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Abstract

This work explores the magnetohydrodynamics (MHD) viscous, incompressible, Casson hybrid nanofluid over a stretched sheet which is a well-
known non-Newtonian fluid. The analysis incorporates the effects of viscous dissipation, melting, Soret and Dufour effects, within the frameworks
of velocity slip and temperature jump boundary conditions. Copper (Cu) and alumina oxide (Al2O3) have been employed as nanoparticles,
while water (H2O) has been considered as the base fluid. This mixture is used to increase the fluid’s thermal characteristics for better heat
transfer efficiency. To simplify the complex governing partial differential equations describing the flow and heat transfer characteristics, similarity
transformations were employed, which reduced the system to a set of coupled, ordinary differential equations that are nonlinear. The bvp4c
function in MATLAB was used to solve these modified equations numerically. The study looks into the effects of various parameters on flow
and heat transfer characteristics, such as the volume fractions of alumina and copper, the Prandtl Number, the Radiation parameter, the Darcy
permeability, the Magnetic field parameter, the heat source/sink parameter, melting parameter, the Eckert Number, the Soret number, and the
Dufour number. Results indicate that the alumina volume fraction influences the velocity, temperature and concentration profiles. Specifically, the
aluminium oxide volume fraction parameter causes increases in profiles of temperature, velocity and concentration. With suction and the Casson
parameter, the mass transfer rate increases while the heat transfer rate decreases.
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Nomenclature

u - velocity in the x-direction
v -velocity in the y-direction
uw - surface velocity
vw - wall mass transfer velocity
g - acceleration due to gravity

∗Corresponding author Tel. No.: +91-857-097-5865.
Email address: pankaj@journal.nsps.org.ng (P. Thakur)

ψ - stream function
L - characteristic length
K1 - velocity slip factor
K2 - thermal slip factor
K3 - concentration slip factor
β - Non-Newtonian Casson parameter
B0 - constant applied magnetic field
T - fluid temperature
Tw - varying temperature of the surface
T∞ - free stream temperature
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η - dimensionless similarity variable
Me - melting surface parameter
S - suction parameter (also used for wall mass transfer)
f - dimensionless velocity
θ - dimensionless temperature
ϕ - dimensionless concentration
S c - Schmidt number
R - radiation parameter
Pr - Prandtl number
Ec - Eckert number
C f - local skin friction coefficient
Nux - local Nusselt number
Shx - local Sherwood number
Q - heat source/sink parameter
ρ f - fluid density
k f - thermal conductivity of fluid
ρhn f - density of hybrid nanofluid
(ρCp) f - heat capacity of fluid
(ρCp)hn f - heat capacity of hybrid nanofluid
µ f - dynamic viscosity of fluid
µhn f - dynamic viscosity of hybrid nanofluid
A - dimensionless velocity slip parameter
B - dimensionless thermal slip parameter
C - dimensionless concentration slip parameter
M - dimensionless magnetic field parameter
σ f - electrical conductivity of fluid
σhn f - electrical conductivity of hybrid nanofluid
β f - thermal expansion coefficient of fluid
βhn f - thermal expansion coefficient of hybrid nanofluid
βs1 - thermal expansion coefficient of alumina
βs2 - thermal expansion coefficient of copper
khn f - thermal conductivity of hybrid nanofluid
ϕs1 - nanoparticle volume fraction of alumina
ϕs2 - nanoparticle volume fraction of copper
S r - Soret number
Du - Dufour number
τ - shear stress
Dhn f - mass diffusivity of hybrid nanofluid
D f - mass diffusivity of base fluid.

1. Introduction

Nanofluids are sophisticated fluids that contain finely dis-
persed micro-sized particles (less than 100 nanometers) in a
fluid, like ethylene glycol, water, or oil. These nanoparticles,
which are frequently metals or metal oxides, significantly in-
crease the heat transfer capability of the fluids, thereby enhanc-
ing heat convection and conduction. The demand for creative
heat transfer solutions is rising as a result of recent technolog-
ical developments. The advantages of nanofluids for engineer-
ing and manufacturing applications have been demonstrated by
an increase in research on them. Heat transfer capability of the
nanoparticles, their concentration ratio and the flow rate are the
primary determinants of how well nanofluids transfer heat. The
crucial element is the nanoparticles thermal conductivity at con-
stant particle concentrations and flow rates. By combining var-
ious materials at the nanoscale to create hybrid nanoparticles,

this conductivity can be increased. These composite nanopar-
ticles are used in hybrid nanofluids, which have demonstrated
promise but also pose novel difficulties that are currently being
investigated by scientists. Casson fluids exhibit shear-thinning
behavior and yield stress, making them non-Newtonian fluids
whose flow characteristics alter under stress. Casson fluid has
numerous real-life applications, particularly in food processing,
the cosmetics industry, engineering and manufacturing, oil and
gas industry etc. The behaviour of Casson fluids is seen in food
products such as chocolate syrup and tomato sauce.

An analytical solution of boundarty layer flow along
stretching plate was provided by Crane [1] and Wang [2], they
investigated the changes in boundary layer flow over surfaces
that deforms linearly. The behavior of transport effects for re-
active chemical components on an expanding surface was high-
lighted by Andersson et al. [3]. Choi and Eastman [4] were
the first to investigate nanofluids and discovered that hybrid
nanofluids improve heat conductivity and transfer rates. Con-
cerns about their development, stability, characterization, and
applications require further investigation. In order to under-
stand the behavior of Casson fluids in industrial processes like
coating and stretching, one must understand how they flow over
a stretching surface. The Casson model, which was first pre-
sented by Casson [5], describes these fluids and includes prop-
erties like shear resistance at elevated rates, yield stress, and
shear thinning. Using the Casson and Carreau-Yasuda mod-
els, Boyd et al. [6] investigated Newtonian and non-Newtonian
oscillatory fluid flows in steady and curved pipes by using the
Lattice-Boltzmann method.

Mukhopadhyay et al. [7] analysed the 2-D Casson fluid
moving across moving across an unsteady stretching sheet. Pra-
manik [8] conducted a study on the boundary layer flow of a
Casson fluid that includes the impact of heat radiation over an
exponential expanded surface. Devi and Devi [9] examined the
flow of hybrid nanofluids with Cu − Al2O3/water using compu-
tational methods. They discovered that in order to increase heat
transfer efficiency, oxide nanoparticles which have a lower heat
conductivity than metallic ones must be used in larger volumes.
Hayat et al. [10] evaluate the characteristics of CuO/H2O and
Ag − CuO/H2O nanofluids’ heat transfer characteristics on a
stretched boundary while taking reactive flow and radiant heat
into account. Using the impacts of Soret and Dufour phenom-
ena, Reddy and Krishna [11] investigated the flow behavior
of a magnetohydrodynamic (MHD) micropolar fluid across a
stretched sheet through a non-Darcy porous material. Shojaei et
al. [12] have investigated the flow characteristics of a second-
order fluid over a radiatively expanding cylinder, taking into
consideration cross-diffusion and both the effects of Soret and
Dufour. Reddy et al. [13] have investigated how MHD flows of
a Casson fluid across an angled porous expanding surface.

Understanding how the thermodynamic melting process
works in fluid flow is crucial for many real-world applications.
This knowledge is important in various fields, including the
melting of permafrost, the solidification of magma, metal pu-
rification, semiconductor manufacturing, and welding. For in-
stance, in designing and optimizing heat exchangers, where a
solid melts due to heat exchange in flowing fluid effectively.
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Nandeppanavar [14] used a moving plate to study the behav-
ior of melting heat exchange in Casson fluid. In a study on
MHD boundary layer flow, Jawad et al. [15] took into account a
Darcy-Forchheimer radiative nanofluid that combined the con-
sequences of Soret and Dufour. Malik et al. [16] have investi-
gated the effects of heat diffusion during melting through Sisko
fluid forced convection. Furthermore, research has demon-
strated the melting transfer of heat for a variety of fluids and
geometries. A thorough investigation of the melting behavior
of heat transmission in Casson fluid flow across a stretching
sheet was carried out by Sharma et al. [17]. Their analysis took
into account the joint effect of Dufour and Soret as well as the
impact of velocity and the circumstances of thermal slippage.
Ali et al. [18] studied theoretically the MHD Casson composite
nanofluid in a porous medium, which is assumed to be unstable.

Motivated by earlier studies, the current work investigates
the magnetohydrodynamic (MHD) flow of a viscous, incom-
pressible Casson composite nanofluid on a sheet that is stretch-
ing. The study considers the effects of melting, viscous dissipa-
tion, Soret and Dufour phenomena, as well as velocity and tem-
perature jump circumstances, to provide a comprehensive anal-
ysis of heat and mass transfer characteristics under complicated
physical conditions. Here water (H2O) is utilized as the base
fluid, while Alumina (Al2O3) and copper (Cu) are chosen as hy-
brid nanoparticles. The ruling partial differential equations are
reduced to ordinary differential equations by using a similarity
transformation approach. The MATLAB bvp4c solver, which
is a potent tool for resolving boundary value issues, was used
to solve the ensuing governing ODEs and in numerical evalu-
ations. Some important parameters occurring in the governing
equations are investigated to ascertain their impacts on concen-
tration, velocity and temperature profiles, including the Prandtl
number, radiation, Darcy permeability, heat source/sink, melt-
ing, magnetic field parameter, Eckert, Dufour and Soret num-
bers and the volume fractions of alumina and copper. To enable
a thorough examination of the flow properties and thermal be-
havior under various circumstances, those impacts are visually
depicted.

2. Mathematical formulation

The linear convective transport of mass and heat in a Cas-
son hybrid nanofluid flowing over a linearly stretched surface
is investigated in a steady, two-dimensional study. The y-axis
is perpendicular to the x-axis, which indicates the stretching di-
rection. The wall velocity can be expressed as, uw(x) = bx,
where b > 0 is the stretching rate constant and uw is the wall
velocity. B(x) = B0x is the magnetic field’s vertical intensity,
where B0 is the applied magnetic induction. As illustrated in
Figure 1, we took into consideration the velocity components
u and v, which represent the flow directions along the x and
y axes, respectively. The temperature, concentration, and fluid
velocity of the nanoparticle near the surface are assumed to be
Uw, Tw, and Cw, respectively. The stress tensor (τ) of the Cas-

Figure 1: Geometrical configuration of the physical model for
stretching surface.

son fluid is defined as follows:

τi j =


2
(
µ +

py
√

2π

)
ei j, π > πc

2
(
µ +

py
√

2πc

)
ei j, π < πc,

(1)

where

ei j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
,

where µ denotes the fluid’s viscosity in the context of Casson

fluid dynamics, py

(
=
µ
√

2πc

β

)
yields the yield stress, where β

is the Casson fluid parameter, ei j describes the strain rate fac-
tors, πc indicates the critical value in the non-Newtonian model,
and π(ei jei j) is the multiplication of strain rate components by
themselves. Simplifying the equation (1) by using the value of
py for a Casson fluid, the main rheological (flow-related) equa-
tions transform to the following form if π < πc:

τi j = 2µ
(
1 +

1
β

)
ei j,where β =

µ
√

2πc

py
. (2)

When β becomes very large (β→ ∞) the non-Newtonian
characteristics of the fluid are suppressed, and it begins to ex-
hibit the behavior of a Newtonian fluid, which means it flows in
a more typical and predictable manner. Using the above as-
sumptions, along with the Boussinesq approximation (which
simplifies the treatment of buoyancy forces),and applying equa-
tion (2) the momentum equations regulating the steady flow of
Casson nanofluids, along with the related boundary conditions
as provided by Patil et al. [19] and Olkha and Dadheech [20]
are as follows:

∂u
∂x
+
∂v
∂y
= 0, (3)

u
∂u
∂x
+ v

∂u
∂y
=

(
1 +

1
β

)
µhn f

ρhn f

∂2u
∂y2 −

(
1 +

1
β

)
µhn f

ρhn f k∗
u

−
σhn f

ρhn f
B2

0u, (4)
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u
∂T
∂x
+ v

∂T
∂y
=

khn f

(ρcp)hn f

∂2T
∂y2 −

1
(ρcp)hn f

∂qr

∂y
+

DmKTρhn f

Cs(ρcp)hn f

∂2C
∂y2

+

(
1 +

1
β

)
µhn f

(ρcp)hn f

(
∂u
∂y

)2

+
Q0

(ρcp)hn f
(T − T∞)

+
σhn f

(ρcp)hn f
B2

0u2, (5)

u
∂C
∂x
+ v

∂C
∂y
= Dhn f

∂2C
∂y2 +

DmKT

Tm

∂2T
∂y2 . (6)

The relevant boundary conditions are as follows:

u = uw(x) + K1

(
1 +

1
β

)
∂u
∂y
,

v =
k

ρ (βm +Cs(Tm − T0))
∂T
∂x
− vm,

C = Cw + K3
∂C
∂y
,T = Tm + K2

∂T
∂y
, at y = 0,

u→ 0, T → T∞, C → C∞, as y→ ∞


, (7)

where Cs the concentration susceptibility, Dm represents the
mass diffusion ratio, KT the thermal diffusion ratio, Tm the melt-
ing temperature and K1, K2, and K3 are the velocity, thermal and
concentration slip coefficients, respectively. Thermal radiation
qr is modeled by using the Rosseland approximation, which is
expressed as follows:

qr = −
4σ∗

3k∗
∂T 4

∂y
, (8)

where σ∗ representing the Stefan-Boltzmann constant and k∗

representing the Rosseland mean absorption coefficient. As-
suming that temperature changes within the fluid flow are neg-
ligible and that T 4 can be approximately represented as a linear
function of temperature T 4 = 4T 3

∞T − 3T 4
∞, so that equation (8)

can be recast as follows:

∂qr

∂y
= −

16σ∗T 3
∞

3k∗
∂2T
∂y2 . (9)

The transformed energy equation is obtained by substituting
equation (9) into equation (5):

u
∂T
∂x
+ v

∂T
∂y
=

khn f

(ρcp)hn f

∂2T
∂y2 +

16σ∗T 3
∞

3k∗(ρcp)hn f

∂2T
∂y2

+
DmKTρhn f

Cs(ρcp)hn f

∂2C
∂y2 +

(
1 +

1
β

)
µhn f

(ρcp)hn f

(
∂u
∂y

)2

+
Q0

(ρcp)hn f
(T − T∞) +

σhn f B2
0u2

(ρcp)hn f
. (10)

The following transformations of similarity are employed to
non-dimensionalize the above set of PDEs and transform them

into ODEs:

u = bx f ′(η),

v = −
√

bν f f (η),

ϕ =
C −C∞
Cw −C∞

, θ =
T − T∞
Tm − T∞

,

η = y

√
b
ν f
,


. (11)

It is now observed that the continuity equation (3) is sat-
isfied identically by using equation (11). The remaining di-
mensional equations (4), (6) and (10) along with the boundary
condtions equation (7) by applying equation (11) transform to
the following nondimensional equations:(

1 +
1
β

) (
µhn fρ f

µ fρhn f

)
f ′′′ + f f ′′ − K

(
1 +

1
β

) (
µhn fρ f

µ fρhn f

)
f ′

− f ′2 − M
(
σhn fρ f

σ fρhn f

)
f ′ = 0, (12)

1
Pr

(ρCp) f

(ρCp)hn f

(
khn f

k f
+

4
3

R
)
θ′′ + f θ′ +

(Cp) fρhn f

(ρCp)hn f
Du ϕ′′

+

(
1 +

1
β

)
µhn f

µ f

(ρCp) f

(ρCp)hn f
Ec ( f ′′)2

+ Qθ +
σhn f

σ f

(ρCp) f

(ρCp)hn f
MEc ( f ′)2 = 0, (13)

ϕ′′ +
D f

Dhn f
S c fϕ′ +

D f

Dhn f
S c S r θ′′ = 0. (14)

The modified boundary conditions becomes:

f ′(0) = 1 + A
(
1 +

1
β

)
f ′′(0), ϕ(0) = 1 +Cϕ′(0),

f (0) = S −
Me
Pr

θ′(0), θ(0) = 1 + Bθ′(0), at η = 0

f ′(η)→ 0, θ(η)→ 0, ϕ(η)→ 0 as η→ ∞


, (15)

where β = µ
√

2π
py

is the Casson parameter that is not Newto-
nian, S = v0√

bν f
represents the mass transfer parameter, the

Prandtl number is Pr = (µCp) f

k f
, M =

σ f B2
0

ρb is the parameter

for the magnetic field, K = µ f

ρ f bk∗ is the permeability parame-

ter, R = 4σ∗T 3
∞

kk∗ is the radiation parameter, Du = DmKT (Cw−C∞)
Cs(ρCp) f ν f (Tw−T∞)

is the Dufour number, the Eckert number is Ec = u2
w

(Tw−T∞)(Cp) f
,

Q = Q0
(ρCp)hnf

is the parameter for the heat source/sink. S c = ν f

D f

is the Schmidt number, S r = DmKT (Tw−T∞)
Tmν f (Cw−C∞) is the Soret num-

ber, Me = (Tm−T∞)Cp

βm+Cs(Tm−T0) represents the melting surface parame-

ter A = K1

√
b
ν f

is the velocity slip parameter, B = K2

√
b
ν f

is

the parameter for thermal slip and C = K3

√
b
ν f

is the mass slip
parameter.
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Figure 2: Impact of magnetic field parameter M on f ′(η).

Figure 3: Impact of permeability parameter K on f ′(η).

3. Some important physical quantities of the flow field

3.1. Local skin friction coefficient

C f =
τw

ρU2
w
,where τw = µhn f

(
1 +

1
β

)
∂u
∂y

∣∣∣∣∣
y=0

. (16)

By applying equation (11) to equation (16), the local skin fric-
tion coefficient in terms of transformed variables can be written
as follows:

(Rex)1/2 C f =
µhn f

µ f

(
1 +

1
β

)
f ′′(0). (17)

3.2. The dimensionless coefficient of heat transfer (Nusselt
number)

The local Nusselt number’s dimensionless representation is
provided by:

Figure 4: Impact of slip parameter A on f ′(η).

Figure 5: Impact of volume fraction parameter ϕs1 on f ′(η).

Figure 6: Impact of magnetic field parameter M on θ(η).
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Figure 7: Impact of heat source/sink parameter Q on θ(η).

Figure 8: Impact of Casson parameter β on θ(η)

Figure 9: Impact of Dufour number Du on θ(η).

Figure 10: Impact of thermal slip parameter B on θ(η).

Figure 11: Impact of Eckert number Ec on θ(η)

Figure 12: Impact of melting heat transfer parameter Me on
θ(η).

Nux =
xqw

k f (Tw − T∞)
,where qw = −khn f

∂T
∂y

∣∣∣∣∣
y=0

. (18)
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Figure 13: Impact of volume fraction parameter ϕs1 on θ(η).

Figure 14: Impact of volume fraction parameter ϕs2 on θ(η),

Figure 15: Impact of Schmidt number S c on ϕ(η).

From equation (11), the dimensionless expression for the
local Nusselt number in terms of transformed variables, and

Figure 16: Impact of Soret number S r on ϕ(η).

Figure 17: Impact of concentration slip parameter C on ϕ(η).

equation (18) proved to be:

(Rex)−1/2 Nux = −
khn f

k f
θ′(0). (19)

3.3. The dimensionless coefficient of mass transfer (Sherwood
number)

The dimensionless expression for the local Sherwood num-
ber is given by:

S hx =
xqm

D f (Cw −C∞)
,where qm = −Dhn f

∂C
∂y

∣∣∣∣∣
y=0

. (20)

Substituting equation (11) in equation (20) the dimension-
less expression for local Sherwood number in terms of trans-
formed variables turned out to be

(Rex)−1/2 S hx = −
Dhn f

D f
ϕ′(0), (21)

where Rex =
bx2

ν f
is the local Reynolds number, in this in-

stance, f ′′(0), θ′(0), and ϕ′(0) can be obtained using equations
(12)-(14).
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Figure 18: Impact of volume fraction parameter ϕs1 on ϕ(η).

Figure 19: Impact of volume fraction parameter ϕs2 on ϕ(η).

Figure 20: Effect of velocity suction parameter S on skin fric-
tion coefficient.

Figure 21: Effect of velocity suction parameter S on Nusselt
number.

4. Results and discussion

This study examines how the flow of a Casson hybrid
nanofluid is affected by viscous deformation, melting, Soret,
and Dufour phenomena, as well as temperature jump, veloc-
ity and concentration slip boundary conditions. To make the
hybrid nanofluid, also called Cu − Al2O3/water nanofluid, alu-
mina Al2O3(ϕs1) and copper Cu(ϕs2) nanoparticles are dis-
persed in water at varying solid volume fractions. Equations
(12)-(14) by using the boundary conditions given by equation
(15) are solved by using MATLAB’s bvp4c solver. The graphs
are also utilized to illustrate the impact of pertinent parameters
on fluid profiles for momentum f ′(η), energy θ(η) and mass dif-
fussion ϕ(η). Numerous physical parameters, such as the Cas-
son fluid β, permeability K, magnetic field M, Dufour Du, Soret
S r and Prandtl number Pr, radiation parameter R, Eckert num-
ber Ec and Schmidt number S c, heat source/sink Q, melting
Me, velocity slip A, thermal slip B, and mass slip C, as well
as the nanoparticle volume fractions ϕs1 and ϕs2 have been nu-
merically evaluated and further applied to evaluate the various
important characteristics of the flow field. The equation (17),
equation (19) and equation (21) are used to get the local skin
friction coefficient (C f ), mass transfer rate and heat exchange
rate, respectively.

4.1. Impact on velocity profile f ′(η)
An increase in the magnetic field parameter (M) has a con-

siderable effect on fluid flow, as seen in Figure 2. An opposing
force known as the Lorentz force is created when the fluid’s
electrical impulses interact with the magnetic field. The fluid’s
velocity continues to decline when this force intersects the flow.
Increasing the porosity parameter (K) also affects the fluid’s
velocity, as seen in Figure 3. The graphic makes it clear that
velocity rises with the permeability parameter. Because of the
increased permeability, the fluid encounters less drag force. As
a result, the fluid can move more freely, leading to higher ve-
locities. The investigation of the impact of the velocity slip

8
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Figure 22: Effect of Casson parameter β on Sherwood number.

Figure 23: Effect of Casson parameter β on Nusselt number.

parameter (A) on the velocity profile f ′(η) is shown in Figure 4.
The figure makes it evident that as the velocity slip parameter
increases, so does the velocity profile. This is explained by the
fact that velocity slip at the shrinking surface boundaries low-
ers flow resistance and consequently increases the flow velocity
by letting more flow through the surface. Figure 5 illustrates
that how increasing aluminum oxide volume fraction parame-
ter (ϕs1) raises the velocity profile f ′(η). This occurs because
the addition of a hybrid nanofluid, such as aluminum oxide, to
water enhances the fluid’s thermal characteristics, including its
heat transfer coefficient, thermal diffusivity, and thermal con-
ductivity, all of which raise the velocity profile.

4.2. Impact on temperature profile θ(η)
A change in the magnetic field (M) affects the temperature

in a convection system, as shown in Figure 6. As the mag-
netic field gets stronger, the fluid’s temperature rises because
the magnetic damping transforms the fluid’s kinetic energy into
heat. Figure 7 illustrates how increasing the number of heat
source/sink parameters (Q) affects heat transfer. The temper-

ature rises as Q rises because more heat generation results in
a wider temperature spread. Figure 8, illustrates how the Cas-
son parameter (β) affects the temperature profile which demon-
strates that a rise in β lowers the temperature. The tempera-
ture drops as β rises because of the slower heat transfer caused
by the increased viscosity. Figure 9 illustrates how tempera-
ture changes as the Dufour number (Du) increases. Higher heat
transfer rates result from Du increasing viscosity and decreas-
ing fluid resistance. The effect of the thermal slip parameter B
on the temperature θ(η) is depicted in Figure 10. It is discovered
that the temperature field rises in tandem with the slip param-
eter. Figure 11 shows how the Eckert number (Ec) affects the
temperature profile θ(η). It is clear that as the Eckert number
rises, the temperature profile along the stretching sheet climbs
as well. The behavior of temperature distributions at higher val-
ues of the melting heat Me transfer is seen in Figure 12. It has
been found that when the melting heat transfer is increased, the
fluid flows more quickly, lowering the temperature profile. θ(η)
increases when the aluminum oxide volume fraction ϕs1 and
copper volume fraction ϕs2 are raised, as seen in Figure 13 and
Figure 14.

4.3. Impact on concentration profile ϕ(η)
The impact of the Schmidt number S c on mass dissipation

is depicted in Figure 15, due to the border layer of concen-
tration becoming narrower as a result of the commensurate
drop in mass diffusivity. Figure 16 depicts how the concen-
tration profile is affected by the Soret number S r. The Soret
number relates the temperature difference to the concentration
difference. As S r increases, the temperature gradient becomes
steeper, which likely speeds up molecular diffusion. Conse-
quently, with higher Soret numbers mass transfer rates increase
and ϕ(η) improves. Figure 17 illustrates the impact of the
concentration slip parameter C. This shows that the slip slows
down fluid movement, which reduces molecular movement. As
a result, both temperature and mass fraction decrease. Figures
make this clear that the ϕ(η) improves when the copper volume
fraction parameter ϕs2 and the aluminum oxide volume fraction
parameter ϕs1 rise, according to Figure 19 and Figure 18.

4.4. Impact on skin friction (C f ), local Nusselt number (Nux)
and local Sherwood number (S hx)

Figure 20 shows that the skin friction coefficient
√

Rex C f

improves with increased suction (S ) as the velocity profile im-
proves as the suction increases and the momentum boundary
layer thins. Nux√

Rex
, which represents the surface heat transfer

rate, falls as the suction parameter increases it is expressed in
Figure 21. For a variety of Casson fluid parameter (β) values,
the mass transfer rate Shx√

Rex
is displayed in Figure 22. The fluid

gets viscous and the Sherwood number decreases as the Cas-
son fluid parameter increases. In Figure 23, the heat transfer
rate Nux√

Rex
is shown against the Casson parameter. The graphic

clearly shows that a higher heat transfer rate is the result of an
increase in β.
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5. Conclusion

The viscous, incompressible Casson hybrid nanofluid’s
magnetohydrodynamic (MHD) flow across a stretching sheet
is explored in this study. In addition to velocity and concen-
tration slip along with temperature jump circumstances, the re-
search considers the impacts of melting, viscous dissipation,
Soret, and Dufour phenomena. The bvp4c solver was used to
solve the PDEs after they were converted into ODEs via sim-
ilarity transformations. The results obtained are numerically
evaluated and expressed with the help of graphs. The primary
conclusions of the study can be listed below:

• The analysis shows that the magnetic field (M) has a di-
rect effect on the temperature profile and an inverse ef-
fect on the velocity profile. Additionally, increasing the
Darcy permeability (K) improves the velocity profile.

• As the Dufour number (Du) grows, the temperature pro-
file θ(η) rises as well, illustrating the role of thermal dif-
fusion in heat transport, whereas the temperature profile
θ(η) falls with the Casson fluid parameter (β).

• The heat source/sink (Q), Eckert number (Ec) and ther-
mal slip parameter (B) raise the temperature profile θ(η)
along the stretched sheet, while the heat melting parame-
ter (Me) has the opposite effect.

• The copper and aluminum oxide volume fraction param-
eters ϕs2 and ϕs1 of the hybrid nanofluid increases the
velocity, temperature and concentration profiles.

• Higher Soret numbers (S r) encourage concentration ϕ(η)
fields, whereas increasing Schmidt numbers (S c) results
in a decrease in ϕ(η).

• The suction (S ) increases the skin friction coefficient
while decreasing the rate of heat transfer. The Casson
fluid parameter (β) raises the skin friction coefficient and
the rate of mass transfer while decreasing the rate of heat
transfer.

Data availability

The data will be available on request from the correspond-
ing author.
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