea/RT ) and tuned {D0, Ea}

together with a shrinkage factor β by minimizing the mean
squared error between the spatially averaged FEM MR and the
measured MR over each drying day. To avoid overfitting, we

used bounded least-squares with physically plausible bounds
(e.g., 10−11−10−8 m2/s for Deff at operating temperatures) and
cross-validated on hold-out segments (early/late falling-rate).
The calibrated set was then used for the day-level comparisons
reported.

Theorem 2.1. The Hybrid-FEM model shows convergence in
Solar Drying Systems according to this theorem: The experi-
mentally measured black pepper moisture ratio throughout so-
lar drying is denoted as MRexp(t). The hybrid model uses the

6
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Table 3: Model parameters, standard error, R-squared, and correlation coefficients.

S/N Name Model Parameters SE R2 R
1 Hybrid M26 A(a exp(−kx)) + (1 − A)a(exp((−kxn) + bx) + g) A = 9.9914E − 01, a =

9.7297E−01, k = 4.4191E−
02, n = 2.4878E + 00, b =
1.3684E+00, g = 1.4179E+
00

1.9776E − 02 9.9360E − 01 9.9679E − 01

2 Hybrid M38 A(exp(−kx)) + (1 − A)a(exp((−kxn) + bx) + g) A = 9.6823E − 01, k =
4.4563E−02, a = 3.0853E−
02, n = 2.4697E + 00, b =
1.3297E+00, g = 1.7280E−
01

1.9846E − 02 9.9355E − 01 9.9677E − 01

3 Hybrid M101 A(a exp(−kx)+(1−a)(−kbx))+(1−A)(exp(−(ax+
b)θ(cx+d)))

A = 1.0914E + 00,
a = 1.0001E + 00,
k = 5.4609E − 02,
b = 2.7482E + 02,
θ = 1.6795E − 01,
c = −9.0292E − 01,
d = 6.5552E + 00

2.1912E − 02 9.9225E − 01 9.9612E − 01

4 Hybrid M1 A(exp(−k1x/(1+k2x))+(1−A)a(exp((−kxn)+bx)+
g))

A = 1.0117E + 00,
k1 = 9.2814E + 01,
k2 = 9.2754E + 01,
a = 9.3478E + 00,
k = 3.3243E − 02,
n = 2.8118E + 00,
b = 3.0018E − 02,
g = −7.505E + 00

2.2103E − 02 9.9223E − 01 9.9611E − 01

5 Hybrid M133 A(a exp(−kxn)+c exp(−gxn))+(1−A)(a exp(−kx−
x(1/b))) + c

A = 8.9146E − 01, a =
5.6100E−01, k = 9.7403E−
04, n = 1.9852E + 00, c =
4.1883E−01, g = 9.8224E−
03, b = 5.5203E − 01

2.2061E − 02 9.9215E − 01 9.9607E − 01

6 Hybrid M141 A(a exp−kx +(1−a)(−kbx))+(1−A)(exp−(ax+b)θ(cx+d)
) A = 1.0914E + 00,

a = 1.0001E + 00,
k = 5.4609E − 02,
b = 2.7482E + 02,
θ = 1.6795E − 01,
c = −9.0292E − 01,
d = 6.5552E + 00

2.1912E − 02 9.9225E − 01 9.9612E − 01

following definition for MRh(t):

MRh(t) = A · MRx(t) + (1 − A) · MRy(t), A ∈ [0, 1],

where MRx(t) and MRy(t) are two validated empirical drying
models.

Assume also a FEM solution MRfem(x, t) to the mois-
ture diffusion equation, with diffusivity Deff, initial condition
MR(x, 0) = MR0(x), and Neumann boundary conditions.

For any ε > 0, a weight value A∗ ∈ [0, 1] exists together
with a spatial averaging operator

MRfem(t) =
1
L

∫ L

0
MRfem(x, t) dx,

such that

sup
t∈[0,T ]

∣∣∣MRfem(t) − MRh(t)
∣∣∣ < ε.

Proof outline.

1. Hybrid Model Continuity: The hybrid function MRh(t)
shows convexity and continuity for the weight parame-
ter A within the interval [0, 1].

2. FEM Approximation: The FEM model computes the
parabolic moisture diffusion PDE which follows Fick’s
second law. Mesh refinement ensures the FEM solution
approaches the actual solution.

3. Spatial Averaging: The spatial average MRfem(t) is calcu-
lated over [0, L] to connect FEM results with scalar hy-
brid outputs.

4. Uniform Approximation: Both MRfem(t) and MRh(t)
show continuity while A and Deff can be adjusted to main-
tain any desired absolute difference below ε > 0.

Corollary 2.1 (Experimental Convergence of FEM via Hybrid
Proxy). The hybrid model uses empirically validated models
MRx(t) and MRy(t) to construct MRh(t) where the difference
between MRh(t) and MRexp(t) stays below δ throughout [0,T ].
The FEM average difference with MRh(t) must be less than
ε. The absolute difference between MRfem(t) and MRexp(t) re-
mains below δ + ε during the entire time period [0,T ].

Remark 1. The FEM simulation demonstrates accurate real
drying behavior prediction following proper calibration which

7
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Figure 6: Plot of experimental MR vs hybrid model M38.

Figure 7: Plot of experimental MR vs hybrid model M101.

matches both hybrid model predictions and experimental obser-
vations.

3. Results and discussion

The performance of the 27 empirical drying models showed
that three models provided significantly better fits to the exper-
imental data. These top-performing models achieved R2 values

above 0.98 and visually tracked the drying curve, especially in
the early falling rate period, as in Table 2 and Figures 2- 4.

Hybridization of the best 11 models resulted in 220 can-
didate hybrid models. Hybrid M26 consistently outperformed
others in terms of predictive accuracy and smooth transition
across all phases of drying. It effectively mimicked the exper-
imental data with minimal deviation across the drying period.
This is well presented in Table 3 and Figures 5 - 7.

8
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Figure 8: Comparison of FEM, hybrid, and experimental MR by MATLAB.

Figure 9: Comparison of FEM, hybrid, and experimental MR BY CurveEpert Professional.

3.1. Comparison of hybrid and individual models

Comparative analysis revealed that hybrid models outper-
formed individual models in terms of accuracy and predictive
ability. While the individual models, such as Alibus, Agh-
bashlo, and Infiltration Approximation, demonstrated solid per-
formances, they were not able to fully capture the drying dy-
namics of black pepper under varying drying conditions when
compared to their hybrid counterparts. This can be observed in
Figures 10 and 11.

3.2. Enhanced predictive capabilities of hybrid models

One of the key insights gained from this study is the su-
periority of hybrid models in capturing the complexities of the
drying process. Even the top individual models did not rank in
the top 50, except Alibus, which ranked 30th when compared
to the hybrid models. This highlights the potential of hybrid
modeling in advancing the precision of drying predictions for
agricultural products. Combining different models allowed for
a more nuanced and accurate representation of the drying kinet-
ics of black pepper, addressing the limitations of single-model
predictions.

The hybrid models, particularly Hybrid M26 and Hybrid
M38, showed exceptional predictive accuracy with an R2 close
to 1, a low standard error, and a strong correlation coefficient,

aligning closely with the experimental data. These findings em-
phasize the importance of integrating multiple models to over-
come the limitations of individual approaches.

3.3. FEM model integration and comparison

The FEM was used to simulate how black pepper dries in
the v Groove Hybrid Solar Dryer machine by considering tem-
perature diffusivity and shrinkage effects, in a 1 slab model cre-
ated using finite differences discretization technique. The FEM
method was tested against hybrid models, for validation pur-
poses.

The FEM model effectively simulated the changes in mois-
ture content with added complexity by considering shrinkage
effects and temperature variations that were beyond the capa-
bilities of models to replicate accurately. The Comparison of
Hybrid Models highlighted a correspondence between the FEM
model and experimental results; however slight inconsistencies
arose due to assumptions like uniform temperature distribution,
within the pepper and perhaps the simplified 1-dimensional ge-
ometry.

The FEM model was used to validate the hybrid models by
highlighting the significance of considering factors, like tem-
perature dependent diffusing properties and pepper shrinkage
when predicting the drying process outcome.
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Figure 10: Comparison of Top 3 Individual Drying Models with Experimental MR

Figure 11: Comparison of Top 3 Hybrid Models with Experimental MR

The FEM-based model, although physically grounded,
slightly underestimated the moisture content in later stages due
to simplifications in geometry and boundary condition assump-
tions. Its integration into CurveExpert through a fitted expo-
nential form allowed for improved visual agreement. Figures 8
and 9 represented the comparison between FEM and the Hybrid
M26 (being the overall best performing model) by MATLAB
and CurveExpert Professional respectively.

This emphasizes how crucial it is to blend physics-based
models with data-driven calibration to ensure widely applicable
predictions for drying agricultural goods.

Beyond visual agreement in Figures 8-9, we quantify model
performance using R2, RMSE, correlation R, and the RMSD be-
tween predicted and measured MR; the next subsection reports
these metrics side-by-side for the leading hybrids and the cali-
brated FEM.

3.4. Quantitative comparison of hybrid models
Table 4 reports the coefficient of determination (R2), fit stan-

dard error (SE), and correlation coefficient (R) for the top three
hybrid models, as obtained from the CurveExpert fittings.

Table 4: Quantitative comparison of top hybrid models (values
from CurveExpert).

Model R2 SE R
Hybrid M26 0.99360 0.01978 0.99679
Hybrid M38 0.99355 0.01985 0.99677
Hybrid M101 0.99225 0.02191 0.99612

3.5. Insights from FEM integration

The FEM model took into account the temperature differ-
ences, throughout the drying product and how it affected mois-
ture diffusivity as a factor that was not fully addressed in the
hybrid models.

The decrease in size became significantly important during
the phases of drying process, and the FEM’s capability to sim-
ulate this occurrence offered an accurate depiction of the real
drying process.

The combination of the FEM model, with the hybrid models
enhanced our insight into the drying process significantly. It
provided validation for the reliability of the hybrid models in
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scenarios.

3.6. Individual models comparison

Among the individual models used in this study, Alibus,
Aghbashlo and Infiltration Approximation demonstrated high
capabilities, with high R2 and correlation values and relatively
low standard error values. The Alibus model in particular stood
out for its coefficient of determination (R2), indicating its ef-
fectiveness in simulating the pepper drying process under the
test conditions specified. These findings align with research by
Ref. [6], which emphasized the use of diffusion models and
the Modified Henderson and Pabis model for fruit drying meth-
ods. Research findings from Ref. [7] and Ref [8] revealed that
layer models such as the Modified Henderson and Pabis model
proved effective in drying tomatoes and black pepper through
the utilization of solar techniques.

The findings from employing the Alibus and Aghbashlo
models in this study suggest that these models are versatile and
capable of providing forecasts for products. However, even
though these models demonstrated good performance, they
struggled to depict the moisture reduction trends, particularly
in black pepper, when facing fluctuating drying conditions.

3.7. Implications for solar drying systems

The progress in hybrid models has an impact on making
drying systems more efficient and effective, based on past stud-
ies [5, 6]. It is essential to model the drying process to enhance
the performance of these systems effectively. The results of
this research indicate that hybrid models are better at predict-
ing moisture removal rates and can help in managing drying
times effectively while also reducing energy usage and enhanc-
ing product quality.

This data holds value for V Groove Hybrid Solar Dryers that
function in changing settings and need thorough preparation to
enhance their performance efficiently. Furthermore, the elim-
ination of eight models from the 28 emphasizes the nature of
choosing and verifying models with care. This study confirms
that while popular models like Lewis and Page are commonly
used, they may not be a fit for solar dryer setups. Hybrid mod-
els offer a precise method that introduces possibilities for future
studies in solar drying and drying kinetics.

Prospects for real-time control. In addition to offline modeling
accuracy, the hybrid–FEM framework is well-suited for inte-
gration into real-time supervisory control systems for solar dry-
ers. The hybrid component offers rapid surrogate predictions of
moisture ratio under varying inlet conditions, while the FEM
model contributes physical insight for extrapolation beyond the
training data. Practical implementation could involve (i) esti-
mating system states and parameters from live temperature and
airflow sensor data, (ii) forecasting short-term moisture trends
to meet drying targets, and (iii) dynamically adjusting control
inputs such as fan speed or bypass ratio. Previous studies have
shown that data-driven techniques, like sparse regression and
feature selection are effective for drying prediction in seaweed

applications [28], and machine learning-enhanced thermal sys-
tems have demonstrated improvements in both accuracy and en-
ergy efficiency [29]. Combining these approaches with our hy-
brid model paves the way for robust, energy-conscious control
strategies.

3.8. Consistency with previous studies

The results of this study are consistent with research that
underscores the benefits of using drying models and techniques
to enhance drying processes. According to Ref. [13], for ex-
ample, an air collector with a pass counterflow groove design
for drying purposes. It showcased the effectiveness of hybrid
systems in improving drying efficiency. Similarly, the authors
of Ref. [24] pointed out the advantages of integrating methods,
like microwave-assisted drying and NIRS monitoring, for con-
trolling moisture levels. In addition, the study discussed above
supports the conclusions made by Ref. [10], which highlighted
the Midilli Kucuk model as an option for drying Moringa leaves
in a fluidized bed environment.

3.9. Comparative analysis with contemporary research

Recent developments in AI and machine learning have en-
riched drying process analysis, complementing our physics-
informed hybrid–FEM approach. In seaweed drying, LASSO
regression combined with principal component analysis (PCA)
and selective feature engineering yielded superior statistical ac-
curacy among linear models, emphasizing the role of sparsity
in sensor-limited environments [28]. Broader agricultural en-
ergy studies show that integrating solar systems with AI tech-
niques such as time-series modeling and optimization can sig-
nificantly reduce post-harvest losses and enhance energy uti-
lization, demonstrating the practical advantages of intelligent
control systems [30]. For complex drying setups like far-
infrared corn drying using graphene plates, comparative eval-
uations of RF, SVM, ANN, and kNN revealed that well-tuned
SVM and ANN models effectively capture nonlinear behav-
ior and improve moisture prediction, while experiments high-
lighted temperature-dependent diffusivity and efficiency pat-
terns [29].

Our hybrid–FEM strategy aligns with these AI/ML meth-
ods by offering precise empirical modeling and mechanistic in-
sights rooted in transport physics. Future enhancements may in-
volve integrating machine learning into our framework, such as
hybrid gray-box models where FEM parameters or weights are
data-driven to balance interpretability with adaptability across
diverse drying systems, products, and environmental condi-
tions.

3.10. Practical and theoretical contributions

This research significantly contributes to the advancement
of drying kinetics models by demonstrating the application of
hybrid models in accurately capturing variations in moisture
content during solar drying processes. The findings offer valu-
able insights for both researchers and practitioners in the drying
field, particularly concerning the optimization of solar drying
systems for valuable crops such as black pepper.
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Through a comprehensive comparison of individual and hy-
brid models, this study enhances the understanding of drying
kinetics and establishes a solid foundation for future investiga-
tions into employing hybrid modeling approaches for various
agricultural products. The results suggest that the integration of
models leads to improved performance over single-model ap-
proaches, particularly in the context of drying black pepper us-
ing a V-Groove Hybrid Solar Dryer system. Overall, this study
advocates for the use of hybrid models in drying applications
to improve drying efficiency, reduce energy consumption, and
enhance product quality.

3.11. Limitations and future work

This research demonstrates that hybrid modeling and an
FEM-inspired approach can effectively predict the moisture ra-
tio (MR) of black pepper dried in a v-groove hybrid solar dryer.
However, several factors limit the generalizability and inter-
pretability of the results.

3.11.1. Limitations
This study integrates empirical hybrid models with a

physics-informed (FEM-inspired) approach to estimate the
moisture ratio (MR) of black pepper dried in a v-groove solar
dryer. Although the results are promising, several simplifying
assumptions limit the broader applicability of the models.

Modeling assumptions

1. One-dimensional slab geometry: The FEM model sim-
plifies the pepper and drying layer as a 1D slab, over-
looking curvature and lateral moisture transport, which
may be significant near edges or at small scales.

2. Uniform temperature assumption: Heat and mass trans-
fer were decoupled by assuming a uniform temperature
throughout the product, causing the effective diffusivity
to vary only with time. This neglects internal tempera-
ture gradients within pepper kernels.

3. Simplified boundary conditions: Ambient conditions
such as temperature, relative humidity, and convective
transfer coefficients were treated as constant or slowly
varying averages, ignoring short-term fluctuations due to
solar irradiance, wind gusts, and fan speed variations.

4. Single-dataset calibration: Model parameters, including
hybrid weights and drying kinetics, were fitted to a single
experimental dataset. This limits insight into parameter
uncertainty, identifiability, and generalizability to other
conditions or pepper varieties.

5. Simplified shrinkage and material properties: Shrink-
age was modeled using a basic proportional law,
and temperature/moisture-dependent physical properties
were simplified, omitting anisotropy and nonlinear be-
havior.

3.11.2. Future work:
To overcome these limitations and improve model robust-

ness, the following directions are proposed:

1. Three-dimensional modeling: Develop a coupled 3D heat
and mass transfer model that captures the geometry of
pepper berries and tray layout, using FEM or CFD to re-
solve curvature, edge effects, and lateral diffusion.

2. Dynamic airflow and realistic boundaries: Integrate the
product model with a time- and space-varying airflow
field, driven by irradiance, wind, and fan control. Use
measured ambient temperature and humidity profiles as
dynamic boundary conditions.

3. Multi-climate experimental validation: Conduct experi-
ments across diverse climates (e.g., humid tropical, semi-
arid, temperate) and seasons to assess model robustness.
Include controlled variations in airflow rate and product
loading depth.

4. Advanced material laws: Incorporate temperature- and
moisture-dependent diffusivity (Deff(T,M)), nonlinear
shrinkage behavior, and sorption isotherms to better rep-
resent equilibrium moisture dynamics.

5. Uncertainty quantification and parameter identifiability:
Apply Bayesian calibration methods to estimate credible
intervals for parameters and predictions. Perform sensi-
tivity analysis to identify dominant factors and reduce
over-parameterization in hybrid models.

6. Generalization and control applications: Test model
transferability to other spices, crops, and drying thick-
nesses. Use the validated models for model-predictive
control (MPC) of fan speed and ventilation to optimize
drying efficiency and product quality.

Transitioning from a 1D, uniform-temperature, constant-
boundary framework to a 3D, flow-coupled model validated
across multiple climates will help bridge the gap between phys-
ical modeling and empirical data, enhancing the accuracy and
applicability of hybrid/FEM predictions in real-world drying
scenarios.

3.12. Recommendations

Based on the findings of this research, the following recom-
mendations are proposed:

1. Hybrid Modeling in Drying Studies: Future research on
the drying of agricultural products should increasingly
adopt hybrid modeling approaches to better understand
and analyze moisture removal patterns under varying en-
vironmental conditions.

2. Validation across Different Drying Systems: Further val-
idation of the hybrid models developed in this study
should be conducted using other drying systems, such as
indirect forced convection dryers or PV-assisted dryers,
to broaden their applicability across diverse setups.

3. Incorporation of Environmental Variations: Future stud-
ies should explore the impact of factors such as airflow
patterns, temperature fluctuations, and humidity changes
on the predictive performance of hybrid models during
drying processes.

4. Integration with Machine Learning: Researchers should
investigate the potential of combining hybrid modeling
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with empirical methods and machine learning techniques
to further enhance the predictive accuracy and complex-
ity of drying kinetics models.

5. Adaptability to other Crops: While this study focused
on black pepper, the hybrid models developed could be
adapted for use with other valuable crops such as cocoa,
coffee, and medicinal herbs, thereby extending the appli-
cability and utility of the models across a wider range of
agricultural products.

4. Conclusion

In conclusion, the integration of hybrid models with the
FEM approach significantly improved the predictive accuracy
for the drying kinetics of black pepper in the v-Groove Hybrid
Solar Dryer. While the hybrid models excelled at fitting the
data, the FEM model provided an additional layer of physical
insight, making it a valuable tool for understanding the underly-
ing mechanisms driving the drying process. The hybrid models,
supported by FEM validation, offer an improved methodology
for optimizing drying conditions and enhancing the overall ef-
ficiency of solar drying systems for agricultural products.

Data availability
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