_ Journal of the
Published by R . .
NIGERIAN SOCIETY OF PHYSICAL SCIENCES Nigerian Society
Available online @ https://journalnsps.org.ng/index.php/jnsps o
of Physical

Deep neural network model for vertical total electron content
prediction at a single low latitude station

F. U. Salifu®®*, O. A. Oladipo?, E. O. Ebock?, B. Nava®

“Physics Department, University of Ilorin, llorin, Nigeria
bDepartment of Physics, Confluence University of Science and Technology, Osara, Nigeria
“The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy

Abstract

Modeling ionospheric parameters at low and equatorial stations is quite challenging due to the nature of the variation in the region. In this study,
a Deep Neural Network (DNN) was configured via optimization of its hyperparameters and then trained to predict vertical Total Electron Content
(vTEC) at a single low latitude location. Input parameters to the model are universal time, day of the year and solar activity index (EUV / Fy47),
while the target parameter is VTEC at a single location. EUV and Fo; values were used separately as the solar ionizing index leading to two
trained models. The data used for training were for the solar cycle 24 and the data were split into 75 % for training and 25 % for validation. The
training process was completed by the number of iterations. In addition, the derived model was also validated using data for the whole of 2000
and 2021 which are years outside the solar cycle 24. For completeness, the two models were also compared with NeQuick 2 model which is a
global empirical model. The results obtained showed that the DNN models were able to predict reasonably well within the solar cycle 24 and
slightly outperformed NeQuick 2 model. Similar results were obtained when the models were validated in 2021 with DNN performing slightly
better than NeQuick 2 model. However, large deviation was recorded in 2000 — the DNN and NeQuick 2 models underestimated vTEC.
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1. Introduction parameters of each of the layers and Total Electron Content
(TEC) among others. Models’ prediction of these parameters
is important for effective use of the ionosphere for HF commu-
nication links and GNSS signals for positioning and navigation.
To this end, there exist several ionosphere models for the pre-
diction of various parameters of the ionosphere - notable among
the models are the International Reference Ionosphere (IRI) and
the NeQuick [1-3]. IRI and NeQuick models are widely used
global models and the two are semi-empirical models. This im-
plies that the models are based on theoretical principles and em-
pirical or experimental data. The performance of such models
mpon ding author Tel. No.: +234-706.872-2371. is based on availability of quality data across the globe. Assess-
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The ionosphere is the ionized region of the upper atmo-
sphere. The region is being used for HF communication links
and it is also an important factor to consider in Global Naviga-
tion Satellite System (GNSS) positioning and navigation. The
formation of the ionosphere is due to photoionization of the
neutral species in the upper atmosphere by the extreme ultravio-
let (EUV) component of the solar radiation spectrum. There are
different parameters being used to quantify the level of ioniza-
tion in the ionosphere e.g. electron density profile (N(h)), peak
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investigated and the results showed overestimation or underes-
timation at different geographic latitudes [4—10].

In recent time, Artificial Neural Network (ANN) or sim-
ply Neural Network (NN) has become a good tool for model-
ing different ionospheric parameters [11-17]. NN models are
very effective in modelling complex and non-linear systems,
and they give better performance over empirical/semi-empirical
models [11, 12]. This is because NN models can learn complex
variation in data and adjust the model’s parameters accordingly
to give better predictions unlike the empirical/semi-empirical
models. DNN models are well-known to outperform ordinary
NN because it can learn complex and non-linear systems more
effectively [17]. For example, Ref. [11] developed a near real-
time global foF2 empirical model using Neural Network tech-
nique. In training the model, the target parameter were the
hourly daily values of foF2 from 26 worldwide ionospheric sta-
tions from 1976 to 1986, while the input parameters were the
geophysical parameters of the training stations in addition to
time, day of the year and solar activity proxy. In order to pre-
dict foF2 in real-time, recent observation of foF2 from 4 sta-
tions selected as control stations were also used as input. Re-
sults obtained showed temporal and spatial correlation between
the model predictions and the observed values even during ge-
omagnetic storms.

The studies cited above were based on predefined net-
work models like, convolutional neural network (CNN), long
short-term memory (LSTM) neural network, Attention Mech-
anism Neural Network, back-propagation artificial neural net-
work (BPANN), EXtreme Gradient Boosting over Decision
Trees (XGBoost or XGBDT) [14-17]. Also, a Hybrid Network
which involves combination of two models has been used (e.g.
CNN-LSTM-Attention Mechanism Neural Network [15]). The
hybrid network makes use of weak models to build a single
model that takes advantages of each of the weak models. Stud-
ies on Deep learning NN to model ionospheric parameters are
rare. Deep artificial neural networks often provide high preci-
sion modeling when the number of training samples are large,
but the challenge is to find optimal parameters that define the
network architecture [17].

Modelling ionospheric parameter in the low latitude is quite
challenging because of the nature of the variation in the region.
The aim of the study is to train Deep NN (DNN) for Ilorin, a
low latitude station, and to assess the performance of the model.

2. Configuration of the deep learning model and the data
used

In this study, DNN was configured and trained unlike the
studies cited in Section 1 where NN or hybrid neural network
were used. It is well known that a DNN configuration consists
of the input layer, the hidden layers with each having a specific
number of neurons and the output layer. The input layer in the
current study has three parameters i.e. Universal Time (UT),
day of the year (DOY) and EUV or the solar radio flux at 10.7
cm (Fo7), while the output layer has a single parameter i.e.
VvTEC at a single location. The number of hidden layers and the
number of neurons/nodes per hidden layer were selected via an

optimization process — i.e. the number of hidden layers with
the number of neurons that minimizes the mean absolute error
at the validation stage. It is important to mention that in select-
ing the right configuration (i.e. the number of hidden layers and
neuron numbers), a fixed batch number and epoch number of
16 and 50 were used respectively for the training. Nine (9) con-
figurations were considered (i.e. configurations with 1 hidden
layer up to 9 hidden layers) and for each of the 9 configurations,
training and validation were done and the mean absolute error
(mae) was obtained. The configurations are such that the num-
ber of neurons increases with increase in the number of hidden
layers. The well-known concepts of starting with high number
of neurons for the first hidden layer and gradually reducing it
was employed. The configuration with the minimum mae was
selected as the optimal configuration.

The batch number and the epoch number at the training
stage were also selected via an optimization process - as done
for the number of hidden layers / neurons number. The batch
number was varied in power of 2 from 8 to 64 (i.e. from 23 to
2%) and the epoch number was varied from 50 in step of 50 up
to 500. The batch and epoch number that minimize the mae for
the optimal configuration were selected and these were used in
this study.

In compiling the model for both the preliminary processes
of optimization and the actual training of the optimal config-
uration, adamax was used as optimizer, mean square error as
loss and mean absolute error as the performance metric. Fully
connected layers were ensured by using Rectified Linear Unit
(ReLU) that ensures back propagation as the activation function
for both the hidden layers and the output layer. It is important to
mention that the input parameters were normalized — this was to
prevent the sensitivity of DNN to the magnitude and the range
of values of each of the input parameters. Similarly, the data
were split into 75 % for training and 25 % for validation. The
training process was completed by the number of iterations.

The data used for this study were obtained from CODE’s
(Center for Orbit Determination in Europe) Global Ionospheric
Map [18] for the increasing face of solar cycle 24 i.e. from
2009 to 2014. The two models developed based on Fjp7 as
solar ionizing index and EUV as solar ionizing index were also
validated using data for the whole years 2000 and 2021 i.e. data
outside of solar cycle 24. The performance of the derived DNN
models were compared with that of the NeQuick 2 [7] run in
standard mode.

Deviation of the models’ predictions from the observation
was analyzed using correlation coefficient (r), coefficient of de-
termination (r2), root mean square error (rmse) and Index of
Agreement (IofA). Index of agreement [19] is as defined in
equation (1):

(0= P)?

TofA=1- — —,
Y, (Pi-0|+|0:i-0)

ey

where O is the observed, P is the predicted and O is the aver-
age observed values. The value of /ofA ranges from 0 to 1,
where 0 means no agreement and 1 indicates a perfect agree-
ment. Unlike correlation coefficient which indicates linearity
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between two sets of values, Io fA in addition indicates the close-
ness of the two sets of values.

3. Results obtained and discussions

Table 1 shows mae values against the number of hidden lay-
ers /neurons number for the optimization process of the DNN
model configuration. The purpose of the process was to de-
termine the appropriate number of hidden layers in the DNN
model that is suitable for the dataset. As clearly seen in the ta-
ble, the highest mae value of 7.14 TECu (TECu is TEC unit and
1 TECu = 10'6 electrons per square meter) was recorded for
the configuration with 1 hidden layer and 8 neurons in the only
hidden layer. The value decreases with increase in the number
of hidden layers up to a configuration with 4 hidden layers with
mae of 3.06 TECu. Raising or increasing the number of hidden
layers further after 4 does not bring any substantial reduction
in mae value. It is important to mention that the value of mae
for the configuration with 7 hidden layers is due to wrong ini-
tialization of the model during training. A configuration with
4 hidden layers with the number of neurons in each layer as
indicated in Table 1 was selected for this study as the optimal
configuration.

The optimal configuration (i.e. configuration with 4 hidden
layers) was further optimized by varying the epoch number and
batch number during training. The value of mae for different
combinations of epoch number and batch number at validation
stage is indicated in Table 2. Except for the erroneous value
of 27.30 TECu recorded in four instances, there is no signifi-
cant variation in the values. Largely, the values of mae range
between 3.15 and 2.84 TECu. Both epoch and batch numbers
determine the length of training — if not appropriately selected
it could lead to underfitting or overfitting. Epoch number is
known to be the number of passes through the whole training
dataset while batch number or batch size is the number training
samples to work through before the model’s internal parameters
are updated. For the current study a combination of epoch num-
ber of 300 and batch size of 32 was selected — the mae value for
this combination is 2.92 TECu.

Therefore, the DNN configuration shown in Figure 1 was
used as the optimal configuration. The input layer has three pa-
rameters i.e. UT, DOY and Fjo7 or EUV — the parameters were
pre-processed via normalization before feeding it as input into
the first hidden layer. The essence of normalization is to scale
the input parameters to a similar range e.g. O to 1 or -1 to 1.
This is to prevent feature domination of parameters with large
value in the learning process — thereby improving the accuracy
of the trained model. The model has four hidden layers with
neurons number of 32, 24, 16 and 8 for hidden layers 1, 2, 3
and 4 respectively. Rectified Linear Unit (ReLU) was used as
the activation function for both the hidden layers and the output
layer. The output layer is also dense and has a single output
i.e. VTEC. In compiling the model, adamax was used as opti-
mizer, mean square error as loss and mean absolute error as the
performance metric. The layers are dense and fully connected.

The diurnal plot of the model values and the observed val-
ues is shown in column (i) of Figure 2. It is clearly seen how the
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Figure 1: Schematic view of the optimal configuration. The
training process was completed by the number of iterations.

predictions of each of the three models are close to the observed
values — model driven with Fo7 shows a better performance
compared to the DNN driven by EUV and NeQuick 2 model.
The mae value clearly indicates the performance of the three
models in which mae of 2.88 TECu, 3.20 TECu and 6.92 TECu
were recorded for DNN driven with F7, DNN driven by EUV
and NeQuick 2 model respectively. Error in the current study
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Table 1: Performance of models in mae for different number of hidden layers / number of neurons is indicated in the table. The

mae value for the configuration with 7 hidden layers is due to wrong initialization during training.

Number of Neurons in Hidden Layer

Total Number of Hidden Layers I >3 4 5 6 7 g o mae in TECu
1 7.14
2 16 8 4.85
3 24 16 8 4.40
4 32 24 16 8 3.06
5 40 32 24 16 8 3.08
6 48 40 32 24 16 8 3.00
7 56 48 40 32 24 16 8 27.30
8 64 56 48 40 32 24 16 8 3.06
9 72 64 56 48 40 32 24 16 8 2.93

Table 2: Mean absolute error in TECu at validation stage as
a function of epoch number and batch number for the opti-
mal configuration. The mae of 27.30 TECu indicates erroneous
value due to wrong initialization of the parameters of the model
during training process.

Batch Number
Epoch No. — 8 16 32 64 128
50 305 300 3.11 331 329 3.60
100 300 297 2730 307 3.14 27.30
150 301 3.02 299 293 3.03 3.18
200 296 315 301 295 300 3.04
250 296 297 295 294 308 3.14
300 293 295 298 292 299 3.00
350 302 300 3.02 295 303 299
400 2730 2.88 2.88 298 296 2.96
450 2730 292 297 296 3.00 3.02
500 284 294 294 298 295 297

is defined as the observed vTEC minus the model values — the
positive mae values is an indication of a net underestimation.
Plots in column (ii) of Figure 2 show the correlation plot be-
tween the model and the observed values for the three models.
The values of r, 12, Io fA and rmse are indicated on each plot.
The performance of the two DNN models when Fp7 (a) and
EUV (b) were used as the solar activity indices as well as that
of the NeQuick 2 (c) is clearly seen in the plots. The fit is good
for all the models — although a better fit is seen in the two DNN
Models compared to the NeQuick 2. In terms of the correla-
tion, coefficient of determination, root mean square error and
index of agreement, DNN model driven with F7 performed
slightly better than the DNN driven with EUV and the NeQuick
2. The results showed that Fjo7 as solar index gives better re-
sults (marginally) with » = 0.98, 2 = 0.95, IofA = 0.99
and rmse = 4.02 TECu. This is followed closely by DNN
driven with EUV with r = 0.97, 2 = 0.94, IofA = 0.98
and rmse = 4.46 TECu and the values for the NeQuick 2 are
r= 0.89, 2 = 0.80, IofA = 0.90 and rmse = 10.07 TECu.
The results showed that models with F¢7 and EUV as solar ac-
tivity indices are of comparable performance and the two out-

performed NeQuick 2 model.

Therefore, the DNN configuration shown in Figure 1 was
used as the optimal configuration. The model has four hidden
layers with neurons number of 32, 24, 16 and 8 for hidden lay-
ers 1, 2, 3 and 4 respectively. ReLU was used as the activation
function for both the hidden layers and the output layer. In com-
piling the model, adamax was used as optimizer, mean square
error as loss and mean absolute error as the performance metric.
The layers are dense and fully connected.

Column (i) of Figure 3 shows the plots of modeled vs. ob-
served VTEC for the three models i.e. (a) DNN driven with
F10.7, (b) DNN driven with EUV and NeQuick 2 for 2021 val-
idation. Year 2021 is a low solar activity year and it is outside
of the solar cycle 23 used for the training of the DNN model. It
is clearly seen how each model predictions fit into the observed
values — model driven with Fy7 shows a better fitting. The fit
is good for all the models — although a slightly better fit is seen
in the two DNN Models compared to NeQuick 2 in terms of
correlation coefficient, coefficient of determination. However,
NeQuick 2 showed a better fit in terms of root mean square error
and index of agreement. The results showed that Fjo7 as solar
index gives better results (marginally) with » = 0.93, 72 = 0.87,
IofA = 0.81 and rmse = 12.83 TECu. EUV statistics shows
that r = 0.93, 2 = 0.86, IofA =0.83 and rmse = 11.80 TECu
while NeQuick 2 model shows that r = 091, > = 0.83,
lofA = 0.93 and rmse = 4.87 TECu. The values showed a
better fit for DNN models in terms of correlation coeflicient,
coefficient of determination, while values of root mean square
error and index of agreement showed that NeQuick 2 outper-
formed DNN models. Plots in column (ii) of Figure 3 show
the distribution of errors for the three models — corresponding
to that in column (i). Negative skewness is seen in the two
DNN models — indicating overestimation of vTEC values while
positive skewness is seen in NeQuick 2 model which indicates
underestimation. The error ranges from -48.76 TECu to 6.50
TECu for the DNN driven with Fjg7, the value ranges from
-45.00 TECu to 7.41 TECu and -11.96 TECu to 30.69 TECu
respectively for DNN driven with EUV and NeQuick 2 model
respectively. All these indices indicate that NeQuick 2 slightly
outperformed DNN for year 2021 which is a year of low solar
activities.
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Figure 2: Corresponding diurnal plots of VTEC for the observed and models’ predictions for the 25% validation data for (a) DNN
model driven with Fo7 (b) DNN model driven with EUV and (c) NeQuick 2 driven with daily F¢7 values.
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Figure 3: Diurnal plots of VTEC for the observed and models’ predictions for 2021data for (a) DNN model driven with Fo7 (b)
DNN model driven with EUV and (¢) NeQuick 2 driven with daily Fy7 values. Column (ii) is for the corresponding error in which
error is defined as the observed value minus the model value. Negative skewness is seen in DNN while positive skewness is seen in
NeQuick 2 model.

The performance of the models was also tested in year 2000
by going back in time to see what the performance would look
like during a solar maximum year with higher solar activity

compared to that of solar cycle 24. It is important to men-
tion that year 2000 is the solar maximum of solar cycle 23
and that data of higher solar activity like this were not used
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in the training (indeed, maximum solar activity of solar cycle
24 was much lower than maximum solar activity of solar cycle
23). Year 2000 study was limited to the NeQuick 2 and DNN
driven with Fy7; this is because EUV data were not available
for year 2000. Figure 4 shows the plots for 2000 which is a
year of solar maximum outside of solar cycle 23 — same as Fig-
ure 3. It is clearly seen from column (i) of Figure 4 how the
two models fit into the observed — the spread of data points
around the fit line is an indication of the fitting. It is clearly
seen that the spread is wider for DNN compared to NeQuick
2 model. The results showed that DNN is with r = 0.85,
> = 0.72, IofA = 0.70 and rmse = 31.08 TECu, while
NeQuick 2 model statistics shows that r = 0.85, > = 0.72,
IofA = 0.72 and rmse = 22.8924 TECu. The values showed
a better fit (marginally) for NeQuick 2 compared to DNN mod-
els driven with F7. Plots in column (ii) of Figure 4 show the
distribution of errors for the two models — corresponding to that
in column (i). Positive skewness is seen in the two models i.e.
DNN models driven with Fp7 and NeQuick 2 model — indi-
cating underestimation of vTEC values. The error ranges from
-11.14 TECu to 78.51 TECu for the DNN driven with Fy7and
the value ranges from -30.63 TECu to 63.03 TECu for NeQuick
2 model. All these indices indicate that NeQuick 2 slightly out-
performed DNN for year 2000 which is a year of solar maxi-
mum for solar cycle 22.

The result obtained in the current study is comparable to
those of the recent studies on DNN models for the predic-
tion of VTEC at low latitude stations in the African, Ameri-
can and Asian sectors [15, 20, 21, 23]. A study was done over
Ethiopia in the African sector and machine learning (ML) al-
gorithm based on the Support Vector Machine (SVM), LSTM
Neural Network were used [20]. Data used for the study were
GPS derived TEC from three stations at Addis Ababa, Urge,
and Negele during the years 2013 to 2016. Their results were
compared with IRI model unlike the current study in which
NeQuick model was used as a standard model. The results
obtained showed that SVM model predicted the hourly TEC
variation with RMSE values between 2.136 TECu and 7.923
TECu, while RMSE values of between 1.483 and 2.527 TECU
were obtained for LSTM model and RMSE values of between
4.777 and 14.519 TECU were obtained for IRI 2016 model.
These results are comparable with that of the current study in
which RMSE values of 4.03 TECu, 4.46 TECu and 10.06 TECu
were obtained for DNN model driven with F97, DNN model
driven with EUV and NeQuick respectively within the solar cy-
cle 2023.

Similar study was focussed on ionospheric TEC forecast-
ing model based on deep learning, which consists of a CNN,
LSTM neural network and Attention mechanism i.e. CNN-
LSTM-Attention neural network mode [15]. Data used for the
study were from 24 GNSS stations from the Crustal Movement
Observation Network of China (CMONOC) and the model was
driven with six parameters namely TEC time series, Bz, Kp,
Dst, Fi97 and hour of day. The model’s performance was
compared with NeQuick and LSTM, and CNN-LSTM. Results
obtained showed RMSE values of 1.87 TECU, 3.59 TECu,
2.25 TECu and 2.07 TECU for the CNN-LSTM-Attention,

NeQuick, LSTM, and CNN-LSTM respectively. The perfor-
mance of the current study is a little lower than that of Ref.
[15]. A study was done over the Brazilian region which was
on feedforward artificial neural network based on a multilayer
perceptron (MLP) approach for the prediction of TEC [21]. The
configuration of the MLP used in their study is similar to that of
the current study — both have 4 hidden layers though with dif-
ferent number of neurons in each layer. The prediction of their
model was based on data collected on the previous 5 days. The
accuracy of the model was evaluated by comparing the model
predictions with real data and global ionosphere maps and the
NeQuick G model. The TEC predictions were applied in single
point positioning and errors obtained were 27% and 33% lower
when compared to that of NeQuick G and global ionosphere
maps, respectively.

Another study was based on CNN-GRU (CNN-Gate Re-
current Unit) neural network model to forecast the TEC dur-
ing high solar activities from a single GNSS receiver at Sanya
in Hainan, China [22]. Hourly vTEC values from Septem-
ber 2017 to August 2023 were used for training while nearly
eight months of data from 2023 were used for testing. The
performance of the CNN-GRU model obtained in their study
was compared with the most used empirical models i.e. IRI
and NeQuick models, and two artificial intelligence models i.e.
GRU and SVM were also used for comparison. The results ob-
tained showed RMSE values of 4.28 TECu, 4.51 TECU, 5.16
TECU, 9.38 TECU,12.11 TECU for CNN-GRU, GRU, SVM,
IRI12020 and NeQuick?2 respectively.

Parametric models like NeQuick 2 [3] and IRI [1] are mod-
els that are based on the parameters that represent the dynamics
of a system being modeled. The ionosphere is dynamic and
the factors that control or are responsible for its dynamics are
time of the day, season of the year, level of solar activity and
geomagnetic activities [23, 24]. Ionospheric models like the
NeQuick 2 are built around these factors in order to forecast
ionospheric parameters under different conditions.

Similar concepts have been used in training neural network
(NN) for ionospheric predictions by using those factors as in-
put parameters [12—-17]. DNN is well-known to outperform
ordinary NN [17]. In the current study, UT, DOY and Fo7/
EUV were used as input to represent time of the day, season
of the year and level of solar activities respectively. Attempt
was made in the current study to obtain the optimal hyperpa-
rameters (i.e. the number of hidden layers, neurons number in
each hidden layer, batch number and epoch number) that define
the network configuration for effective training and validation.
Results obtained showed moderate error that is comparable to
that of NeQuick 2 model during validation stage. This is con-
sistent with previous studies on NN for ionospheric predictions
[12, 16]. The study by Ref. [12] was on modeling M(3000)F2
and the results obtained were compared with IRI model - a stan-
dard ionospheric model like NeQuick 2. Their results showed
that the trained NN model compared favourably with the IRI
model.

In terms of the effectiveness of F ;o7 and EUV as solar ion-
izing indices, the results obtained showed that DNN driven with
F19.7 slightly performed better than the one driven by EUV. This
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Figure 4: Diurnal plots of vTEC for the observed and models’ predictions for 2000 as Figure 3. EUV values are not available for
year 2000. Positive skewness is observed for the two models — which indicates underestimation of vTEC values.

result is consistent with that of Ref. [14] in which the effective-
ness of sunspot number, F(7 and solar ultraviolet flux at 1 AU
(Astronomical Unit) were tested for NN trainings. Their result
showed that Fy; gave the least errors on the validation data
set used. Validating the model outside of the solar cycle used
for the training showed large deviation especially during solar
maximum (i.e. year 2000) of solar cycle 23 — with solar maxi-
mum higher than that of the solar cycle 24 used for the training.
This large deviation was not limited to DNN model alone —
large deviation was also recorded for NeQuick 2 model. In the
case of NeQuick 2 for year 2000, the underestimation might
be due to Fjo7 saturation. By ITU (International Telecommu-
nication Union) recommendation, and as stated in NeQuick 2
source code, maximum Fjo7 allowed as input into NeQuick 2
is 193 (or R12 = 150). This is to ensure that F2 layer crit-
ical frequency and M(3000)F2 from ITU-CCIR (Consultative
Committee on International Radio) formulations are realistic
[6]. Whereas for the DNN, F(7 of higher values like the ones
in year 2000 were not used in the training — hence the possi-
ble reason for the large underestimation. Further research is
required, especially for NeQuick 2 model during very high so-
lar activity in order to further assess its performance and then
propose possible modification to the existing F¢ 7 cap limit.

4. Conclusion

DNN was configured and trained to model vTEC at a sin-
gle station under a supervised learning condition using data for
solar cycle 24. Unlike most of the previous studies which were
based on predefined network models, deep learning NN was
used in this study. A process of optimization was used to obtain

the best configuration — which was done by varying the hyper-
parameters of the DNN model. The selected configuration has
four hidden layers with neurons number of 32, 24, 16 and 8 in
the hidden layers 1, 2, 3 and 4 respectively. EUV and F'o7 were
separately used as solar activity index in order to see which of
these two indices will give a better result during training and
validation. The performance of the DNN model was also com-
pared with that of NeQuick 2 model. Observations in this study
during validation showed that driving a DNN model with EUV
and Fo7 gave similar results in terms of performance i.e. de-
viation of predictions from the observed values. The valida-
tion of the two models (DNN and NeQuick 2 models) within
the solar cycle 24 and for year 2021 outside the solar cycle 24
showed that the two models performed reasonably well. In gen-
eral, there were good agreement between the models’ predic-
tions and the observed values, with DNN performing slightly
better than NeQuick 2. However, large error was observed dur-
ing a very high solar activity i.e. 2000 - a year of high solar
maximum of the solar cycle 23. DNN and NeQuick 2 model
largely underestimated vTEC — though NeQuick 2 performed
better than DNN model in 2000. The observation during year
2000 might be due to the fact that the data set used for the train-
ing of the DNN were not of high solar activity as that of year
2000. Similarly, the Fo7 cap value of 193 s.f.u could be the
reason for the underestimation recorded in NeQuick 2 during
year 2000. The study presented in this work could be extended
to a global scale using similar approach.
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Data availability

Solar index Fjp; values are available at https://omniweb.
gsfc.nasa.gov/form/dx1.html. EUV data are available from the
TIMED SEE website at https://lasp.colorado.edu/lisird/data/
timed_see_ssi_13/. TEC values were retrieved from Ionex daily
files obtained through the online archives of the Crustal Dy-
namics Data Information System (CDDIS), NASA Goddard
Space Flight Center, Greenbelt, MD, USA. https://cddis.nasa.
gov/archive/gnss/products/ionex/
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