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Abstract

Nigeria faces persistent energy supply challenges, particularly in its northeastern region, where grid access is limited and dependence on fossil
fuels undermines sustainability goals. Although the National Renewable Energy Action Plan (NREAP 2015-2030) outlines ambitious targets
for renewable energy integration, it notably lacks specific strategies for geothermal development—Ileaving a critical gap in policy and resource
utilization. This study addresses that gap by developing a scalable, cost-effective geothermal prospectivity mapping framework using remote
sensing and aeromagnetic data integrated through a hybrid machine learning model. A novel combination of Deep Belief Networks (DBN)
for feature extraction and Fuzzy C-Means (FCM) clustering for spatial classification was employed, with optimization achieved using three
metaheuristic algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Simulated Annealing (SA). Among these, the DBN-
SA model achieved the best internal validity, with superior Silhouette Score, Davies—Bouldin Index, and cluster compactness, ensuring robust
and interpretable prospectivity results. Key geothermal indicators—including land surface temperature, vegetation stress, Curie depth, heat flow,
and magnetic source depth—were derived from Landsat and airborne magnetic datasets. The resulting map classifies the study area into low,
moderate, and high geothermal potential zones, with validation supported by geological correlation and the presence of known thermal features
like the Wikki Warm Spring. Approximately one-third of the area was identified as high-potential, particularly over basement terrains with high
heat production and structural permeability. This approach offers both scientific insight and practical direction for decentralized, low-carbon
energy deployment in northeastern Nigeria, aligning with broader national renewable energy goals and filling a crucial gap in geothermal resource
planning.
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1. Introduction

The global demand for energy is steadily increasing due
to rapid population growth, industrialization, and technolog-
ical advancement [1]. Energy generation is fundamental to
socio-economic development, playing a crucial role in enhanc-
ing the well-being and prosperity of individuals, communities,
and nations [1]. However, limited access to reliable energy ex-
acerbates poverty, underdevelopment, and economic instabil-
ity, particularly in developing countries [2]. According to the
2016 World Energy Resources Report, fossil fuels still consti-
tute around 81% of global energy consumption. While they
have historically fueled industrial and infrastructural progress,
these sources are finite and are major contributors to greenhouse
gas emissions. Misra and Kalra [3] note that such emissions
are linked to ozone layer depletion, global warming, and erratic
climate behavior—raising significant concerns about environ-
mental sustainability. Considering these challenges, renewable
energy sources—such as solar, wind, hydroelectric, biomass,
tidal, wave, and geothermal—offer cleaner, more sustainable
alternatives [4, 5]. Among these, geothermal energy stands out
due to its reliability, low environmental footprint, and indepen-
dence from fluctuating climatic conditions [5, 6]. It remains
largely unaffected by temporal changes in solar radiation, wind,
or water availability, making it both cost-effective and environ-
mentally friendly energy source [2, 7]. Recent global efforts
have explored geothermal potential using various techniques
and datasets, including geological, geochemical, geophysical,
borehole, and remote sensing data [8, 9]. Multicriteria Deci-
sion Analysis (MCDA) methods such as Analytic Hierarchy
Process, Fuzzy Logic, ELECTRE III, PROMETHEE II, and
Evidential Belief Functions have shown promise in geother-
mal prospectivity mapping [5]. However, traditional MCDA
approaches often assume deterministic or linear relationships,
which may not adequately reflect the inherently nonlinear and
uncertain nature of geothermal systems [5]. To overcome these
limitations, machine learning (ML) techniques have emerged
as powerful tools capable of modeling complex, nonlinear re-
lationships among geothermal indicators without requiring ex-
tensive expert input. The Deep Belief Network (DBN) has
been successfully applied in various geoscientific tasks, such
as groundwater potential mapping and landslide susceptibility
analysis [10—12]. DBN’s performance can be further enhanced
by integrating metaheuristic optimization algorithms that fine-
tune its internal parameters [13, 14]. Popular metaheuristics
such as Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), and Invasive Weed Optimization (IWO) have demon-
strated improved results when combined with Adaptive Neuro
Fuzzy Inference System (ANFIS) [5, 10, 15]. In this study,
three hybrid models—GA-ANFIS, PSO-ANFIS, and ITWO-
ANFIS—were developed to integrate geophysical and remote
sensing datasets for geothermal potential assessment. These
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models aim to address the nonlinear complexity of geother-
mal systems, minimize subjectivity in decision-making, and en-
hance predictive accuracy. The Receiver Operating Character-
istic—Area Under the Curve technique was used for model vali-
dation.

Some studies have been carried out on geothermal poten-
tial in different basins and geological area in Nigeria [16—18].
Adedapo et al. [19] and Emujakporue and Ekine [20] reported
subsurface temperature analyses showing a minimum geother-
mal gradient of 1.2°C/100 m in the central part of the basin and
a maximum of 7.62°C/100 m in the northeastern part. Obande
et al. [21], in their literature reviews, noted signs of crustal thin-
ning in the Upper Benue Trough and suggested the presence of
anomalously hot material at relatively shallow depths. Kasidi
and Nur [22] estimated the Curie Point Depth (CPD), heat flow,
and geothermal gradient using aeromagnetic data over Jalingo,
northeastern Nigeria. Their results showed CPD values rang-
ing between 24 km and 28 km, geothermal gradients between
21°C/km and 23°C/km, and heat flow values from 53 mW/m?
to 61 mW/m?. Kwaya et al. [23] also observed geothermal gra-
dients in the Nigerian sector of the Chad Basin ranging from
28.1°C/km to 58.8 °C/km, with corresponding heat flow values
between 45 mW/m? and 90 mW/m?. In contrast, Chukwu et
al. [24], focusing on parts of the eastern Niger Delta Basin,
found very low heat flow values and concluded that the area
has limited potential for geothermal resource exploitation. This
study introduces a novel hybrid machine learning workflow that
combines Deep Belief Networks (DBN) for deep feature ex-
traction with Fuzzy C-Means (FCM) clustering, optimized us-
ing metaheuristic algorithms (GA, PSO, SA), for geothermal
prospectivity mapping. It is the first to apply this unsuper-
vised, data-driven approach in Northeastern Nigeria, integrat-
ing multisource geophysical and remote sensing datasets to un-
cover hidden geothermal patterns. The workflow is fully repro-
ducible, leveraging standard preprocessing, open-source tools
(e.g., ArcGIS, Python/Jupyter), and internal validation metrics,
making it adaptable for geothermal exploration in other data-
sparse or underexplored regions.

1.1. Geothermal energy in Nigeria: context and challenges

In the Nigerian context—particularly in the northeastern
region—energy supply remains inadequate and unstable, un-
derscoring the need to explore local, sustainable alternatives.
Geothermal energy, derived from Earth’s internal heat, offers
an eco-friendly solution to the country’s energy challenges
and aligns with global clean energy goals [21, 25-27]. The
region’s tectonic framework, lithological heterogeneity, and
structural features suggest promising geothermal potential, yet
these remain largely uninvestigated [28]. Traditional geother-
mal exploration techniques—such as detailed fieldwork, bore-
hole drilling, and high-resolution geophysical surveys—are ex-
pensive, time-consuming, and often impractical in remote or
conflict-prone areas [29]. In contrast, integrating remote sens-
ing and geophysical datasets with machine learning models of-
fers a scalable, cost-effective approach for preliminary geother-
mal mapping. For instance, Landsat-derived thermal and spec-
tral indices, when combined with magnetic data, can high-
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Figure 1. Location map of the study area.

light geothermal surface manifestations like thermal anomalies,
hydrothermal alterations, and structural lineaments [27]. De-
spite Nigeria’s National Renewable Energy Action Plan, which
aimed to increase renewable energy integration to 23% by 2020
and 31% by 2030, implementation has been hampered by over-
lapping mandates and poor collaboration among key agencies
such as the Energy Commission of Nigeria, the Nigerian Elec-
tricity Regulatory Commission, and the Ministry of Power. No-
tably, the plan lacks specific provisions for geothermal energy
development. This omission has resulted in policy neglect, the
absence of targeted incentives, and weak institutional coordi-
nation for geothermal exploration. Consequently, geothermal
energy remains underutilized, despite its significant potential,
particularly in regions like Northeastern Nigeria. Recent stud-
ies [26, 27, 30-34] highlight favorable geothermal conditions
across various regions, identifying low CPD and high heat flow
(HF) as key indicators of geothermal prospectivity.

1.2. Advancing geothermal mapping with hybrid machine
learning

Machine learning algorithms excel at detecting complex
spatial patterns in high-dimensional data. Deep Belief Net-
works (DBNs), which consist of stacked Restricted Boltzmann
Machines, are especially effective for unsupervised feature ex-
traction and nonlinear classification [35, 36]. DBNs can un-
cover hidden relationships among geothermal indicators but
may not fully address the uncertainty inherent in natural sys-
tems. To this end, fuzzy clustering methods—such as Fuzzy C-
Means (FCM)—allow for partial membership assignments and
are well-suited for modeling imprecise boundaries typical of
geological environments [37].

1.3. Proposed hybrid DBN-FCM workflow

This study proposes a novel hybrid machine learning work-
flow that combines DBN and FCM for geothermal prospec-
tivity mapping in Northeastern Nigeria. The model integrates

;
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Figure 2. Geological map of the study area.

Landsat-derived thermal and vegetation indices with aeromag-
netic data to capture both surface and subsurface geothermal
signatures. The workflow involves:

1 DBN Feature Extraction: DBN is used to extract mean-
ingful patterns and features from the input dataset, reduc-
ing dimensionality while preserving critical information.

2 FCM Clustering: The extracted features are then clus-
tered using FCM, which accommodates uncertainty and
fuzzy boundaries in the geological data.

1.4. Significance and advantages of the approach

o Robust Feature Learning: DBN’s deep architecture en-
hances feature representation by learning high-level ab-
stractions from noisy and complex datasets.

e Fuzzy Handling of Uncertainty: FCM'’s probabilistic
clustering approach effectively captures the imprecise
and gradational nature of geothermal prospect zones.

e Improved Predictive Accuracy: The synergy between
DBN and FCM improves clustering quality and inter-
pretability, leading to more reliable geothermal potential
maps.

1.5. Location and geology of the study area

The study area is located primarily within Bauchi State,
with portions extending into Plateau and Gombe States (Fig-
ure 1). It is bounded by longitudes 9° 00’E to 11° 00’E and
latitudes 9 ° 30’N to 11 ° 00’N. The area spans 12 geologi-
cal map sheets: Kailatu (127), Madaki (128), Ganjuwa (129),
Dukku (130), Toro (148), Bauchi (149), Alkaleri (150), Ako
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(151), Maijuju (169), Balewa (170), Yuli (171), and Futuk
(172). Geologically, the region encompasses a transition from
the Precambrian Basement Complex to Cretaceous and Ter-
tiary sedimentary formations (Figure 2). The western part is
predominantly underlain by the Precambrian Basement Com-
plex, which includes migmatite-gneiss, granite gneiss, and bi-
otite granite—products of the Pan-African orogeny that exhibit
significant metamorphic and structural features [28, 38]. The
area lies along the northeastern margin of the West African Rift
System, marking a transitional zone between the Jos Plateau’s
crystalline basement and the sedimentary cover of the Creta-
ceous—Tertiary Benue Basin. The Upper Benue Trough (UBT),
a Cretaceous rift system formed during the separation of Africa
and South America [39], dominates the region. The regional
structural grain trends NE-SW, reflecting early Cretaceous
rift-rift—transform interactions that segmented the West African
Craton [40, 41]. The Gongola Basin, part of the UBT, features a
stratigraphic succession that reflects a transition from continen-
tal to marine and back to continental depositional environments.
From oldest to youngest, the formations include the Bima,
Yolde, Pindiga, Gombe, and Kerri-Kerri Formations—each
with distinct lithologies and depositional settings. Beneath
the sedimentary cover lies the Pan-African Basement Complex
(ca. 600-500 Ma), composed of high-grade migmatite—gneiss,
metasedimentary belts, and Older Granite intrusions, includ-
ing equigranular biotite-hornblende granites, fine- to coarse-
grained biotite granites, charnockites, quartz syenites, and sub-
ordinate gabbros [28, 42]. These granites were emplaced during
the late Pan-African orogeny and display a variety of textures,
from porphyritic to medium-grained hornblende-biotite gran-
ites [43]. The region is also intruded by Mesozoic “Younger
Granite” ring complexes (ca. 200-120 Ma), which include
granite porphyry, rhyolitic ignimbrites, and associated micro-
granites. These anorogenic intrusions exploited pre-existing
NE-SW and NW-SE basement lineaments, forming zoned ring
dykes and cone sheets [42]. Geochemically, the Younger Gran-
ites are enriched in radiogenic elements such as uranium, tho-
rium, and potassium, yielding high heat production rates of up
to 3.35 u Wm™ and locally elevated basal heat flow [44]. In
the adjacent Benue Trough, heat flow values range from 70 to
90 mWm~2—anomalously high for a cratonic region—and are
attributed, in part, to radiogenic heat production from these in-
trusions [45]. Table 1 shows the key lithologies in the study
area and their geothermal relevance.

2. Materials and method

This study employed remote sensing, geological, and geo-
physical datasets to extract geothermal prospectivity parame-
ters (GPPs). These parameters were analyzed using a Deep Be-
lief Network (DBN) to derive latent features, which were then
clustered using Fuzzy C-Means (FCM) clustering. The clus-
tering results were used to produce a geothermal prospectivity
map of the study area.
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Figure 3. Total Magnetic Intensity (TMI) map of the study area.
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Figure 4. Workflow diagram.

2.1. Materials

The datasets utilized include Landsat 8 imagery, airborne
magnetic data, and geological maps. Level 1 Landsat 8 Oper-
ational Land Imager and Thermal Infrared Sensor scenes were
obtained from United State Geological Survey EarthExplorer
for the path/row combinations 187/052, 187/053, 186/052,
186/053, and 188/053, acquired between February 3 and 5,
2024. The scenes were mosaicked into a single image and
clipped to the study area using ArcGIS and ENVI software.
Standard preprocessing steps, including radiometric and atmo-
spheric corrections, were applied to enhance data quality. Aero-
magnetic data were sourced from the Nigerian Geological Sur-
vey Agency (NGSA). The data, acquired by Fugro Airborne
Surveys between 2004 and 2009, covers twelve geological map
sheets: Kailatu (127), Madaki (128), Ganjuwa (129), Dukku
(130), Toro (148), Bauchi (149), Alkaleri (150), Ako (151),
Maijuju (169), Balewa (170), Yuli (171), and Futuk (172). The
dataset had undergone preliminary corrections prior to public
release [46]. Additional processing in this study included Re-
duction to the Equator and Regional-Residual Separation, con-
ducted using the Oasis Montaj platform (Figure 3).
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Table 1. Key lithologies in the study area and their geothermal relevance.

Lithology Age/Origin Key characteristics ~ Geothermal relevance
High heat
Felsic, volcanic; production;
Mesozoic often associated common host
Younger Granite  with hydrothermal for geothermal
Rhyolite (120-200 Ma) systems Ieservoirs
High porosity
Welded volcanic and radiogenic
tuff; high heat generation
Ignimbrite Mesozoic silica content potential
Coarse-grained Source of
Pan-African intrusive rock radiogenic heat;
Basement rich in radiogenic structurally
Biotite hornblende granite (ca. 600 Ma) elements (U, Th, K) fractured
High-grade
metamorphic ngh thermal
rocks with conductivity
variable and residual
Charnockite / granite gneiss / granulite  Precambrian mineralogy heat capacity
Structural
Intermediate—mafic ~ permeability;
Pan-African intrusive moderate heat
Syenite—quartz syenite—gabbro Basement suite production
Mixed Moderate heat
metamorphic— flow; fracture
igneous networks
Migmatite / migmatite gneiss Precambrian complex possible
Mostly Known surface
Kerri—Kerri sandstone; geothermal
Formation _ overlying manifestation
(with W11.<k1 Tertlary basement heat (W1kk1. Warm
Warm Spring) sedimentary sources Spring)
2.2. Methods infrared band [48]. Using this constant emissivity, a temper-

Figure 4 below shows a brief algorithmic workflow diagram
from preprocessing - DBN — FCM — validation.

2.2.1. Geothermal prospectivity parameters derivation

The GPPs used in this study were derived from airborne
magnetic data and Landsat 8 bands 4, 5, and thermal bands.
These parameters include the Normalized Difference Vegeta-
tion Index (NDVI), land surface temperature (LST), source pa-
rameter imaging (SPI), CPD, geothermal gradient (GG), and
HF. These GPPs have been extensively used in geothermal re-
source exploration by various authors [26, 27, 47].

The extracted parameters from Landsat imagery reveal sur-
face manifestations of geothermal resources. The NDVI was
computed using atmospherically corrected bands 4 and 5. The
NDVI was calculated using the following Eq. (1):

Band5 — Band4 M
Band5 + Band4 "

The LST was extracted using thermal bands 10 and 11. The
temperature was retrieved in ENVI software using the Emissiv-

ity Reference Channel method. This method assumes that emis-
sivity remains constant across all pixels within a single thermal

NDVI =

ature image is generated using the Planck function [49]. The
Planck function used is represented in Eq. (2):

(&)
A ln( Ly 1)
where T is the land surface temperature (K) retrieved from
the reference channel, Ay is the Wavelength of the reference
channel (um), g is the emissivity of the reference channel, Ly is
the radiance measured in the reference channel (W/m?/sr/um),
and C, C, are the Planck constants.

The SPI technique interprets the total magnetic intensity
(TMI) by calculating its second-order derivatives to form an
analytical signal. From this, a local wave number k is obtained,
which is independent of the source’s susceptibility contrast, dip,
and regional geomagnetic parameters [5S0]. The depth z to the
top of a magnetic source is then estimated by Eqgs. (3) and (4):

T = @)

1
2= 3
1 [ 6°T 8T &*T T  (&*T &*T\OT
=t |t == @&
A2 | 0x0z dx  Oydz Dy oxr  8y?) oz
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A% = 6_Tz+ 6_T2+ 6_T2
~\ox dy oz )’

where T is the total magnetic intensity, 7 /dx, 0T /dy, and
0T [0z are the three orthogonal derivatives, and A is the ana-
lytical signal [S1].

Similarly, the Total Magnetic Intensity (TMI) was used
as the basis for the extraction of structural lineaments. The
residual-corrected grid was enhanced through derivative filter-
ing using the Geosoft Oasis Montaj MAGMAP tool. A total
horizontal derivative accentuates magnetic gradients in all di-
rections, sharpening the edges of faults and fractures by high-
lighting abrupt changes in magnetization. The enhanced deriva-
tive grids were then exported to a GIS environment for linea-
ment delineation, where linear features were manually digitized
by tracing continuous high-gradient trends guided by tonal and
textural variations. To quantify spatial distribution and connec-
tivity, the resulting lineaments were analyzed using ArcGIS’s
Kernel Density tool, producing density maps that highlight cor-
ridors of structural permeability—key controls on geothermal
fluid flow.

The spectral analysis method was employed for estimating
depths, including CPD, GG, HF. To achieve this, the residual
grid was subjected to an overlapping block window approach,
dividing the area into thirty-five (35) equal square blocks. The
radial power spectrum algorithm was applied to calculate the
spectral data of each block. CPD refers to the depth at which
a ferromagnetic material loses its magnetism, and the tempera-
ture at this depth is called the Curie Temperature or Curie Point
(T,). A graph of the logarithm of power was plotted against fre-
quency (radians per km) to estimate the CPD (Z,) of the mag-
netic source. The depth to the top of the magnetic source, Z,,
is derived from the slope of the low-frequency segment of the
logarithmic power spectrum, while the centroid depth, Z, is
calculated by normalizing the spectral amplitude by the abso-
lute wavenumber (k) and fitting a straight line to the segment
corresponding to the lowest wavenumbers. The depth to the
top of the magnetic source (Z;) and centroid depth (Z;) were
estimated using Eqgs. (5) and (6), respectively.

In|Pk|"* = In B - k|Z,, o)
PlklTL/2
In (&) =InD - |k|Z,, (6)
Ikl
Zy =27, —7Z,, @)

where B is a constant, Z; is the depth to the top of the magnetic
source, and [ln |V 2] is the radially averaged power spectrum,
D is a constant. Subsequently, the CPD, Z,, is determined using
Eq. (7) after [52].

The geothermal gradient (GG), dT/dZ, quantifies the in-
crease in temperature with depth beneath the Earth’s surface,
reflecting the conductive heat flow from the planet’s interior to-
ward its exterior. Above the Curie temperature, both induced
and remanent magnetizations are lost in ferromagnetic mate-
rials. However, beyond approximately 580 °C, many crustal
minerals begin to deform ductility. Consequently, the Curie
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study area..

temperature is typically assumed to be 580°C. Together with
the CPD measurement, this value is used to estimate the GG
using Eq. (8) [53].

dT  580°C

dz 7z,
The heat flow (HF), g, values are calculated by multiplying the
geothermal gradient by the thermal conductivity of rocks, as
shown in Eq. (9).

dr
=k—, 9

q=k= (€))
Where q is the heat flow and k is the coefficient of thermal con-
ductivity. Thermal conductivity (k) typically varies with local
lithology. An average value of 2.5 Wm™'°C~! was used, as the
study area is dominated by igneous rocks [21].

®

2.2.2. Mathematical and conceptual framework of the machine
learning algorithms used

The core of the methodology is a Deep Belief Net-
work (DBN), which learns hierarchical feature representations
through stacked Restricted Boltzmann Machines (RBMs). Each
RBM is an undirected probabilistic model consisting of visible
units v and hidden units h, and is trained using contrastive diver-
gence to approximate the data distribution [35]. RBM is defined
by an energy function, as shown in Eq. (10) [54]

E(V,h) = —Z Zv,-wijhj - Zaivi - ijhj (10)
[ J

1

Layers are added greedily: after one RBM converges, its hidden
activations become the visible data for the next RBM, enabling
deep architectures to overcome vanishing gradients. During
pretraining, an L, weight-decay regularization term A||W|? is
applied to each RBM’s weight matrix to prevent overfitting and
promote smoother feature extraction [55]. The final hidden-
layer activations constitute the latent features that are fed into
the clustering stage. Hyperparameter tuning of the RBM layers
(e.g., number of components, learning rates) is achieved using
metaheuristic optimization algorithms:
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e Genetic Algorithm (GA): Inspired by natural evolution,
GA maintains a population of candidate hyperparameter
“chromosomes,” applying selection, crossover, and mu-
tation operators to evolve toward higher fitness—defined
here as improved clustering quality—over successive
generations [56].

e Particle swarm optimization (PSO): This method mod-
els a swarm of particles navigating the hyperparameter
space. Each particle updates its velocity and position by
balancing personal experience and social learning to con-
verge on optimal solutions [57].

e Invasive weed optimization: Mimicking the colonization
behaviour of weeds, this algorithm allows individuals to
produce seeds in proportion to their fitness. Seeds are
dispersed spatially, with variance reducing over time, and
population control is applied to retain only the fittest in-
dividuals—allowing robust exploration of complex, non-
linear search spaces [58, 59].

Clustering is then performed using the Fuzzy C-Means (FCM)
algorithm, which partitions the latent features into ccc clusters
by minimizing the objective function defined in Eq. (11) [60].

J:iiu;’}nxi—qnz, (1)

i=1 j=1

where u;; € [0, 1] is the membership degree of point x; in clus-
ter j, c; is the j-th cluster center, and m > 1 is the fuzzifier
controlling cluster softness. Memberships and cluster centers
c; are updated iteratively via Egs. (12) and (13) until conver-
gence, allowing points to belong partially to multiple clusters
and thus modeling uncertainty in the feature space.

. 2 -1

o (i = cjll\ T
i = LZ; (uxi = cku) ] ’ (12
¢ = St (13)

XL uj;

This ensures that points closer to a cluster center have higher
membership values in that cluster. The objective function
weights each data point by its fuzzy membership degree. Con-
vergence is typically achieved when changes in membership
values fall below a predefined threshold or after reaching a max-
imum number of iterations. The choice of the fuzzifier m (com-
monly m=2) balances cluster overlap and crispness: lower val-
ues of mmm yield sharper, more distinct clusters, while higher
values allow for greater ambiguity in membership [61]. FCM’s
soft assignment strategy is particularly valuable in geospatial
applications such as geothermal prospectivity mapping, where

boundaries between geological facies are inherently uncertain
[62].

2.2.3. Implementation of the machine learning algorithm
Prior to model training, a 1 km X 1 km fishnet grid was gen-
erated over the study area, and its centroids were used to extract

all geothermal prospectivity parameters from the raster layers
using the “Extract Multi Values to Points” tool in ArcGIS. The
resulting multivariate point feature class, containing values for
all predictors, was then exported as a CSV file. This CSV
dataset served as the input for machine learning implementa-
tion in Jupyter Lab. A Deep Belief Network (DBN) was con-
structed to learn robust latent feature representations from the
normalized input data. Preprocessing involved MinMax nor-
malization [63], scaling all features to the [0, 1] range to ensure
equal weighting. The DBN architecture consisted of stacked
Bernoulli Restricted Boltzmann Machines (RBMs), where each
layer was regularized using L2 (weight decay) to prevent over-
fitting and enhance generalization [35]. During pretraining,
data were passed through the RBMs layer-by-layer, with each
layer transforming the input into increasingly abstract latent
representations. To evaluate how well the DBN captured the un-
derlying structure of the data, a backward pass was performed:
latent features were reconstructed using transposed weight ma-
trices and a sigmoid activation function. The quality of the re-
construction was assessed using Mean Squared Error (MSE)
and Kullback-Leibler (KL) divergence, which quantify the re-
construction error and the divergence between original and re-
constructed probability distributions, respectively. Hyperpa-
rameter tuning of the DBN (e.g., number of neurons, learn-
ing rates) was performed using metaheuristic optimization tech-
niques, including placeholder implementations of Genetic Al-
gorithms (GA), Particle Swarm Optimization (PSO), and Sim-
ulated Annealing (SA). These methods searched for parame-
ter configurations that minimized reconstruction error and im-
proved clustering performance. The final latent representations
were clustered using Fuzzy C-Means (FCM), which provided
both hard cluster assignments (via maximum membership) and
a Fuzzy Partition Coeflicient (FPC) to measure the degree of
cluster separation. Standard clustering metrics—including Sil-
houette Score, Davies—Bouldin Index, Partition Coefficients
(Fuzzy and Modified), and the Xie—Beni Index—were com-
puted to evaluate clustering performance. To determine the
optimal number of clusters, a grid search was conducted over
cluster counts ranging from 3 to 10. For each configuration, va-
lidity indices such as the Silhouette Index, Partition Coefficient
(PC), and Classification Entropy (CE) were used to assess clus-
tering quality. The optimal cluster count was selected based on
the best trade-off between compactness and separation. Com-
bined, the reconstruction metrics (MSE and KL divergence)
and clustering validity indices offer a comprehensive evalua-
tion of DBN’s feature learning capabilities and the quality of
the resulting cluster structures. This pipeline provides a robust
framework for unsupervised feature learning, hyperparameter
optimization, and cluster validation in geothermal prospectivity
analysis.

2.2.4. Validation

To wvalidate the machine learning—based geothermal
prospectivity map, lithological units within the study area were
cross-analyzed with the final cluster-based geothermal potential
classes. Lithological data were compiled from existing geolog-
ical maps and literature, and subsequently grouped according to
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Table 2. Evaluation metrics for different cluster counts.

Partition  Classification
Clusters  Silhouette score  coefficient entropy
3 0.5793 0.9134 0.1493
4 0.5458 0.8963 0.1805
5 0.5483 0.8936 0.1858
6 0.5443 0.8926 0.1893
7 0.5268 0.8837 0.2045
8 0.5266 0.8837 0.2054
9 0.5165 0.8777 0.2155
10 0.5202 0.8787 0.2142

their geological ages, ranging from the Quaternary to the Pre-
cambrian. The percentage distribution of each lithological unit
across the geothermal prospectivity classes was computed us-
ing spatial overlay analysis within a GIS environment. This
involved intersecting the classified prospectivity map with the
lithological layer and calculating the proportion of each lithol-
ogy falling within each prospectivity class. To statistically as-
sess the relationship between lithology and geothermal poten-
tial, a Chi-square test of independence was performed. This
test evaluated whether the observed distribution of lithological
units across the geothermal prospectivity clusters significantly
deviated from a random distribution.

3. Results and discussion

3.1. Geothermal prospectivity parameters results

3.1.1. Normalized difference vegetation index (NDVI)

The normalized difference vegetation index (NDVI) quan-
tifies vegetation ’greenness’ and health, with values typically
ranging from -1 (indicating no vegetation) to +1 (indicat-
ing dense vegetation). In geothermal exploration, low NDVI
anomalies often coincide with subsurface thermal activity, such
as elevated soil temperatures that can stress vegetation, leading
to detectable NDVI depressions [64, 65]. Figure 5 presents the
NDVI map of the study area, with values ranging from —0.19 to
0.42. The central and southeastern zones—near Bauchi, Rin-
jim Mukur, and Dogon Ruwa—show NDVI values below 0,
indicating sparse or stressed vegetation, which may be asso-
ciated with underlying geothermal conduits. In contrast, the
northwestern and eastern margins exhibit NDVI values greater
than 0.3, reflecting healthy, undisturbed vegetation cover. Such
NDVI anomalies have been successfully correlated with heat
discharge estimations in several case studies [66, 67].

3.1.2. Land surface temperature

Figure 6 shows the LST distribution across the study area,
with values ranging from 16.34 °C to 64.63 °C. Elevated LSTs
(>32.63 °C) are concentrated in the central and southeastern
sectors—particularly around Bauchi, Rinjim Mukur, and Do-
gon Ruwa—which may indicate geothermal heat loss from un-
derlying subsurface reservoirs. In contrast, the northwestern
and western margins exhibit lower temperatures (< 27.70 °C),
likely due to dense vegetation cover that insulates the surface.
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Figure 6. LST map of the study area.

These high-temperature anomalies often coincide with struc-
tural conduits that channel geothermal fluids. However, as
noted by Sayao [68], LST readings can also be influenced by
urban surfaces, bare soils, or moisture deficits. Therefore, it is
essential to corroborate LST anomalies with additional indica-
tors before making inferences about geothermal potential.

3.1.3. Source parameter imaging

The SPI map of the study area reveals depth values rang-
ing from 24 m (shallow) to 6125 m (deep), as shown in Figure
7. Most of the region exhibits shallow SPI values (<718m),
indicating proximity to near-surface geological features. No-
tably, deeper SPI values (> 1579m) are concentrated in the
eastern part of the study area, around towns such as Bara, Do-
gon Ruwa, Dukku, and Pindiga. These deeper SPI values,
typically within the sedimentary domain, suggest a thick sed-
imentary cover separating the surface from the magnetic base-
ment—ranging from several hundred meters to a few kilome-
ters. This thickness acts as a thermal blanket, reducing conduc-
tive heat flux to the surface and suppressing geothermal gra-
dients, thereby masking potential deep heat sources [69]. Ad-
ditionally, such deep sources often occur beneath broad, low-
slope sedimentary depocenters, where limited fluid circulation
and low reservoir permeability reduce their viability for shal-
low geothermal exploitation [70]. In contrast, SPI depths of
less than ~718 m in the basement complex domain typically
indicate shallow magnetic sources—such as fractured granites
or volcanic intrusions—located just beneath the weathered zone
[69]. These shallow sources are frequently associated with high
heat-producing granitic bodies characterized by elevated radio-
genic heat generation and high thermal conductivity.

3.1.4. Lineament density

The lineament density in the study area ranges from 0 to 0.1
km/km? (Figure 8). The central, western, and northern parts of
the study area, around Batu, Kwangi, Dutsin Fulani, Bauchi,
Yelwan Galambi, and Bure Ribban Garmu, exhibit dense frac-
ture networks, indicating structurally complex zones with po-
tentially elevated permeability. In contrast, the southern and
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Table 3. Comparative evaluation metrics for FCM and DBN-based clustering workflows.

FCMon DBN Baseline DBN GA DBNPSO DBNSA
Metrics Raw Data + FCM + FCM + FCM + FCM
Silhouette score 0.3379 0.5793 0.5806 0.5801 0.5810
Davies—Bouldin index 1.0663 0.5111 0.5095 0.5099 0.5095
FPC 0.8029 09134 0.9140 0.9135 0.9146
MPC 0.7044 0.8702 0.8710 0.8703 0.8719
Xie—Beni index 0.2960 0.0913 0.0908 0.0910 0.0903
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Figure 8. Lineament density map of the study area.

eastern margins show sparse lineaments, suggesting fewer fluid
pathways. High lineament density zones have been shown to
correlate with enhanced permeability and fluid pathways in
geothermal fields. Studies by Saepuloh [71], Tende [72], and
Rafiq [73] demonstrated a strong positive association between
high lineament density and known geothermal occurrences, em-
phasizing its value in geothermal resource assessment.

3.1.5. Curie point depth

The CPD indicates the depth at which rocks lose magnetiza-
tion ( 580 °C). In our study (Figure 9), CPD values range from
8.22 km (shallow) to 27.8 km (deep), revealing pronounced lat-

eral thermal contrasts. Shallow CPD zones (8.22—-12.75 km)
cluster around Batu, Yelwa, Lere, and Tafawa Balewa, sug-
gesting anomalously high geothermal potential [21, 45]. Con-
versely, deeper CPD values (> 20 km) prevail near Pindiga,
Futuk, and Dukku.

3.1.6. Geothermal gradient

The geothermal gradient quantifies the temperature increase
per kilometer of depth and governs reservoir productivity. As
shown in Figure 10, gradients range from 20.85 °C/km (low)
to 70 °C/km (high). Steep gradients (>55.61 °C/km) are ob-
served along the northern belt (Batu, Yelwa) and the southwest-
ern flank (Tafawa Balewa, Gindiri, Lere, Boi), marking zones
of rapid temperature rise conducive to geothermal resource ac-
cumulation [21, 47]. In contrast, gentler gradients (<33.25
°C/km) in the southeast (Futuk, Pindiga, Dogon Ruwa, Duguri),
east (Bara), and west (Toro, Dutsin Fulani) suggest limited via-
bility.

3.1.7. Heat flow HF

Heat flow measures the conductive flux of thermal energy
from the crust into the overlying layers [21]. As shown in Fig-
ure 11, moderate (111-133 mW/m?) to high (>133 mW/m?)
heat-flow values dominate the northern, central, and southwest-
ern sectors of the study area, with isolated peaks in the north
and southwest. Such elevated heat-flow regions have been iden-
tified as prime geothermal targets [21, 45]. Radiogenic heat
production—resulting from the decay of uranium, thorium, and
potassium in basement granites—can generate sustained ther-
mal anomalies in the upper crust [44]. Additionally, shallow
magmatic intrusions facilitated by tectonic structures may lo-
cally enhance heat flow through advective transfer [26]. To-
gether, these processes explain the spatial distribution of heat-
flow highs and underscore their significance for geothermal ex-
ploration.

3.2. Machine learning results

3.2.1. Cluster number selection

Selecting an appropriate number of clusters is critical to bal-
ancing the capture of meaningful geothermal prospectivity pat-
terns against the risk of overfitting noise. We evaluated cluster-
ing solutions ranging from three to ten clusters using three in-
ternal validity metrics—Silhouette Score, Partition Coefficient
(PC), and Classification Entropy (CE)—for the Fuzzy C-Means
(FCM) clustering applied to DBN-extracted features. The re-
sults are summarized in Table 2. As shown in Table 2, the
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Figure 10. GG map of the study area.

3-cluster configuration achieves the highest Silhouette Score
(0.5793), reflecting a superior balance between intra-cluster co-
hesion and inter-cluster separation [74]. It also yields the high-
est PC value (0.9134), indicating crisp and well-defined fuzzy
groupings [75, 76], and the lowest CE (0.1493), suggesting
minimal cluster overlap [75, 77].

By contrast, increasing k beyond three steadily degrades all
three metrics: Silhouette Scores fall below 0.55, PC drops be-
low 0.90, and CE rises above 0.18, indicating declining cluster
quality and increasing ambiguity. The superior metric values
at k=3 imply that the latent feature space naturally partitions
into three distinct geothermal prospectivity classes—Ilow, mod-
erate, and high. Higher-order segmentation (e.g., five or more
clusters) introduces fragmentation without meaningful differ-
entiation, while fewer clusters (e.g., k=2) risk oversimplifica-
tion. Therefore, the 3-cluster solution optimally balances inter-
pretability and analytical rigor for delineating geothermal target
zones in the study area.

3.2.2. Machine learning algorithms evaluation metrics results
In this study, we evaluated five clustering workflows: (1)
Fuzzy C-Means (FCM) applied directly to raw geophysi-
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Figure 11. HF map of the study area.

cal inputs, (2) a Deep Belief Network (DBN) baseline fol-
lowed by FCM, and DBN variants optimized using (3) Ge-
netic Algorithm (GA), (4) Particle Swarm Optimization (PSO),
and (5) Simulated Annealing (SA) (Table 3). Each work-
flow was assessed using five internal validity metrics: Silhou-
ette Score, Davies—Bouldin Index, Fuzzy Partition Coefficient
(FPC), Modified Partition Coefficient (MPC), and Xie—Beni In-
dex.

When applied to the raw feature space (e.g., NDVI, lin-
eament density, LST), FCM produced suboptimal results: the
Silhouette Score was low (0.3379), indicating that many data
points lie close to or between clusters, and the Davies—Bouldin
Index was high (1.0663), reflecting considerable overlap and
dispersion among groups. The FPC (0.8029) and MPC (0.7044)
indicated moderate crispness, suggesting significant ambiguity
in membership assignments. Additionally, the relatively large
Xie—Beni Index (0.2960) confirmed high intra-cluster scatter
relative to inter-cluster separation. These findings are consis-
tent with previous observations that FCM struggles to delineate
well-separated clusters when applied directly to raw geospa-
tial features [78]. In contrast, applying FCM to latent features
extracted via a DBN significantly enhanced clustering perfor-
mance. The Silhouette Score increased by over 70% to 0.5793
(a >70% increase), and the Davies—Bouldin Index was nearly
halved to 0.5111, indicating more compact and well-separated
clusters. Membership crispness also improved markedly (FPC
= 0.9134, MPC = 0.8702), and the Xie-Beni Index dropped
to 0.0913, reflecting substantially reduced fuzzy compactness.
Similar performance boosts have been documented in image-
based clustering studies where deep feature embeddings greatly
improve cluster definition prior to fuzzy partitioning [79].

Further refinements were achieved by optimizing DBN hy-
perparameters via metaheuristic algorithms. All three opti-
mizers—GA, PSO, and SA—delivered incremental yet consis-
tent gains over the untuned DBN baseline. Silhouette Scores
slightly improved to around 0.5805, with SA achieving the
highest score (0.5810). The Davies—Bouldin Index marginally
decreased to 0.5095, while FPC (0.9146) and MPC (0.8719)
sharpened cluster boundaries. The Xie-Beni Index also im-
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Table 4. Geothermal prospectivity parameters statistics by cluster and ranking.

Cluster LST SPI CPD GG HF Prospectivity
No. NDVI (°C) (m) (km/km?) (km) (°C/km) (mW/m?) Rank
0  0.1461 3059 258 0.0268 1605 39.58 98.95 2
1 0.1393 3245 363 0.00595 20.82  29.59 73.99 1
2 01399 2947 190 00533 12.65 49.85 124.64 3

Table 5. Percentage distribution of geothermal prospectivity across lithological
units.

Low Moderate High
Lithology (%) (%) (%)
Alluvium 86.91 4.85 8.24
Kerrikerri Formation 61.16 28.66 10.18
Gombe Formation 48.93 32.38 18.69
Pindiga Formation 100 0.00 0.00
Yola Formation 100 0.00 0.00
Bima Formation 100 0.00 0.00
Quartz porphyry 0.00 72.78 27.22
Granite and granite porphyry  0.00 100. 0.00
Ignimbrite 0.00 46.24 53.76
Rhyollite 0.00 18.92 81.08
Biotite hornblende—Granite 3.50 96.50 0.00
Syenite, Quartz
Syenite and Gabbro 0.00 45.25 54.75
Fine-grained
Biotite granite 0.46 53.92 45.62
Coarse porphyritic
Biotite granite 14.93 27.35 57.71
Charnokitic Rocks 1.01 44.68 54.30
Muscovite Quartz Schist 100. 0.00 0.00
Granite gneiss 7.32 47.69 44.99
Granulite and Gneiss 0.00 24.28 75.72
Biotite Granite 3.60 45.70 50.70
Migmatite Gneiss 17.24 55.71 27.05
Migmatite 25.04 64.37 10.59

proved slightly, reaching its lowest at 0.0903 with SA. While
these gains were smaller than those introduced by DBN itself,
they demonstrate the value of fine-tuning. Among the methods,
SA yielded the most geologically coherent and statistically ro-
bust clusters. Overall, the tighter, well-separated, and less am-
biguous clusters generated by the optimized DBN models offer
greater reliability for delineating zones of geothermal prospec-
tivity.

3.2.3. Cluster feature statistics, ranking and interpretation
After finalizing the three-cluster solution, we computed the
mean values of each geothermal prospectivity parameter within
each cluster (Table 4) and visualized the clusters in 3D space us-
ing Principal Component Analysis (Figure 12). Clusters were
then ranked from 1 to 3 (1 = lowest, 2 = moderate, 3 = high-
est) based on the mean value of the first latent feature (PC1) in
each FCM partition. This ranking provides a consistent, data-
driven ordering of clusters along the primary latent dimension
extracted by the DBN. Cluster 2, ranked highest (Rank 3), ex-
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hibits the shallowest CPD with a mean of only 12.65 km, in-
dicating higher subsurface temperatures and an elevated heat
flow regime [21]. It also records the highest geothermal gradi-
ent (49.86 °C/km) and surface heat flow (124.65 mW/m?), both
well above typical continental averages, reflecting an excellent
deep thermal resource [44]. The lowest mean SPI depth (190
m) suggests minimal deep-seated magnetic contrasts, while the
highest lineament density (0.053 km/km?) points to a well-
developed fracture network conducive to fluid flow and heat ex-
traction. Interestingly, despite these favorable subsurface con-
ditions, this cluster has the lowest mean LST (29.47 °C) and a
relatively low NDVI (0.140). This counterintuitive combination
may result from persistent soil moisture or seasonal vegetation
cover that suppresses daytime surface warming, even in regions
of high geothermal potential. These characteristics make Clus-
ter 2 the most promising target for conventional geothermal
exploitation. Cluster 0, ranked moderate (Rank 2), shows an
intermediate CPD (16.06 km), a geothermal gradient of 39.58
°C/km, and heat flow of 98.96 mW/m?2. Its SPI depth (258.4
m) indicates moderately shallow magnetic sources, and its lin-
eament density (0.0268 km/km?) suggests a somewhat devel-
oped fracture network. It also has the highest mean NDVI
(0.146) and a mid-range LST (30.60 °C), reflecting health-
ier vegetation and moderate surface heating—consistent with
a transitional zone between high-potential basement rocks and
deeper sedimentary cover. Cluster 1, ranked lowest (Rank 1),
is characterized by the deepest CPD (20.82 km), the gentlest
geothermal gradient (29.60 °C/km), and the lowest heat flow
(73.99 mW/m?). Its high SPI depth (363 m) points to deep-
seated magnetic sources, while the minimal lineament den-
sity (0.00595 km/km?) indicates poor structural permeability.
The highest mean LST (32.46 °C) and moderate NDVI (0.139)
likely reflect arid, sparsely vegetated surfaces rather than ele-
vated geothermal activity. Cluster 2’s combination of shallow
CPD, steep geothermal gradient, elevated heat flow, and dense
structural permeability makes it the most prospective geother-
mal target zone. Cluster 0 represents a moderate potential zone,
while Cluster 1—with its deep CPD and low heat flow—is the
least favorable. This ranking aligns with established geother-
mal exploration criteria [21, 26, 45, 47]. Figure 12 presents
a three-dimensional projection of the DBN-derived latent fea-
tures onto the first three principal components (PC1, PC2, and
PC3), with each point colored by its assigned cluster and an-
notated by prospectivity rank (Cluster 1/Rank 1 = blue, Clus-
ter O/Rank 2 = red, Cluster 2/Rank 3 = green). Along PCI,
which captures the greatest variance and is driven primarily by
geothermal gradient and heat flow, a clear left-to-right order-
ing of clusters emerges—progressing from low (blue), through
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3D Visualization of Clusters (Latent Features via PCA)

e Cluster 0 (Rank 2)
e Cluster 1 (Rank 1)
@ Cluster 2 (Rank 3)

0.015

Figure 12. 3D visualization of cluster latent features via principal com-
ponent analysis.

moderate (red), to high prospectivity (green). This strong sepa-
ration along PC1 validates the ranking scheme and reflects the
optimal Silhouette Score achieved with k = 3. Meanwhile, PC2
(vertical axis) and PC3 (depth axis) introduce subtler, orthogo-
nal distinctions likely governed by secondary variables such as
NDVT or lineament density, without compromising the thermal-
based cluster separation along PC1. The tight, non-overlapping
“streams” of each color confirm the compactness and cohesion
of each cluster, supporting the robustness of the three-cluster
solution. These patterns demonstrate that the principal latent
features extracted by the DBN effectively differentiate geother-
mal prospectivity zones. The ranking from blue (low) through
red (moderate) to green (high) aligns well with the unsuper-
vised PCA structure, reinforcing confidence in both the cluster-
ing methodology and its geoscientific interpretation.

3.3. Geothermal prospectivity map

The final geothermal prospectivity map (Figure 13), gen-
erated using the best-performing DBN model optimized via
Simulated Annealing (SA), delineates the study area into three
classes: low (red), moderate (yellow), and high (green) po-
tential. Spatially, low-potential zones cover 32.3% (= 11,779
km?), moderate zones cover 35.0% (~12,764 km?), and high-
potential zones comprise 32.7% (~ 11,926 km?). The high-
potential areas are concentrated primarily in the northwest-
ern, southwestern, and scattered central parts of the study
area. These coincide with exposures of crystalline basement
rocks and known structural lineaments (e.g., around Batu,
Gindiri, and Lere). These regions exhibit shallow Curie Point
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Depths, steep geothermal gradients, and elevated heat-flow val-
ues, validating their classification as high-prospectivity tar-
gets. Moderate-potential zones form a continuous central band
linking Bauchi, Dutsin Fulani, and Rinjim Mukur, as well as
transitional belts in the eastern sector near Dukku and Bara.
These areas are characterized by intermediate thermal signa-
tures and mixed lithological covers. The presence of the Wikki
Warm Spring, located in a moderate-potential enclave within
the Kerri-Kerri Formation, further supports the model’s capac-
ity to detect local geothermal anomalies beneath sedimentary
layers. The Wikki Warm Spring, with a temperature of 32°C
[47], represents a low-temperature geothermal resource, and its
placement in the moderate-prospectivity zone is geologically
justified. Low-potential areas dominate the eastern margins
(around Pindiga and Futuk) and appear as isolated patches near
Rinjim Mukur and Duguri. These regions are characterized by
thick sedimentary cover and deep Curie depths, which collec-
tively suppress conductive heat flow. The nearly equal areal
distribution of low and high prospectivity zones—alongside
a slightly larger moderate band—reflects a balanced spatial
pattern of favorable and unfavorable thermal regimes across
the study area. The DBN-SA optimized clustering has thus
produced a robust, spatially coherent geothermal prospectivity
framework that aligns well with known geothermal manifesta-
tions.

3.4. Validation of geothermal prospectivity using lithological
distribution

Validation of the geothermal prospectivity map was car-
ried out by analyzing lithological associations with the result-
ing clusters. Table 5 summarizes the distribution of geother-
mal potential classes (low, moderate, and high) across vari-
ous lithologies, as derived from the machine learning clustering
process. A horizontal stacked bar chart (Figure 14) visually
represents this distribution, highlighting key patterns. From
Table 5, it is evident that certain lithologies exhibit a strong
affinity for high prospectivity. For instance, Rhyolite shows
the highest concentration in the high-potential zone (81.08%),
followed by Granulite and Gneiss (75.72%), and Ignimbrite
(53.76%). These findings align well with geological expec-
tations, as rhyolites and ignimbrites are typically associated
with volcanic and subvolcanic systems that serve as effective
heat sources [80, 81]. Likewise, the high heat retention and
radiogenic potential of granulite-grade metamorphic rocks are
particularly significant in regions with suspected or confirmed
geothermal activity [82]. Notably, some Pan-African basement
rocks such as Charnockitic rocks, fine-grained biotite granite,
and syenite—quartz syenite—gabbro also exhibit substantial rep-
resentation in the high prospectivity class (exceeding 45%).
This reinforces their known radiogenic heat generation poten-
tial and structural favorability for geothermal systems. Abul
Khair [83] emphasized that deeply fractured granites—and by
extension, gneisses—can serve as viable Enhanced Geothermal
System (EGS) candidates due to their inherent heat-producing
and transmissive properties. Interestingly, certain younger sed-
imentary formations, particularly the Gombe and Kerri-Kerri
Formations, also show notable proportions in the moderate to
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Figure 13. Geothermal prospectivity map of the study area.

high prospectivity classes (32.38% and 10.18%, respectively).
This supports earlier findings that geothermal anomalies can
occur within sedimentary basins, where deep meteoric water
circulation or underlying intrusive bodies contribute to local-
ized thermal anomalies. The presence of the Wikki Warm
Spring, geologically located within the Kerri-Kerri Formation,
further corroborates the moderate thermal signature recorded in
this unit. This observation strengthens the argument that while
geothermal activity in sedimentary environments is atypical, it
can still be significant where favorable heat sources and perme-
ability structures (e.g., faults) are present [84].

Conversely, lithologies such as Alluvium, Pindiga, Yola,
and Bima Formations overwhelmingly fall into the low
prospectivity class (over 86—100%). This is consistent with
expectations, as these units primarily consist of unconsoli-
dated or low-thermal-conductivity sediments, which are poor
conductors of heat and generally thermally inert. To statisti-
cally validate the relationship between lithology and geother-
mal prospectivity classes, a Chi-square test was conducted,
yielding a result of x> = 16261.28, with a p-value < 0.0001.
This highly significant outcome confirms that the spatial dis-
tribution of geothermal potential is not random with respect
to lithology, but rather statistically dependent, further validat-
ing the clustering outcomes of the machine learning model.
In summary, lithological distribution lends strong support to
the credibility of the machine-learned geothermal prospectiv-
ity classes. Both known heat-generating lithologies (e.g., rhyo-
lite, ignimbrite) and field evidence (e.g., Wikki Warm Spring
in the Kerri-Kerri Formation) correspond well with the high
and moderate prospectivity zones. Therefore, the integrated
approach combining Deep Belief Networks (DBN), Fuzzy C-
Means (FCM), and geophysical inputs proves effective in de-
lineating geologically meaningful geothermal targets.

4. Conclusion

To advance exploratory geothermal prospectivity mapping,
we evaluated five clustering workflows: raw-input Fuzzy C-
Means (FCM), DBN-derived FCM (DBN-FCM), and Deep Be-
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Figure 14. Stacked bar chart of geothermal prospectivity distribution
across lithological units (by percentage).

lief Network variants optimized via Genetic Algorithm (DBN-
GA), Particle Swarm Optimization (DBN-PSO), and Simu-
lated Annealing (DBN-SA). These models were applied to key
geothermal prospectivity parameters extracted via GIS from
remotely sensed and geophysical datasets. Among them, the
DBN-SA workflow achieved the best internal validity, effec-
tively partitioning the study area into low, moderate, and high
prospectivity zones. Clustering on latent features enhanced Sil-
houette Scores by over 70% and halved the Davies—Bouldin
Index compared to the raw-input FCM approach. The high-
prospectivity cluster, covering 32.7% of the area, is character-
ized by the shallowest Curie Point Depth, steepest geothermal
gradient, shallow magnetic source depth, highest heat flow, and
greatest lineament density. Our DBN-SA model delineates co-
herent thermal corridors that align with the Wikki Warm Spring
and are enriched in hot lithologies (rhyolite, ignimbrite, gran-
ulite), as confirmed by a significant Chi-square association.
This reproducible workflow offers a robust foundation to guide
field surveys and prioritize drilling in both basement-controlled
terrains and sedimentary basins.

Future work should incorporate additional constraints such
as structural controls and geochemical anomalies to refine tar-
get delineation and test the DBN-SA schema across varied tec-
tonic settings. Scaling this multi-parameter, deep-feature learn-
ing strategy across underexplored regions will help validate its
global applicability and accelerate sustainable geothermal de-
velopment, particularly in areas where surface manifestations
are scarce.

Data availability

The data used for this paper will be made available upon
request.
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