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Abstract

The socio-economic burdens of onchocerciasis have prompted the formulation of several mathematical models to better comprehend the epidemic.
However, existing models either use integer-order derivatives, which often do not capture the memory and non-local effects seen in infectious
diseases, or fractional order with singularity kernels, which may inadequately represent memory effects due to their singularity kernels. Onchocer-
ciasis has a prolonged incubation and slow progression, making past conditions impactful on the disease’s current and future course. Fractional
derivatives effectively capture this memory effect, providing a more realistic depiction of the infection dynamics than integer-order models. We
propose a non-local, non-singular exponential kernel fractional-order onchocerciasis model in the Caputo-Fabrizio fractional derivative sense to
capture the disease’s memory effects. Our model incorporates early treatment of exposed individuals as a critical intervention parameter, and vec-
tor management strategies are also incorporated. Using fixed-point theorem and iterative methods, we establish the existence and uniqueness of
solutions, derive conditions for onchocerciasis-free and endemic equilibrium points, and analyze their stability, confirming the model’s biological
feasibility. Numerical simulations are conducted using a three-step fractional Adams-Bashforth method. Sensitivity analyses indicate that vector
management and early treatment effectively reduce the effective reproduction number, while increases in the human-to-vector contact rate elevate
it. Numerical results demonstrate that early treatment and vector management can significantly control onchocerciasis. The fractional-order
“memory effect” highlights the importance of continuous monitoring and consistent application of control measures to reduce the memory index
and curb onchocerciasis prevalence over time.
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1. Introduction

*Corresponding author Tel. No.: +6-016-443-7864. Onchocerciasis (river blindness) is a neglected tropical dis-
Email address: farahaini@usm.my (Farah Aini Abdullah) ease (NTD) with a Signiﬁcant socio-economic burden on af-
fected communities [1].
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The parasite Onchocerca volvulus causes the disease and
is transmitted to humans through the bite of infected blackflies
(Simulium species) during blood meals [2]. The flies thrive near
fast-flowing rivers [3]. While onchocerciasis is most common
in Africa, cases have also been reported in Yemen and Latin
America [4, 5].

Once the parasite’s larvae (microfilariae) are in humans,
they develop into adult worms (macrofilariae) that release nu-
merous microfilariae into the body. Ivermectin is the primary
treatment, targeting microfilariae and halting their transmission
[6-8]. However, no medications exist to eliminate adult macro-
filariae [4, 8-10], leading to ongoing complications. The dis-
ease causes disfiguring skin changes (leopard and lizard skin)
and eye damage.

Health intervention programs, such as the World Health Or-
ganization (WHO), the Onchocerciasis Elimination Program of
the Americas (OEPA), the African Programme for Onchocer-
ciasis Control (APOC), and the Onchocerciasis Control Pro-
gramme in West Africa (OCP) [5, 11, 12], have had varying de-
grees of success in controlling the disease. Yet the disease per-
sists with an estimated 37 million individuals infected world-
wide. Among these, approximately 14.6 million suffer from
skin disorders, over 270, 000 are blind, and roughly 1.2 million
experience visual impairment [10, 13, 14].

Several mathematical models based on integer-order dif-
ferential equations (IODEs) have studied the dynamics of on-
chocerciasis [15-23]. Walker et al. [22] developed models to
evaluate the feasibility of eliminating onchocerciasis through
mass drug administration (MDA) with ivermectin and vector
control strategies. The studies by Bas et al. [21] and Tira-
dos et al. [23] did not incorporate vector control strategies,
despite being a valuable complementary strategy when elimi-
nation through MDA alone is uncertain. While the model in
Omondi et al. [16] asserted that MDA with ivermectin alone
cannot eliminate the disease and highlighted the importance of
timely treatment, Konlan et al. [18] emphasized that proper
monitoring of human migration and vector control are critical
to onchocerciasis elimination.

However, the "memory effects”, genetic traits, and long-
term interactions that govern a variety of phenomena (like the
onchocerciasis dynamics) are not accounted for by the IODEs
models [24]. Fractional-order differential equations (FODEs)
models are valuable tools that overcome these limitations [25—
27]. Studies show that FODE models yield better fitting results
than IODE models [28, 29]. These models are gaining popular-
ity in science because they forecast a system’s future conditions
by considering its present and prior states, a characteristic that
IODE models cannot address [30, 31].

Several studies have utilized fractional operators to approx-
imate solutions for real-world phenomena [32-35]. Specifi-
cally, infectious disease models using fractional operators are
explored in Ref.[25, 36-39]. However, so far reviewed, very
few studies have examined onchocerciasis dynamics using frac-
tional derivatives; only the Caputo fractional derivative has
been utilized [40, 41]. Atangana and Alqahtani’s [40] study
focuses on analytical and numerical approximation techniques
using Homotopy Methods and emphasizes that incorporating

memory (FODEs) enhances the design of effective, time-aware
interventions. In contrast, Onifade et al. [41] suggest that en-
vironmental control strategies are essential for disease elimina-
tion. However, the Caputo derivative singularity kernel limits
its applicability and effectiveness in appropriately representing
the memory effect in real-life systems [30, 42, 43].

The Caputo-Fabrizio fractional derivative (CFFD), based
on a non-singular kernel [44], addresses the Caputo limitation
and has been used to model real-world phenomena [31, 45—48].
While no studies have yet applied the CFFD to model onchocer-
ciasis dynamics, researchers have used it to model COVID-19
[25, 39], HIV/AIDS [49], dengue fever [50], and host-vector
diseases [51].

Although onchocerciasis is curable at an early stage, pre-
vious models do not exclusively consider the impact of early
treatment of exposed individuals as containment strategies, but
rather MDA treatment. The representation of disease mem-
ory effects has been considered using fractional derivatives with
singularity kernels.

This study formulates a Caputo-Fabrizio (CF) fractional
mathematical model for onchocerciasis dynamics, integrating
early treatment of exposed individuals and vector control as in-
tervention strategies. We use CF memory effects to assess the
impact of control strategies, as the disease leaves immunolog-
ical and epidemiological memory in humans. Our goal is to
provide insights on effectively controlling and eradicating on-
chocerciasis. The CF is chosen for exhibiting a non-singular
exponential kernel, ensuring smoother, more stable numerical
simulations and a fading memory [44].

The fractional 3-step Adam Bashforth numerical scheme
was chosen for the model simulation due to its efficiency and
better performance by reusing values from previous time steps,
making it appropriate for fractional differential equations with
memory effects [52, 53]. It has been utilized in an infectious
disease model in the FC sense [49, 52-54].

In this study, Section 2 provides basic definitions of the CF
derivative, Section 3 presents the description and formulation of
the model, the model’s properties are given in Section 4, Sec-
tion 5 presents the determination of the model’s equilibria, the
numerical method and simulation are described in Section 6, the
impact of memory effects is discussed in Section 7, and Section
8 concludes the study.

2. Basic definitions

The properties of the Caputo-Fabrizio derivative are out-
lined in Ref. [55]. We consider the following definitions for
our model analysis.

Let H'(v1,v,) denote the set of all functions ¢ on the in-
terval (v1, v2) such that both ¢ and ¢’ are in L>(vy,v). Where
(v1, vy) is the set of measurable functions on whose squares are
Lebesgue-integrable, that is;

LZ(UI,UZ)Z{fZf2|f(U)|2dU<OO}.

Employing this definition of H'(v,v,), we consider the fol-
lowing.
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Figure 1. Schematic transmission dynamics of onchocerciasis

Definition 1. As seen in Refs. ([44, 56, 57]). Let ¢ € H'(vy,v)
and B € (0,1). The CF derivative of the order 3 from v to t is
defined as:

ot Y0 [ iy 200,

1= Ju, 1-p

where M () is consider as normalized constant(or function) sat-
isfying M(1) = M(0) = 1. On the other hand, if ¢ ¢ H'(v;,v)
then we have:

MPB) (" (r-v)
Do = E22 [ - pwnexs [—B . @)
1 - ﬁ 41 1 - ﬁ
Definition 2. As seen in Refs. ([56-58]). Let B € (0, 1) where
B is the order of the integral. Then the CF integral of order 3 of
a function ¢, is defined by;
1-8

CFB iy 2P B[
Ie(t) = M(ﬁ)tp(t)+ ) fo e)du,t > 0. 3)

¢'(t)exp [— (1)

3. Description and formulation of the model

We developed a deterministic fractional-order mathemati-
cal model. Our model is based on the idea of the IODE model
in Refs. [18-20], which examines the interaction between hu-
mans (persons) and black flies (vectors). Unlike our model,
though simplified, the studies in Refs. [18-20] did not account
for recovery compartment dynamics or the early treatment of
exposed individuals.

At time t > 0, T),(¢) and T3(z) represent the total popula-
tions of humans and vectors, respectively. T,(?) is divided into
four compartments: susceptible persons S ,(¢) - those at risk
of contracting onchocerciasis but not infected; exposed persons
E,(t) - people exposed to onchocerciasis but not contagious;
infected persons 1,(1) - those currently infected and infectious;
and recovered persons R(¢) - individuals who have recovered
from onchocerciasis. Since onchocerciasis can be treated and
eliminated at the microfilariae stage, we formulate the model to
reflect recovery due to early treatment at rate 7, and recovery
due to delayed treatment at rate 7.
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Figure 2. (a) Fitted comparison between the diseases’ actual data and the sim-
ulations produced by the model (7) (b) Statistical illustration of actual data and
model prediction using box and whisker plot.

The Tj(?) is divided into three compartments: susceptible
black flies S,(7) - those that have not encountered an infected
human; exposed black flies E;(f) - those that have acquired mi-
crofilariae but do not transmit infection; and infectious black
flies I,,(¢) - vectors that carry the infective larvae and are conta-
gious.

The model assumes a constant recruitment rate A, of S ()
through immigration or birth, and they become infected through
contact with infectious female black flies during blood meals. A
fraction of § ,(¢) progresses to exposed persons E,(?) at a force
infection rate i, defined in Equation (4). The model assumes
a constant recruitment rate A, of § () through immigration or
birth, and they become infected through contact with infectious
female black flies during blood meals. A fraction of S ,(¢) pro-
gresses to exposed persons E,(f) at a force infection rate i,
defined in Equation (4). Assuming the probability of transmit-
ting the disease per bite of the infectious black fly to humans is
atrate p (0 < p < 1). The E,(¢) is early treated and progresses
to recovered persons R,(f) at a treatment rate 7. A fraction of
the exposed persons who were not early treated become infec-
tious persons I,(¢) at rate o,. The I,(f) receive treatment at
rate y, and progress to recovered persons R,(¢). Assuming the
probability of transmitting the disease from infectious humans
to black flies is at the biting rate g (0 < ¢ < 1). The model
assumes a constant vector recruitment rate A, of S,(¢) through
birth. A fraction of S ;(#) progresses to exposed black flies Ej(f)
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at a force of infection rate ¥, (Equation (5)) through biting in-
fectious humans. The E,(f) progress to infectious black flies
I,(?) at rate 0. We assume a natural death rate ¢, and 0, in all
human and vector compartments, respectively.

We assume the effective contact of human-to-vector trans-
mitting infection to humans is at the rate £, at the biting rate
p, while the effective contact of vector-to-human transmitting
infection to vectors is at the rate &, at the biting rate q. Hence,
the force of infection ¢, and y;, are defined as;

I,(1 —
- é%bg)_ “)
_ qulp
b= _T,, . 5

We incorporate vector control with the parameter &, which in-
cludes strategies like applying repellent and wearing protective
clothing during black-fly peak times. Insecticide spraying with
larvicides and adulticides further reduces the vector population.
We assumed 0 < ¢ < 1; if vector control is 100% effective
(¢ = 1), and when no control is applied, € = 0.

The model assumes constant recruitment of susceptible hu-
mans (via birth or immigration) and vector populations (via re-
production), and infected vectors do not live to recover from
infection.

The system of classical differential Equations (6) with non-
negative initial conditions represent the model equation.

ds,
WzAp_prp_‘spSP’
dE,
7=¢psp—(T+0'p+6p)E,
dI,

E=O'pEp—(’y+5p)I,

dR

—L = 1E, +yl, - 6,R,, (©6)
dt

das,

— = Ay = UpSp— 0,5,

7 b= YbSH—0pSp

dE,

— =YpSy — + 60p)Ep,

pr UpSp — (o) + 6p)E)p
dl,

— =o0p,Ep — 6p1p.

ar = e ol

The corresponding fractional model of Equation (6) in CF
sense, as defined in Equation (1), yields:

CFDfSP(t) =Np—UpSp—6pSp,

FDPE,(1) = 4,8 ) — (T + 04 + 6,)Ep,

DL () = 0, E, = (y +6,)1,,

CFDPR,(1) = TE, + yI, — 6,R,, (7
EDISy(1) = Ay — WS — S,

FDPEWN®) = ypSp — (0 + ) Ep,

FDPIy(1) = o Ep — 1.

Table 1. Description of variables and parameters in model (7).

Variables Description

T,,T, Total human and vector populations.
Sy S Susceptible humans and vectors.

E, Epy Exposed humans and vectors.

I, I Infectious humans and vectors.

R, Recovered humans.

Parameters Description

Ap, Ay Human and vector Recruitment rates.
6p» Op Human and vector mortality rates.

T Early Treatment rate.

Yp, ¥y Force of infection of humans and vectors.
&, &y Effective risk rate of humans and vectors.
0pOb Progression rate of humans and vectors.
p Transmission rate from vector to human.
q Transmission rate from human to vector.
Yy Recovery rate of infectious humans.

& Vector control rate.

Subject to the initial conditions:

S,,(O) = Spo > O,Ep(()) =Ep > 0,1[,(0) =1p, > 0,
R,(0)=Rp, =20, ®)
S,(0) = Sbo >0, Ey(0) = Ebo >0,1,(00) = Ib() > 0.

Table 1 describes the variables and parameters used to formu-
late the model equation.

4. Properties of the model

In the following subsections, we examine several key as-
pects of the model equations to assess their accuracy.

4.1. The existence and uniqueness of the model’s solutions.

The existence of the model’s solution is examined by ap-
plying the Caputo integral operator in Equation (3) to Equation
(7), we obtain:

Sp() =S ,0) = I[N, =S, = 5,8,
Ep(t) = Ep0) = P[4, , - (r + 0, + 6,)E, |,
I,(0) = 1,0) = "I o, ), = (v + 6,)1, |
Ry(1) = Ry(0) = "I} [1E,, + yI, = §,R, | ©
Su(®) = S(0) = I [Ap ~ YS 1 = 55551
Ey(t) = Ex(0) = "I [S s — (0 + 6)Ep]
1,(0) = 1,(0) = "1 [0, Ep = 651 -

For the sake of analytical ease of use, we define the following
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kernels; and S|, represent any two functions (with constant variables).

Ky (8,8 (D) = Ap =S p (1) = 6,8 p(1),
Ky(t, Ep(1) = ¢S p () — (T + 0 + 0,)E (1),

K3(1,1,(8)) = opEp(1) — (¥ + 6,)1 (1),

Ky(t,R,(0) = TE, (1) + yI, (1) — 6,R,(1), (10)
Ks(1, 8 5(0) = Ap — S p(8) — 655 (1),

Ko(1, Ex(2)) = S p(1) — (05 + 65) Ep(2),

K7(8,1p(1)) = o Ep(f) — 6p15(2).

From Equation (3), let

1-B B
P = ——, YPB)=——. (11)
M@B) M@B)
We state the following theorem to establish that the kernels sat-
isfy the Lipschitz and contraction criteria.

Theorem 1. The kernels K;,i = 1,2,...,7 of the autonomous
system (9) satisfy the Lipschitz conditions and are contraction
mapping if the inequality holds

0 < L=max{&,£,8,64,85, 86,671 < 1,

12
and such that ||K;(1, 1) — K;(z, )| LI|A = A4, (12

where A and A; represent any two functions.

Proof. Assume that S (1), E,(1), I,(t), R, (1), Sp(2), Ep(2), and
I,(¢) are nonnegative bounded functions and there exist w; >
0 = 1,2,...,7) such that ||S ,(DII< w1, IE,®I< w2, II,@)<
w3, IRyDII< w4, IS, ws, |Ex@I< ws, and [0S wy.
Where ||.|| denotes the maximum norms. For kernel K, let S,

Thus, we have:

K1 (S p) = Ki(t, S 1p)ll = [I=4p(S p(#) = S 1,(1)
= 0p(Sp(®) =S 1, O,

IK1(2, ) = Ki (@, Sipll < W@y + 6p)(S p(1) = SO, (13)
K12, S p) = Ki (@, S 1pll < (rp + 5p)I(S p(1) = S 1, (D),
K1 (S p) = Ki (8, S 1p)ll < E1ll6S (@) = S 1,
where (f, +6,) = & € L < 1. Similarly, results for the other
kernels follow as;
I1K(1, Ep) = Ka(t, Evp)ll < E2(Ep() = Erp())l,

IK3(2, 1) = K3(t, Lip)ll < &L (1) = L p ()],
IKa(7, Rp) = Ka(t, Rip)Il < Eall(Rp (1) = Rip(D)Il;

14
IKs(2, S ) = Ks(2, S 1p)Il < &5lI(S (@) = S 160l (1
IKe (2, Eb) — Ko(t, Evp)Il < &6ll(Ep(2) — Erp(D))Il,
K7 (2, 1p) — K7 (2, Iip)Il < &71(1p(0) — Tip (D),
where all the &; are given in Equation (15).
E1 =Y, +0,,6=T+0,+06,,6 =y +06,, (15)

&4 =0p,&5 = Yp + 6pés = 0 + 0p, &7 = Op.
Thus, all the K;,i = 1,2,...7 satisfied the Lipschitz condition
and since 0 < L = max{{,&,&3,64,&5,86, &7} < 1, the ker-

nels are contractions. The recursive formulas are introduced as
follows: O
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S oy = K1(t, S pn-1))9(B) + lﬂ(ﬂ)[) Ki(z,S pn-1y) dz,
E () = Ko (t, Epu-1))9(B) + 'J’(ﬂ)fo K> (z, Epn-1y) dz,
Ip(n)(t) = K3(t’ Ip(n—l))¢(ﬁ) + l/f(ﬂ)j(; KS(Z, Ip(n—l))dz’

Ry (1) = Ky(t, Ry(u-1))P(B) + el/(ﬁ)j; K4z, Rp(u-1)) dz,

S () = Ks(2, S pin-1))(B) + 'ﬁ(ﬁ)f Ks(z, S pn-1y) dz,
0

Epy(t) = Ke(t, Epn-1))9(B) +l!/(,3)f Ke(z, Epn-1))dz,  (16)
0

!
Ipy(t) = K7 (2, Ipu-1))(B) + 'ﬁ(ﬁ)f K7(z, Ipu-1)) dz,
0
with the following initial conditions;

S p0) (@) = S p(0), Epo)(t) = E,(0), Loy (1) = 1,(0),
R,0)(®) = R,(0), S p0y (1) = §4(0), Epy (1) = Ep(0), 17
Ip0y (1) = Ip(0).

From Equation (16) the difference between consecutive approx-
imations is given as:

Q1) = BBLKL (S o 1) = Ki (0, 2]

+u) fo KL ety — K (2,8 )]
Q1) = BEKt, Epir1y) — Kolts Epr2)]

+y(B) fot[Kz(Z, Epn-1) — K2(z, Epu-2))1 dz,
Q1) = HBKE, Ty y) — Ks(t, )]

o | K o) — Ks(e Ipun)]
Qi (1) = BBYKst, Ry 1)) — Kalt, Ry

o | 1K Ryt — Ko Ryua)
Q1) = HBIKs(, Sy 1)) = Kty Sr)]

L) fo K St — Kz Snnn)] e
Q1) = BBKo(t, Eyn1y) — Kolt, Enr-)]

Ly fo Kol Ennr) — Koo Enun)]
Q1) = BEKAt, ia-1y) ~ Kt T2

+¢(ﬁ)f0 [K7(z, Ipn-1)) — K7(2, Ipn-2))] dz.

(18)

Note that,

S o) = Z Qii)(@), Epy(1) = Z Qo) (1),
P =1

Lm0 = Z Q3)(1), Rpny (1) = Z Qa0 (1),

im1 =1

B B (19)
Sy () = Z Qs(1), Epny(1) = Z Qe (D),

-1 =1

Iyy(D) = Z Q7(0).
i=1

Equation (19) is valid Dbecause each term of
S o) (05 Epy (D), Ly (@), .., Ipy () 1s  constructed iteratively
from the differences Q](i)(l), Qz(i)(l), Q3(i)(t),...,Q7(i)([) that
indicates how much the approximation changes at each step.
From Equation (18), recursive inequalities are formulated for
the differences Ql(,')(l‘), Qz(i)(l), 93(,')(1‘), 94(,‘)(1‘), Q5(i)(l‘), Qé(i)(t)
and Q7;)(1), as follows;

11O = IS py(®) = S per-1y DI
< @B || Ki (@S pin) = Ki (1, S piu-t)) (20)

+U(B) fo 1K1 2. S ) — K S )] de

Since K; satisfies the Lipschitz condition with the Lipschitz
constant, we have:

121Dl ¢(ﬁ)§1||Ql(n—1)(f)||+lﬁ(ﬁ)§1j(;HQl(n—l)(Z)lldz. 21

Similarly, we have the following results;

Q22 (DII< ¢(ﬂ)§2”QZ(n—l)(t)”"'l//(ﬂ)fZjO\”QZ(n—l)(Z)”dZa

1IR3 (DNI< ABIE3IQ230-1) (DI +Y(B)E3 fotllﬂsml)(Z)IIdZ,
€24 (DI GBIl QLan-1) (DI +Y(BIEs fOtIIQMn—l)(Z)IIdz,
125 (DNI< SBIEs Q50— 1) (DII+Y(B)Es J:Ilﬂsm-n(z)lldz,
1Q6m (DI ¢B)E6lIQ26-1) (DII+Y(B)Es fotllﬂanl)(Z)IIdZ,

1Q7¢y (DI ¢(ﬂ)§7||Q7(n—1)(t)||+lﬁ(ﬁ)§7fo||Q7(n—1)(Z)||dZ-

Below we consider the theorem, which guarantees the exis-
tence of a solution to model (7) - (8).

Theorem 2. A set of solutions for onchocerciasis model (7) -
(8) exists if time ty > 0 such that the following relation holds

dPBE + Bt < 1 fori=1,2,...,7. (22)
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Proof. Since we assume that the function
S (0, Ep(@), 1), Rp(2), Sp(1), Ep(t) and I,(f) are bounded,
and that each of the kernels satisfied Lipschitz conditions, we
obtained the following using Equations (21) recursively. For
some n — 1, the following inequality holds.

Q- O IS pON[BE + w(BE ] . (23)
Substitute Equation (23) into Equation (21)), we have:

121 @Il < E1IS HO)II{BB) [W 1™
+‘/’(31)f0 (W] dZ},
where W = ¢(B)¢1 + y(B)é11, W2 = ¢(B)é1 + Y (B)E1z. Approx-

imate the integral term using a linear bound since the power
of the expression is dependent on z. We assume the integral is
bounded by considering the maximum value over the interval
[0, ].

(24)

f [6B& +yB)érz]" " dz < t- W] (25)
0

Substitute (25) into (24), and simplify gives

121 ONIIS OI[BB)E + Y(Bért]". (26)

Similarly, we obtained the following:

Q20 DISIE(O)I[p(B)E2 + w(Béat]”
193 DI, O)I[(B)E3 + w(B)ést]"

Q4 DNIIR,OI[p(B)és + w(B)éat]",
Q56 (DII<IIS 5 OI[¢B)Es + w(B)ést]
Q6 DISIELO)I[¢(B)Es + w(B)ést]" s
1276y DI OI[BB)E7 + p(BEqt]" .

Equations (26) and (27) show the existence of the solution. Fur-
thermore, the function § ,(¢), E,(t), I,(t), R,(1), S »(1), Ep(2) and
I;,(¢) need to converges to the system of Equations (7) - (8). We
denote H, (1), I,(1), J,(t), K, (¢), L,(t), M,,(t) and N, (¢) as the re-
mainder terms after n iterations.

H,(?) is defined as the difference between the exact solution
(true state) S ,(#) and the approximate solution (recursive ap-
proximation) S ,,(¢) expressed as:

Hy(t) = ¢(B1) [K (1,5 ) = K1 (4, pia-)

+U(B) fo K125 )) = Ki(2.8 )] dz.

27)

(28)

The exact solution of the error term definition of H,(¢) is
S p(1) =8 p(0) = S pu) (1) — Hy(2). (29)
Similarly, we obtained the following;

Ep(1) = Ep(0) = Epuy(t) — L(2),
1) = 1,(0) = Ipuy(®) — Ju(0),
Ry(1) = Ry(0) = Ry (1) — Kn(1),
Sp(0) = 8p(0) = 8 pu) (1) — Lu(0),
Ep(t) — Ep(0) = Epgy (1) — My(2),
1p(1) = 15(0) = Tp(u)(2) — Na(2).

(30)

Applying the Lipschitz criterion and the triangular inequality to
the kernel K| on Equation (28), we get;

IHL (Il < 6(B) ||K1(2.S ) — Ki(2, S wiu-n))|

’ 31
+y(B) fo K1 S ) = Ki(z, S pia)|| .

Since the kernel K; function satisfies the Lipschitz condition,
we have:

!
IH,(DII< ¢BENS p (=S pu-1y DI+ (B fo IS p(=S pu-1y(Dll dz

From Equation (29), Sp(l) - Sp(n_l)(O) = H(n_l)(l). Thus,

!
IH,DlI< ¢BENHp-1 DI+ (B f 1Hp-1 (2l dz
0
We assume inductively that the previous error term satisfies:

IH, 1 (DI [(9(B) + ¥ B)to) 11",
and substitute this into H,(¢) and factorized, we have;

IH DI < [(@(B) + ¥ (B)to) 11" (32)

Similarly, we have the following:

LN < [@B) + B &1

17,0l < [(#B) + (Bt &,

KONl < [(@B) + w(B)o) éa]"" 33
LIl < [(@B) + w(B)to) &]"
IM, Dl < [(@B) + v (B)o) &
NI < [(B) + w(B)to) €11 .

The limit of Equations (32) and (33) as n approaches infin-
ity and with condition (22), gives ||H,(®)||— O, ||[I,(»)|— O,

IS.Oll— 0, [IK,(DlI— 0, IL,®ll— 0, IM,(®I|— 0, and
[|N,(8)]|— 0. Hence, the solution to the system (7) - (8) ex-
ists. O

The following theorem established the uniqueness of the so-
lution.

Theorem 3. The model (7) with its initial condition (8) has a
unique set of solutions if the following conditions hold

B +y(PB)ét <1 fori=1,2,3,...,7. (34)
Proof. Suppose (34) holds, as proven by Theorem 1, assume
there exists another set of solutions (S,(2), Eip(t), Iip(2),
Rip(0), S1p(0), Ep() and I1,(r)) of the model other than
(8 p(0). Ep(0). (D). Ry (1), S (1), E(r) and I(1)). Thus;

Sp(0) = S1,() = 6B [Ki(,S ) = Ki (1, S 1,)] +

! (35)
¢,(ﬁ)\f; [K](Z, Sp) -Ki(zS lp)] dz.
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Applying the norm [|.||
Equation (35) we have:

and triangle inequality to bothsides

IS p() = S 1Nl < BIKL(E, S p) = Ki (2, S 1)l

+y(B) fo 1K, S ) - Ki(z, S 1)z

Applying Lipchitz condition on kernel K;, we obtain;
1S p(1) = S 1, DIl < GBS p(1) = S 1,

+YPBES (@) — S 1Ol (36)
IS » (@) = S 1Dl < (@B + Y PB)E1D IS p () — S 1,
From equation (36), we have;
IS p(1) = S 1, = ¢B)E1 = Y(B)é11) < 0. (37)
IS p(1) = S1,DI< 0. (38)
Equation (38), implies S,(t) = S§i,(¢). Similarly applying

the same procedure on each pair {E,(t), E1,()}, {I,(2),11,(®)},
{Rp(1), R1,(D}, {Sp(®),S 15D}, {Ep(D), E1p(®)},and {I(2), 115(1)},
we have;

Ep(t) = Elp(t)s Ip(t) = Ilp(t)’Rp(t) = Rlp(t),

Sp(®) = S15(0), Ep(t) = E1p(2), 1p(1) = L1p(D).

Thus, the theorem is proved. O

(39)

4.2. Positivity and boundedness of solution.

To ensure this in our model, we establish that all state vari-
ables remain non-negative for any time ¢ > 0. Consequently,
model (7) yields;

FDIS (D)5, =0 = Ap > 0,
FDE,(t)g =0 = ¥pSp > 0,
D100 = opEp 2 0,
FDIR,(D)lg,=0 = TE, + yI, > 0, (40)
FDIS D50 = Ap > 0,
FDPEyDlg,-0 = ¥pSp > 0,
CFDfIb(I)h,,:o =o,E, > 0.
Equation (40) shows that the model (7) is positive.

Theorem 4. Assume that Q is a biologically viable region pro-
vided for the model (7),then;

Q = {(S (1), Ep(0). I,(0). Ry (D). S (1), Es(0). (1)) € R]
A, A,,} 1)

The positively invariant region € attracts all non-negative solu-
tions for the model (7).

Proof. Our primary goal is to show that every solution in Q
stays in Q. Therefore, considering the total human population
of humans: T,(t) = S ,(t) + E,(?) + I,(t) + R, (?). The derivative
of T,(?) yields;

FDPT (1) < Ay = 6,T)(0). (42)

Equation (42) is solved in Caputo Fabrizio’s sense, and we have
the Laplace transformed solution as;

sT,(s) =T,0) A,
m < T + 5pr(S). (43)

Taking the Laplace inverse, we have;

A, [A,(1=B)+T,0) A, o
T,(t) < =L + A=+ T,0 Ay e B! (44)
S, 1+6,(1-p) 5,

Similarly, Tp(t) = S(t) + Ep(f) + I,(¢) is the total population of
blackflies, solving we have;

Ay [A(1=B)+Ty0) Ay

L= S | Tv5,0-p o

From (44) and (45), we may now infer that t — 0, 7,(t) —

T0) = Ty < 32 and Tp() = Ty(0) = Ty() <

2—:. Consequently, Q is a global attractor of all positive system
solutions and positively invariant for arbitrary positive initial
conditions. O

]e S (45)

5. Existence of the model equilibria

At equilibrium, the rate of change of model (7) is set
to be zero [39, 59]. Solving the resulting algebraic system
for the state variables in terms of y, and ¢, we obtained
onchocerciasis-free and endemic equilibrium points.

5.1. Onchocerciasis-Free Equilibrium (OFE) points and deter-
mination of basic reproduction number

At OFE points, onchocerciasis transmission halts as there
are no carriers to spread the pathogen. We denote E° =
(S9,E0. 19, RO, 89, E., I)) to be the onchocerciasis-free equilib-
rium point of the model. The stability of this equilibrium de-
pends critically on the basic reproduction number (Ry), which
determines whether the disease can re-establish itself after be-
ing introduced. Thus, the model (7) possesses a disease-free

equilibrium as;

E° = (ﬁ,o,o,o,ﬂ,o,o ) (46)
op Op

The number of new infections caused by onchocerciasis-
infected individuals when they interact with the fully suscep-
tible population in the absence of treatment and vector man-
agement is known as the basic reproduction number Ry, in our
model (7).

Below, we calculate the basic reproduction number, which
is obtained using the next-generation matrix method [60, 61].
To achieve the calculation of Ry, , we identify the disease
class of the model (7) as done in [39] and denote such as
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T
D= [CFszE,,, CFDPI,, CFDFE,, CFD?I;,] and splitting D

into new infectious denoted by f = [l/JpS p 0, UpSs, O]T and
transition infections denoted by

v=[(t+0,+6,)E,,—0,E,+(y+06,)l),, (0p+0p)Ep, —0pEL+
0pIy)7. The basic reproduction Ry is determined using the ex-
pression, Ry = p [nf‘l], where p is the spectral radius of the

next-generation matrix G, = nf~!, i is the Jacobian matrix of
new infections f and ¢ is the Jacobian matrix of transition in-
fections v and are given below.

Ep(1-6)pSp
0 0 0 =
10 0 0 0
"lo &g o o P
0 0 0 0 | (47)
ky 0 0 0]
/= -0, k» 0 0
0 0 k3 ol
0 0 —0p (51,_

The inverse of ¢ and the next-generation matrix denoted by
G, = r]{”l, are calculated and given as;

ki 0o o0 o0
7, 1
Fro|t o m 00
0 0 £ of
[ 1
L0 0 55 5 48
0 0 &U-op,S, &0-0ps, (48)
k3T65 Tyop
0 0 0 0
G =|545,5, &aS, 0 0
klsz], kZTIz
0 0 0 0

The eigenvalues (4;,i = 1,2, 3,4) of the G,, matrix is computed
using det(A/ — G,) = 0 and yields:
T

[/lly/lZ’ /13’/14]7' — lo’ O,i prfb(l - E)PqO'hO'P‘ ) (49)

kikok30p,

The effective reproduction number R, is obtained by getting the
dominant eigenvalues. The basic reproduction number R, can
be calculated by setting all the control parameters in R, to zero,
that is (e = 7 = 0), thus, we have:

& _ |E80 - Opaoie,
¢ kikok36p ’

(50)

R - EpEoPgovop
0= .
(6p + Tp)y + 6p)(0h + 65)0p
Where ki = 0, + 7+ 0p,ka =y + 6y, k3 = 0 + 6. The Ry can
be structurally simplified as:

R (infection per bite) X (progression rates)
0= (removal rates) ’

From Ry and R., sustained controls can eliminate onchocer-
ciasis if Ry > 1 but R, < 1. If Ry < 1, the disease may die out
even without intervention; however, this outcome is unlikely
for a burdensome disease such as onchocerciasis. Therefore,
we base our subsequent analysis on R,.

5.1.1. Local stability of onchocerciasis-free equilibrium

Here, for stability analysis, we consider the fractional-order
linear system (52) with Caputo-Fabrizio derivative [62]. The
fractional-order linear system has been used in similar infec-
tious models [39, 49], for such analysis.

FDP x(1) = Bx(1), (51

where x(r) € R", B € R™ and 0 < B8 < 1. Conse-
quently, consider the definition and theorem.

Definition 3. (/62]). System (51) characteristic equation is de-
scribed as;

det(s(I - (1 - )B) - BB) = 0. (52)

Lemma 1. The system given by Equation (52) is asymptotically
stable if the real parts of the roots of its characteristic equation
are negative, and the matrix (I — (1 — B)B) is invertible.

Theorem 5. If the real parts of the roots of the character-
istic equation (53) are negative, then the onchocerciasis-free
equilibrium point (E°) of the model (7) with order 8 (where
0 < B < 1) is locally asymptotically stable.

det (s (I = (1 = BJI(E") - BI(E")) =0, (53)

where J(E®) = B is the linearized matrix of the system (7) eval-
uated at the disease-free equilibrium points. We determine the
linearized system of the model (7) at the onchocerciasis-free
equilibrium (OFEP) as done in the infectious disease model
[63, 64].

-5, 0 0 0 0 0 ~—¢
0 -k, 0 0 0 0 ¢
0 o, ko 0 0 0 0
JES=|{0 t y -5, 0 0 0|, (54)
0 0 0 ¢y —0p 0 0
0 0 0 ¢ 0 —k3 O
0 0 0 0 0 Op —6b7

£,(1-€)pSY £4S)
L2 and ¢y = =L,
0 92 = T

the invertibility of the matrix (I — (1 — £)J(E°)) and the roots

of (53). Let M = (I — (1 - B)J(E)), if the determinant | M]3 0
then M is invertible.

Next, we established

where ¢

[zt 0O 0 O 0 0O U]
00 0 0 0 0 &
0 I 2 0 0 0 O
M=|0 L 5 zz 0 0 Of.
0 0 0 L4 z5 0 O
0 0 0 &5 0 z O
10 0 0 0 0 I 2zl

where z; = 1-(B-1)6,,20 = 1 =(B—1)k1,23 = 1 =(B-1Dko, 24 =

1-B-1)6p,25 =1=(B~1)0p,z6 =1 —=(B—Dkz,z7=1- (B~

Doy, Iy = (B—Dop, b = (B-D1,l3 = (B=1)y,ls = (1-B)p2,I5 =

B = D2l =B~ Doyl =1 =1, ls = (B—1)¢1.

IM| = 21222324252627 — $1620 0T p212425" + 4d1020,02124758°
— 661$20,0b2124358° + 46102075071 2425B

— 01420 07521242526
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7
mi=] [
i=1

— 2124252601020 (B — 4B + 65> — 4B + 1) # 0.
For 0 < B < 1, |M|# 0, this implies that
(I - —B)J(EO)) is invertible. = Next, we compute the
root of det(s(I—(1-B)J(E"))-BI(E")) = 0. Let N
(s (1= (1 = BIE)) - BIED)) =0

(55)

Xy 0 0 0 0 0 Ay]
0 X, 0 0 0 0 A
0 A4 X3 0 0 0 O
N=|0 A A; X4, 0 0 Of,
0 0 A4 O Xs 0 O
0 0 A 0 0 X O
(10 0 0 0 0 A X/l

where X; = sz; +ﬁ(5p,X2 = S + klﬁ,X} = §73 + kzﬁ, X4 =
S$Z4 +ﬁ5p,X5 = 855 +ﬁ6p,X6 = 5% +,8k3,X7SZ7 +ﬁ5p, A]

s@—- Do, —Bop, Ay =sB-Dr-pr, A3 =sB-1y-
By, Ay =s(1—-PLB)dr+Bdr, As=s(B— 1Dy — Py, Ag=
sB-Dop—PBoy, A7 =s(1-B)¢1+Bp1, Ag = s(B—1)¢1—B1.

INI = (sz1 + B6,)(sz2 + Bk1)(s23 + Bka)(s24 + B ) (525 + B6)
(26 + Bk3)(sz7 + Bop).

For |[N|= 0 we have the following roots:

B

S1=——5 , 8 = —
21 b

Ekl,SS = —Ekz,s4 = _E(Sp’
z z

22 3 (56)

S5 = —E5b,56 = —Eks,ﬁ = —=—0p,
75 26 27

where z; and k; are defined previously. It is obvious to see that
the roots s; are negative since 0 < 8 < 1. Thus, the equilibrium
points of model (7) are asymptotically stable.

Theorem 5 epidemiologically implies that the disease can
be eliminated if sustained interventions keep the effective re-
production number below 1 (R, < 1).

5.1.2. Global stability of onchocerciasis-free equilibrium.

The model (7) contains onchocerciasis-Free equilibrium
(OFE) E°, which is globally asymptotically stable (GAS) when
R < 1.
the GAS of model (7), we use the Lyapunov function [65—
67]. We define a candidate Lyapunov function for some non-

negative constant values L;, L, L3, and Ly, as follows
F(E,,,I,,,Eb,lb) = LlEp +L21p +L3Eb+L4Ib. (57)

The time derivative of F in the Caputo-Fabrizio sense is as fol-
lows:

FDPF = LT DPEp+ LT D2 1+ L D By L, DY 1,.(58)

10

Substitute the derivative defined in Equation (7), gives
&l —&)ply
FpiF =1, (”T—hsp —(t+0,+6,)E,

+ Ly (0pEp = (v + 5,1,
qulp

+ L
(%,

(59)

Sp—(op + 5b)Eb) + Ly (0pEp — 6plp) .

Rearranging (59) by collecting like terms, gives:

CFl)fF Z(Ll fp(lT_ &)p

2 Sp—L3(0'b+5b))Eh

0
+ (L3quh - L45b) I,
TP
O,(1 —
+(L1 p(1-€)p
T,

+(Laoy = Li(T + 0 + 6))) Ep.

(60)

S,—Ly(y+ 5,,)) I,

Assigning values (expression) to the constants that ensures
CFDPF < 0, we have the following:

Ly = (y +6,)0p, Ly = £,q65,

(61)

Ly = 0,Ls4, Ly = £,(1 = &)p(y + 6)).
Using the relation in (61), we have the following relations:
FDIF = [€0q8p0) — (¥ + 8,)85(t + 0 + 6,)]E,

+[ = &q0u(y +6p)

+ &1 - ety + 5225, 1,

P
+[ =& (1 = &)pop(y + 6,) (b + 0p) (62)

+&(1 = &)p(y + 6,)03]Ep

1 —
+[(y + 6,,)6;;%

=& (1= &)p(y +6p)0 1.

Sp

We note the term 225, and @S » in the relation in 7, and
» b

1,, respectively. Since S, < Tpand S, < T,

bound each term as follows:

FDPF < [€0q8p0p — (¥ + 8,)85(t + 0 + 6,)]E,
+ [ = &qop(y +6p)

we can upper

T,
+&pop(1 —e)ply + 5p)€qu—]1p
P
+[ = 0p(1 = &)pap(y + 6p) (b + Op) (63)
+06,(1 = &)p(y +6,)0]Ep
Ty
+[(y +6,)6,0,(1 — s)p?hSp
=& (1= &)p(y +6p)0 1.
Simplifying further, we have:
CFDPF < Z(R. = V[E, + E, + Ey + 1), (64)

where Z = [(t+0,+6,)(y+6,)(0p+65)05]. Applying LaSalle’s
invariance principle, when R, < 1 we have " DPF < 0,
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Figure 4. Comparative simulation dynamics of integer-order (8 = 1) and fractional-order (8 = 0.644) models in human populations, model (7).

Table 2. Estimated and fitted parameter values for the model.
Parameters Range Value\month Source

A, - 45176 assumed
Ay 500 - 1000 600 [18, 19]
Op 0.0 - 0.0017 0.001299 [20]

op 0.00118 - 0.0714  0.068321 [74-76]
& 0.0-1.0 0.8354 [19,77]
& 0.0-1.0 0.7258 [75,77]
op 0.00137 -0.0363  0.00139 [74-76]
op 0.00714-0.01667 0.095 [74,75]
T - 0.566 assumed
y - 0.2584 fitted

q - 0.0855 [19,77]
p - 0.0982 [19]

€ - 0.513 assumed

meaning F' is non-increasing. The largest invariant set where
CFDPF <0 ,isthe E, = I, = E}, = I, = 0 which correspond
to DFE, E°. Thus, the system is GAS by LaSalle’s invariance
principle and converges to E° when R. < 1. The Lyapunov
function ensures that the trajectory tends to E°, meaning the
disease will be eradicated if R, < 1.

5.2. Onchocerciasis Endemic Equilibrium Points (OEEP)

At this equilibrium, onchocerciasis continues to exist within
a population. Equation (65) is the endemic equilibrium points

11

of the state variables in terms of ¢, and ¥
S = Ap E = A, Moy,
Poyn s, k@ +6,)" " kikeh +6,)
Ay, (Thy + 07)y)

R,= 4L~ P77 (65)
P Spkika(6% + 6p)
S, = Ay B Ablﬂz _ Ab0-b6z
P e, T W o) Sk + o)

T,) =S,(0)+E,(1)+1,() + Ry(1),

(66)
Tp() = Sp) + Ep(t) + 1,(1).

Substituting all the value of state variables of (65) into (66), we
have:

kikaAp + ko Apiy + koA porp 2,
P kika (X +6,) ’
ks, + 6,M0 + Moy

- Opk3 (), + 65)

Substituting all the values of concerned state variables of (65)
into (4), we have;

67

b

(6k3Np + (OpAp + 0bT y AW W, — Ep(1 — €)pApop i, = 0.(68)

Similarly, substituting all the values of the concerned state vari-
ables of (65) into (5) yields:

N quApa—pw;

= . 69
U kikoAp + (koA + o p AW, (69)
Substituting (69) into (68) and simplify.
¥, (A, + C) =0, (70)
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Figure 5. Comparative simulation dynamics of integer-order (8 = 1) and fractional-order (8 = 0.644) models in vector populations, model (7).

where;

A= 5;,]{31\[, + (sz,, + O';,Ap) + (Ahéb + AbO",,)quApO'p,

2
|- Epép(l — €)pgopo, (71)
kikak3op, ’

From (70), we have, either

Y,=0 or Ay,+C=0.

C = SpkikaksApA,

(72)

Hence, we claim that model (7) has a unique endemic equilib-
rium point if R, > 1.

5.2.1. Global stability of endemic equilibrium point
Let

D =((S;.E). I Ry

RS} E; L) € D) (73)

be a stable manifold of D*. The endemic equilibrium point
(EEP) of model (1) is globally asymptotically stable (GAS) in
D* with the conditions that T = 0 whenever R. > 1. Let V be a
Goh-Volterra type of Lyapunov function given below.

* * Sp
V= SP_SP_SplnS_*
P

E,\ k 1
+|E, - E} - E5in2 )+ =L (1, - 15 = I5in L
p p E; op p p I;;

+— (74)

kiko (
oy

s s RP
RP—RP—RplnR—;
s E
+(Sy, =S5 - Siin=2|+|E, - E} - Ejin=2
Sy E,

ks I,
+ = (I, - -in2].
O'b(b ’ hnIZ)

Differentiating (74) with respect to time give:

*

S E*
CFl)fV:(l_S_p)CFl)tBSP_,’_(l_E_p)CFDtBEp

p p

I*
+ k—l(l - —p)CFDfI,,

Tp I,
« (75)
kika Ry\cr St\cr
+ —— (1= L)FDPR, + |1 - 22| Dls,
oY R, Sy
E; k I
+ 1——b CFl)fEb+—3 1-2 CFDfIb.
Ey Op I
Substituting (7) with 7 = 0 into (75), we have:
S*
cFply = (1 - S—Z) (Ap = 0pS, = 6,5,)
E*
P
+ (1 - E—p)(wpsh - kiE,)
ki I,
o (1 -1 (0pEp — ko))
+@(1_R_7’)(y1 ~5,R,) (76)
Ty R, p ~ Opltp
S
+1- 3, (Ao —¥pS b —0pSp)
b
E,
+1- T WsS s — k3Ep)
b
k I
+ = (1 - —b)((rbEb —Spl).
Tp Ib
Consider relations:
Ap=0pS5 46,85 kE, =S5 kol = 0,E), o

k3EZ = l//},SZ,épR; = ’)/1;,5},1; = O'hEZ.

12
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Substituting the relations in (77) into (76) and simplify yield:

S, S,
FPiv <46,8 (2—S—f S—p)
P p
o (s So_SeEp Edy R, LR,
+ _—_——— e — — — -
¥pSp S, S:E, E:l, R, IR, 78)
Sy S,
+ 0,5} 2—5—5—
b
vupsi(aSi_SoEL LBl
Pe\NTS, SiE, I ElL)

Using the relation of arithmetic mean to geometric mean, we
then have;

Sy S,
(S—E—SP—E;—EP—I;—&—IPR;)<O (79)
S, SyE, E;l, R, IR,]™ "
(_ﬁ_s_z)<o,(4—ﬁ—%—l—”—E”IZ)<0.
Sy Sy~ Sy S;E, I Eil)~

Hence, we have “DPV < 0 with conditions that 7 = 0 and
R. > 1, since all the concerned variable in the model such as
Sp.Ep 1, R,, S, Ep, and I, are at steady state (endemic steady

state), substitute into the concerned variable of (1) to give:
1im (8,0, Ep(0). 1,(0), Ry(0). S (1), Ep(0), 1n(1))

(80)
— (S, Eps 1y Ry, S, Ep, 1)

Hence, by Lassalle’s invariant principle [68], the globally
asymptotically stable (GAS) is established. The theorem im-
plies that, regardless of the initial infectiousness in the society,
onchocerciasis can escalate if the number of secondary cases
produced by a single infected person is greater than one and if
those individuals are not receiving treatment.

6. 3-Step Adam-Bashforth predictor scheme and numerical
simulations

We apply the idea of the three-step fractional Adams-
Bashforth numerical scheme derived in Ref. [49] for the nu-
merical solutions of our fractional onchocerciasis model (7) -
(8). Hence, utilizing the definition of Caputo-Fabrizio frac-
tional derivative as presented in Equation (1) and its associate
integral operator Equation (3), the incremental change in the
numerical solution from f, to #(,+1), gives:

d-p
M@B)

[‘p(tm u(tn)) - ‘p(tn—l 5 u(tn—l ))]+

Mi(ﬁ) f, " ot u(e)) dt.

The integral in Equation (81) is approximated using a Lagrange
polynomial defined by Equation (82).

u(tye1) — u(t,) =

81)

2
Pot) = Y @iy th-DLi(0), (82)
i=0
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where:
_ (t - tn—l)(t - tn—Z)
LO(t) B (tn - tn—l)([n - [n—Z)’
(t = 1)t = th2)
L = s
1(t) (tn—l - tn)(tn—l - tn—2) (83)
(t - tn)(t - tn—l)
L = .
2(t) (tn—Z - tn)(ln—Z - ln—])
Thus, the numerical scheme is
u(tye1) = u(t,) + M@ [( -B)+ llg @(tn, uy)
,Bh 56h
M(ﬂ) [( -p)+ :|‘P(tn L Up-1) + M(ﬂ) 12 —p(tn-2, Up_2).

We estimate the truncation error E(f) for the three-step Adams
Bashforth scheme using the idea of error estimate for Lagrange
interpolation polynomial in Ref. [69] defined by;

", uE))
(k+1)' l—[([_tn 1)

Ey(r) =
Subsequently, for ease of computation, we shall consider
the normalized constant M(B) = 1.

6.1. Parameter estimation

We use the onchocerciasis reported infectious cases based
on monthly collected data provided by Ghana Health Services
from January 2008 to December 2015, publicly available in
Ref. [18, 20, 70]. The human infectious compartment was fit-
ted to the reported infected cases. Ghana’s population at risk
of contracting onchocerciasis is estimated to be 3, 400,000 as
of the time data were gathered [20], while the following initial
conditions were used for curve fitting: S, = 3,400, 0000, E,,
5000,1, = 150,R, = 1400,S5;, = 140000, E, = 7000, 1,
5000 [20, 70]. A Python code was developed utilizing a
“built-in SciPy” algorithm available in Python version 3.12.1
for parameter estimation. We use the non-linear least squares
(NLS) method to estimate the model’s parameter values. Ta-
ble 2 presents the estimated parameters and some published
parameters. Figure 2(a) illustrates fitting result. The fitting’s
fractional order differentiation parameter S was estimated as
B = 0.644. The statistical metrics, coefficient of determina-
tion (R?), and mean absolute percentage error (MAPE) were
utilized for model fit evaluation. We obtained R? = 0.9950 and
MAPE = 7.68%, which indicate good agreement between ob-
served and predicted data [71-73]. Hence, it shows that incor-
porating memory effects in modeling onchocerciasis dynamics
improves the fit accuracy. Figure 2(b) presents box plots that il-
lustrate the agreement in variability and central tendency. This
further confirm that the fitting results effectively captures the
observed dynamics.

6.2. Sensitivity analysis

Sensitivity analysis assesses how each parameter impacts
the infectious disease dynamics under investigation [39]. To
investigate the most influential parameter in model (7), local

(84)
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Figure 6. Effect of varying early treatment rate (7) on (a) Exposed human and (b) infectious human populations.

sensitivity analysis of each parameter is performed, in light
Ref.[78]. The normalized local sensitivity index, )(Zf", is intro-
duced to accomplish this. The normalized forward sensitivity
index of the effective reproduction number R., to a parameter 6
denoted by )(Zf” is defined as the ratio of the realative change in
R. to the relative change in 6, is expressed as:

IR 6
00 R

Re
X

The Figure 3 displays the sensitivity index parameters from the
model equation related to the effective reproduction number. It
shows that the vector management control and early treatment
rates are the most influential factors in decreasing the effective
reproduction number. In contrast, the effective contact rates of
humans and vectors significantly increase the effective repro-
duction number.

6.3. Numerical simulations

Table 2 parameters value and the initial condition are used
to numerically solve the model (7) via the three-step Adams-
Bashforth method with code written in Python 3.12.1.

Figures 4 and 5 illustrate the dynamics of human and vector
populations, respectively. The figures show how the number of
infected human individuals peaks before gradually declining.
The graphs indicate that the vector population initially carries
a high burden of exposed and infectious individuals due to a
larger number of exposed and infectious vectors. Over time, the
transmission dynamics change, leading to a drastic decrease in
the number of new vectors that become exposed or infectious.
However, the fractional-order dynamics plots offer a more real-
istic depiction of non-instantaneous transitions in onchocercia-
sis progression. Considering fractional-order plots, we investi-
gate the impact of the early treatment rate (7) on the exposed
and infectious humans and the vector management control rate
(€) on both the exposed and infectious humans and vectors.

Equation (85) calculates the approximate percentage reduc-
tion in infection peak prevalence due to increased intervention
strategy intensity.

P(k = k)

"~ P(k=0) 5)

Percentage Reduction =~ (1 ) x 100%.

14

where « (1,€) are the intervention strategies, «(k}
0.3,0.6,0.9) is the intensity and P(k = «}) is the peak value
obtained for applying the intervention «?, and P(k = 0) is the
peak value no intervention is apply.

Figure 6 illustrates the impact of early treatment rates on
exposed and infectious human populations. Without treat-
ment (7 0.0), the exposed population peaks at approxi-
mately 17,500. As the early treatment rate coverage increases
to T 0.3(30%), 0.6(60%), and 0.9(90%), the peak preva-
lence decreases to about 7,000,3,000, and 1,500, indicat-
ing reductions of about 60%,82.8%, and 90%, respectively.
Similarly, the infectious population peaks at approximately
25,000 with no treatment. With early treatment rate 7 cov-
erage of 0.3(30%), 0.6(60%), and 0.9(90%), the peak declines
to 17,000, 10,000, and 6,000, reflecting reductions of about
32%,60%, and 76%. This decrease in exposed (E,) and infec-
tious (/) populations at different treatment levels informs pol-
icymakers of the potential benefits of reduced disease burden
associated with each level of early treatment effort.

In particular, the exposed population (E),) experiences a rel-
atively higher reduction in prevalence with increasing treatment
rates compared to the infectious population (/,). For example,
at T = 0.9, there is an approximate 90% reduction in £, and a
76% reduction in /,. This finding indicates that policymakers
should: (a) prioritize treatments that target individuals imme-
diately after exposure, as this strategy may prove more cost-
effective than attempting to manage already infectious cases;
and (b) strive to reduce the E,, population by at least 90% to mit-
igate infections and ultimately eliminate transmission. How-
ever, in practical settings, onchocerciasis primarily affects im-
poverished countries, particularly in villages where health fa-
cilities for early screening, diagnosis, and timely treatment are
often lacking. Implementation of this may suffer setbacks if not
adequately planned.

Figure 7 shows how varying the vector management con-
trol rate (e€) affects the onchocerciasis infection peak preva-
lence. As € increases, there is a marked reduction in exposed
and infectious individuals in both human and vector popula-
tions. With no vector control measures (e 0), the dis-
ease spreads rapidly, reaching high peak levels for both hu-
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Figure 7. Effect of varying vector control rate (7) on (a) Exposed human, (b) Infectious human populations, and (c) Exposed vector (d) Infectious vector populations.

man and vector infections (Figures 7(a)-(b)). As € increases
t0 0.3, 0.6, 0.9, the human exposed population decreases by ap-
proximately 35%, 62.5%,90%, respectively, while the infec-
tious human population reduces by about 32%, 59%, and 89%
(Figures 7(a)-(b)). These reductions stem from significant, al-
beit smaller, decreases in vector populations (Figures 7(c)-(d)).
This reinforces the critical role of vector management control
interventions in lessening the impact of onchocerciasis disease
and safeguarding public health.

These findings entail that policymakers can establish goals,
such as achieving an 80% reduction in peak infections, and al-
locate resources to increase 7 sufficiently to meet that target.
Supplemented by a high € rate of at least 60%, this can tremen-
dously mitigate the spread of onchocerciasis in a population by
up to 90%.

Figure 8 illustrates surface plots showing the combined im-
pact of control parameters: early treatment rate (1), vector con-
trol rate (€), and infectious treatment rate (y) on the effective
basic reproduction number R, with the pink translucent plane
indicating the policy threshold (R, = 1). At high values of both
7 2 0.4 and y 2 0.6, the surface is pushed below the threshold,
R, < 1, indicating disease elimination, while the risk region is
at 7 < 0.2 and y < 0.3, leading to R. > 1, which indicates
disease persistence, highlighting that intensified interventions
are required. The risk region in Figure 8(b) is at 7 < 0.3 and
€ < 0.3, while disease elimination is setat 7 2> 0.4 and € = 0.5.
We note that when 7 = € = 0, the analysis of the basic repro-
duction number Ry shows that with an increase in &, and &, or
p and ¢, Ry also increases.
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7. Impact of memory effects on onchocerciasis dynamics

Understanding the memory effects helps in designing effec-
tive intervention strategies. Analysis of integer-order (8 = 1.0)
and fractional-order (8 < 1) models reveals that fractional dy-
namics significantly alter disease trajectories by introducing
memory effects that slow the progression of infections and pro-
long disease persistence in the populations. This reflects real-
world scenarios where disease progression and recovery are in-
fluenced by past states, making fractional models more realistic
for onchocerciasis dynamics. While integer-order models de-
pict rapid epidemic peaks and swift declines, fractional-order
models result in similar but wider peaks and longer infectious
periods, as demonstrated by the delayed and broadened peaks
observed in exposed and infectious populations (Figures 4 and
5). Thus, using integer models for onchocerciasis control risks
underestimating the resilience of the disease due to memory ef-
fects. This could lead to premature relaxation of interventions
and ultimately, failure to eliminate the disease. Fractional-order
models avoid this pitfall by accounting for memory effects that
prolong infection dynamics, ensuring that policy and resource
planning match the realistic persistence of onchocerciasis in en-
demic regions.

Analysis of the integer and fractional models across vary-
ing fractional orders highlights the extended and heterogeneous
spread inherent in onchocerciasis, which the classical mod-
els overlook. These will better inform policymakers to en-
hance intervention strategies to reduce and potentially elimi-
nate onchocerciasis. Figures 9 and 10 show time series plots
of the fractional model with distinct fractional orders (8 =
0.644,0.544, and 8 = 0.444) alongside the integer model coun-
terpart. The values beta = 0.544 and B = 0.444 are chosen
arbitrarily, less than the fit fractional order ( beta = 0.644). Fig-
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Figure 9. Time series comparative analysis of integer (8 = 1.0) and fractional order (8 = 0.644,0.544,0.444) models in human dynamics, model (7).

ures 9 reveal that when 3 is high, individuals in E,, transition to
I, quickly, leading to a rapid rise in active cases, suggesting
that early containment measures such as treatment and vector
management must be implemented swiftly to prevent a surge
in infectious individuals. Conversely, with lower g values, the
progression is more gradual, providing a wider window for in-
tervention; however, complacency can lead to persistent infec-

tions if interventions are not consistently applied. Figures 10
show that E;, and I, populations decline more rapidly at higher
[ values, while at lower 3, the population decline is gradual.
These findings indicate that the fractional-order modeling
offers a more realistic view of onchocerciasis dynamics over
time. It emphasizes that elimination efforts necessitate sus-
tained vector control measures, earlier and repeated rounds of
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MDA with ivermectin, and consistent resource allocation to
prevent lingering infections that could reignite transmission.
However, in resource-limited settings, policies should priori-
tize high-endemic regions for MDA, early treatment, and vector
control, engage community volunteers to clear vector breeding
sites, detect symptoms and report early, and combine control
efforts with other NTD (like lymphatic filariasis) programs to
save costs and human resources.

8. Conclusion

This study presents a deterministic model examining inter-
actions between humans and vectors within a habitat, divid-
ing disease transmission dynamics into seven compartments.
Our model incorporates early treatment and vector manage-
ment as intervention strategies. Given that the disease dynam-
ics leave an immunological and epidemiological memory in
humans, predicting future disease states requires considering
both their current and past states. The previous integer-order
onchocerciasis model cannot accommodate this. We propose
a new compartmentalized model using a fractional derivative
in the Caputo-Fabrizio sense for improved intervention con-
trol analysis. We establish the existence and uniqueness of
the model’s solution using the fixed-point theorem and an it-
erative method. The disease-free equilibrium solution is lo-
cally asymptotically stable, while global asymptotic stability
for both disease-free and endemic equilibria is demonstrated
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through a Lyapunov function. Parameters are estimated by
fitting the model to confirmed onchocerciasis case data from
Ghana Health Services [18, 20]. Data fitting indicates that
the model’s differential equations have an order of 0.644, with
R* = 0.9950 and MAPE =7.68%, suggesting that fractional-
order differential equations provide a good fit. Sensitivity anal-
ysis reveals that vector control (¢) and early treatment (1) are
more effective at reducing the effective reproduction number R.,
while an increase in contact rates (£,, &) between vector and
human (&) elevates it. Numerical solutions of the model us-
ing the three-step fractional Adams-Bashforth method suggest
that the control measures—early treatment and vector manage-
ment—effectively eradicate the disease. Comparative numeri-
cal simulation of the fractional order (5 < 1) model and integer
order (8 = 1) model reveals rapid epidemic peaks and swift
declines with the integer model. In contrast, fractional-order
models result in similar but wider peaks and longer infectious
periods, influenced by the disease memory effect. This shows
that control policy using an integer model may underestimate
the disease’s resilience and could lead to premature relaxation
of interventions. In contrast, fractional order models avoid this
pitfall and should be used for control policy design.

Findings indicate that fractional-order modeling offers a
better view of disease dynamics, and elimination efforts must
prevent unnoticed infections through long-term interventions,
resource allocation, and vigilant surveillance to reduce the dis-
ease’s memory index S toward elimination. Thus, we assert
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that onchocerciasis can be controlled at least up to 90% with
this approach.

Data availability challenges hindered the incorporation of
cost-effectiveness analysis into our model. Future research
should explore onchocerciasis co-infection modeling with other
relevant filarial parasites (such as Loa loa, Wuchereria ban-
crofti, and Mansonella species), where shared treatments (like
ivermectin) and immunological overlaps are significant. The
Atangana-Baleanu derivative is an alternative fractional deriva-
tive that can be explored.

Data Availability

All research data are included in the submitted manuscript
file.
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