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Abstract

In this study, a two-dimensional thermoelastic problem is investigated within the framework of modified couple stress theory (MCST) incorporat-
ing double porosity and governed by the hyperbolic two-temperature (HTT) model under the influence of a moving thermal source. The governing
equations are reformulated in non-dimensional form and potential function techniques are employed to simplify the analysis. By applying normal
mode analysis, closed-form analytical expressions are derived for key physical fields including displacement components, stress distributions,
equilibrated stress tensors and temperature profiles. Numerical computations are carried out using MATLAB and the effects of the HTT model
and the moving thermal load on the thermoelastic response are illustrated through graphical representations. Several particular cases of interest
are examined to validate and interpret the model’s behaviour under different physical conditions. The problem finds practical significance in areas
such as microelectronics, civil engineering and biomedical device design particularly in areas involving thermal shock.
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1. Introduction

Modern engineering materials and structures frequently
consist of multiphase porous media where pores and microfrac-
tures develop due to natural degradation processes like erosion,
corrosion, material fatigue or accidental impacts. These dis-
continuities can significantly alter the dynamic and mechanical
behaviour of the structure. To capture these complexities, the
double porosity theory has been introduced which accounts for
two distinct void systems: one embedded within the matrix ma-
terial and the other associated with microcracks or fractures.

∗Corresponding author Tel. No.: +91-988-892-2806.
Email address: sachin_kuk@yahoo.co.in (Sachin Kaushal)

This theory has particular importance in modeling composite
structures and naturally fractured rock formations.

Initial developments in this field were made by Wilson &
Aifantis [1] who formulated a consolidation theory incorporat-
ing double porosity effects. This was later extended by Beskos
& Aifantis [2] who provided analytical approaches to address
boundary value problems in such materials. Further develop-
ments were carried out by Svanadze [3–7] who studied the re-
sponse of elastic, viscoelastic and thermoelastic materials with
double porosity. Scarpetta et al. [8] enriched this domain by
establishing uniqueness theorems and deriving fundamental so-
lutions within the thermoelastic double porosity context.

In parallel, advances in non-classical continuum mechanics
have emerged. The couple stress theory introduced by Mindlin

1

https://nsps.org.ng
https://creativecommons.org/licenses/by/4.0


Pragati et al. / J. Nig. Soc. Phys. Sci. 8 (2026) 2959 2

& Tiersten [9] incorporates additional material length scale pa-
rameters refining the classical elasticity framework and making
it suitable for microscale analysis. A later enhancement, MCST
proposed by Yang et al. [10] introduced a symmetric couple
stress tensor by incorporating the balance of angular momen-
tum, thereby improving the theoretical consistency.

Thermal modeling has also undergone significant refine-
ment. Gurtin & Williams [11, 12] introduced a two-temperature
theory (TT) by distinguishing between thermodynamic and
conductive temperatures, even in scenarios devoid of external
heat sources. This approach gained traction due to its capacity
to resolve inconsistencies present in single-temperature mod-
els during time-dependent thermal processes. Subsequently,
Youssef & El-Bary [13] extended this concept into HTT for-
mulation allowing for finite-speed thermal wave propagation by
modifying the classical relationship between the two tempera-
tures.

In a complementary development, Tzou [14] formulated the
dual phase lag (DPL) model, which introduces two separate
time delays-one for the heat flux and another for the temper-
ature gradient through a Taylor series expansion of the gener-
alized heat conduction law leading to a more comprehensive
thermal response model.

Recent investigations have focused on specialized imple-
mentations of these advanced theories. For example, Sharma
& Khator [15, 16] explored applications related to renewable
energy technologies while Gajroiya & Sikka [17] studied wave
propagation at interfaces involving porothermoelastic and dou-
ble porous materials. Sharma et al. [18] examined thermoelas-
tic diffusion with temperature dependency and multiple phase
lags. Mahato & Biswas [19] analyzed wave phenomena in
nonlocal thermoelastic double porous media and Miglani et
al. [20] investigated fractional-order models under DPL con-
ditions. Additionally, Khatri et al. [21] studied thermal wave
interactions in transversely isotropic double porous structures
incorporating rotational and conductivity variation effects rele-
vant to fiber-reinforced composites.

The present work focuses on the deformation characteristics
of a modified couple stress thermoelastic double porous half-
space exposed to a moving thermal source. The hyperbolic two-
temperature theory is employed to accurately model the ther-
mal field. Using the normal mode analysis method, analytical
expressions are derived for displacement fields, stress tensors,
equilibrated stresses and temperature profiles. The results are
visualized graphically to elucidate the combined effects of the
moving heat source and HTT model on the system’s physical
responses. Additionally, specific limiting cases are discussed
to highlight notable special configurations and provide deeper
insights into the physical behaviour of the medium.

2. Basic equations

Based on the formulations by Iesan & Quintanilla [22],
Youssef et al. [13] and Kumar et al. [23], the governing equa-
tions for thermoelastic with HTT and double porosity without
body forces, equilibrated forces and heat source are as

Stress-Strain-Temperature Relations:

ti j = λerrδi j + 2µei j + bδi jϕ
∗ + dδi jψ

∗ − β1Tδi j, (1)
σi = b1ψ

∗
,i + α0ϕ

∗
,i, (2)

mi j = 2αχi j, (3)
χi = b1ϕ

∗
,i + γ0ψ

∗
,i. (4)

Governing equation of motion:

(λ + µ +
α

4
∆)∇∇.u + (µ −

α

4
∆)(∇2.u) + b∇ϕ∗ + d∇ψ∗

− β1∇T = ρ
∂2u
∂t2 , (5)

Equilibrated stress equations of motion:

α0∇
2ϕ∗ + b1∇

2ψ∗ − b∇.u − α1ϕ
∗ − α3ψ

∗ + γ1T = φiϕ̈
∗, (6)

b1∇
2ϕ∗ + γ0∇

2ψ∗ − d∇.u − α3ϕ
∗ − α2ψ

∗ + γ2T = φ2ψ̈
∗. (7)

Governing equation for heat conduction:

K
(
1 + τT

∂

∂t

)
∇2ϕ =

1 + τq
∂

∂t
+
τ2

q

2
∂2

∂2t

 [γ1T0ϕ̇
∗ + γ2T0ψ̇

∗

+ β1T0ėkk + ρCeṪ ]. (8)

Here

χi j =
1
2

(ωi, j + ω j,i), ωi =
1
2

eipquq,p.

u, λ, µ, α - couple stress parameter, ∆ - Laplacian operator,
∇ - nabla (gradient) operator, T - temperature change, T0 - ref-
erence temperature assumed to be such that |T/T0| ≪ 1, φ1 and
φ2 - coefficients of equilibrated inertia, K- thermal conductivity,
ρ - density, ce- specific heat, b1-coefficient describing the mea-
sure of mass diffusion, τT , τq - thermal relaxation times with τT ,
τq ≥ 0, β1 = (3λ + 2µ)αt, αt - coefficients of linear thermal ex-
pansion, ψ∗ and ϕ∗ - volume fraction fields corresponding to fis-
sures and pores respectively, b, d, b1, γ0, γ1, γ2, α0, α1, α2, α3 -
constitutive coefficients, ti j - stress tensor, δi j - Kronecker delta,
ei jk - alternate tensor, mi j - couple stress tensor, χi - equilibrated
stress corresponding to fissures, σi - equilibrated stress corre-
sponding to pores respectively. The relation for HTT is given
by [13]:

T̈ = ϕ̈ − β∗∆ϕ, where T = ϕ − a∆ϕ, (9)

and β∗ is the hyperbolic two temperature parameter, a is the two
temperature parameter (TT).

3. Statement and solution procedure

We consider a two-dimensional thermoelastic half-space
x3 ≥ 0 modeled by modified couple stress theory with double
porosity and hyperbolic two-temperature effects. The x3 – axis
points downward into the medium and the boundary at x3 = 0
is exposed to a thermal load moving along the x1 direction (Fig-
ure 1). All field variables depend on x1, x3 and t. Consequently,
we write each quantity as follows:

u = (u1(x1, x3, t), 0, u3(x1, x3, t)),T (x1, x3, t),
2
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Figure 1: Geometry of the problem.

ϕ∗(x1, x3, t), ψ∗(x1, x3, t). (10)

Using equation (10) in equations (5)-(8), recast the follow-
ing equations:

(λ + µ)
∂e
∂x1
+ µ∆u1 +

α

4
∆

(
∂e
∂x1
− ∆u1

)
+ b

∂ϕ∗

∂x1
+ d

∂ψ∗

∂x1

− β1
∂T
∂x1
= ρ

∂2u1

∂t2 , (11)

(λ + µ)
∂e
∂x3
+ µ∆u3 +

α

4
∆

(
∂e
∂x3
− ∆u3

)
+ b

∂ϕ∗

∂x3
+ d

∂ψ∗

∂x3

− β1
∂T
∂x3
= ρ

∂2u3

∂t2 , (12)

b1∇
2ψ∗ + α0∇

2ϕ∗ + γ1T − b∇ · u⃗ − α3ψ
∗ − α1ϕ

∗

= φ1
∂2ϕ∗

∂t2 , (13)

b1∇
2ϕ∗ + γ0∇

2ψ∗ − d∇ · u⃗ − α3ϕ
∗ − α2ψ

∗ + γ2T = φ2
∂2ψ∗

∂t2 ,

(14)

K
[
1 + τT

∂

∂t

]
∇2ϕ =

1 + τq
∂

∂t
+
τ2

q

2
∂2

∂t2

×[
γ1T0ϕ̇

∗ + γ2T0ψ̇
∗ + β1T0∇.u + ρCeṪ

]
, (15)

t33 = λe + 2µ
(
∂u3

∂x3

)
+ bϕ∗ + dψ∗ − β1

∂T
∂x3

, (16)

t31 = µ

(
∂u1

∂x3
+
∂u3

∂x1

)
, (17)

m32 =
α

2
∂

∂x3

(
∂u1

∂x3
−
∂u3

∂x1

)
, (18)

σ3 = α0
∂ϕ∗

∂x3
+ b1

∂ψ∗

∂x3
, (19)

χ3 = b1
∂ϕ∗

∂x3
+ γ0

∂ψ∗

∂x3
. (20)

The following dimensionless quantities are used:

x′i =
ω∗

c1
xi, u′ =

ω∗

c1
u, (t′, τ′q, τ

′
T ) = ω∗(t, τq, τT ),

ϕ∗
′

=
φ1ω

∗2

α1
ϕ∗, ϕ′ =

ϕ

T0
,

T ′ =
T
T0
, ψ∗

′

=
φ1ω

∗2

α1
ψ∗, t′i j =

1
β1T0

ti j, χ
′
i =

(
c1

α0ω∗

)
χi,

σ′i =

(
c1

α0ω∗

)
σi, (21)

m′zθ =
ω∗

β1T0c1
mzθ,

where

ω∗ =
ρCec2

1

K
, c2

1 =
λ + 2µ
ρ

.

By utilizing equation (21), the system represented by equations
(11)-(15) can be simplified to the following set of equations,
with the primes omitted for clarity:

a1
∂e
∂x1
+ a2∆u1 + a3∆

(
∂e
∂x1
− ∆u1

)
+ a4

∂ϕ∗

∂x1

+ a5
∂ψ∗

∂x1
− a6

∂T
∂x1
=
∂2u1

∂t2 ,

(22)

a1
∂e
∂x3
+ a2∆u3 + a3∆

(
∂e
∂x3
− ∆u3

)
+ a4

∂ϕ∗

∂x3

+ a5
∂ψ∗

∂x3
− a6

∂T
∂x3
=
∂2u3

∂t2 ,

(23)

a7∇
2ϕ∗ + a8∇

2ψ∗ − a9e − a10ϕ
∗ − a11ψ

∗ + a12T =
∂2ϕ∗

∂t2 , (24)

a13∇
2ϕ∗ + a14∇

2ψ∗ − a15e − a16ϕ
∗ − a17ψ

∗ + a18T =
∂2ψ∗

∂t2 ,

(25)

a19

(
1 + τT

∂

∂t

)
∇2ϕ

=

1 + τq
∂

∂t
+
τ2

q

2
∂2

∂t2

 [a20
∂e
∂t
+ a21

∂ϕ∗

∂t
+ a22

∂ψ∗

∂t
+
∂T
∂t

]
,

(26)

where

a1 =
(λ + µ)
ρc2

1

, a2 =
µ

ρc2
1

, a3 =
a
4
ω∗2

ρc4
1

,

a4 =
bα1

φ1ρc2
1ω
∗2
, a5 =

dα1

φ1ω∗2ρc2
1

, a6 =
β1T0

c2
1ρ

,

a7 =
a0

φ1c2
1

, a8 =
b1

φ1c2
1

, a9 =
b
α1
,

a10 =
α1

φ1ω∗2
, a11 =

α3

φ1ω∗2
, a12 =

T0γ1

α1
,

a13 =
b1

φ2c2
1

, a14 =
γ0

φ2c2
1

, a15 =
dφ1

α1φ2
,

a16 =
α3

φ2ω∗2
, a17 =

α2

φ2ω∗2
, a18 =

γ2T0φ1

α1φ2
,

a19 =
kω∗

ρCec2
1

, a20 =
β1

ρCe
, a21 =

γ1α1

φ1ω∗2ρCe
,

3
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a22 =
γ2α1

ρCeφ1ω∗2
.

The displacement components u1(x1, x3, t) and u3(x1, x3, t) re-
late to scalar potentials ϕ1(x1, x3, t) and ψ1(x1, x3, t) in dimen-
sionless form as

u1 =
∂ϕ1

∂x1
−
∂ψ1

∂x3
, u3 =

∂ϕ1

∂x3
+
∂ψ1

∂x1
. (27)

With the aid of (27), equations (22)-(26) yield:[
(a1 + a2)∆ −

∂2

∂t2

]
ϕ1 + a4ϕ

∗ + a5ψ
∗ − a6T = 0, (28)

− a9∆ϕ1 +

(
a7∆ − a10 −

∂2

∂t2

)
ϕ∗

+ (a8∆ − a11)ψ∗ + a12T = 0, (29)

− a15∆ϕ1 + (a13∆ − a16) ϕ∗

+

(
a14∆ − a17 −

∂2

∂t2

)
ψ∗ + a18T = 0, (30)

a19

(
1 + τT

∂

∂t

)
∆ϕ =1 + τq
∂

∂t
+
τ2

q

2
∂2

∂t2

 [a20
∂(∆ϕ1)
∂t

+ a21
∂ϕ∗

∂t

+ a22
∂ψ∗

∂t
+
∂T
∂t

]
, (31)

[
a2∆ + a3∆

2 +
∂2

∂t2

]
ψ1 = 0. (32)

We assume the solution of equations (28)-(32) as:

(ϕ1, ψ1, ϕ
∗, ψ∗, ϕ) = (ϕ̂1, ψ̂1, ϕ̂

∗, ψ̂∗, ϕ̂)eik(x1−ct), (33)

where ω = kc, k is the wave number and c is the phase velocity.
Using equation (33) in equation (9) determine:

T̂ = [1 + ζ∗(D2 − k2)]ϕ̂, (34)

where

ζ∗ =


β∗

ω∗2
, HTT

a, TT
0, 1T.

D =
d

dx3
, 1T indicates one temperature.

Inserting equation (33) in equations (28)-(32) and with aid
of equation (34) gives:

a23D2 − a24 a4 a5 a25 − a26D2

−a9D2 + a29 a7D2 + a30 a8D2 + a31 a32D2 + a33
−a15D2 + a34 a13D2 + a35 a14D2 + a36 a37D2 + a38
−a39D2 + a40 −a41 −a42 a43D2 + a44



ϕ̂1

ϕ̂∗

ψ̂∗

ϕ̂



= 0 (35)

[a3D4 + a27D2 + a28]ψ̂1 = 0, (36)

where

a23 = a1 + a2,

a24 = a23k2 + ω2,

a25 = a6
(
ζ∗k2 − 1

)
,

a26 = a6ζ
∗,

a27 = −(a2 + 2a3k2),

a28 = a3k4 + a2k2 − ω2,

a29 = a9k2,

a30 = −a7k2 − a10 + ω
2,

a31 = −a8k2 − a11,

a32 = a12ζ
∗,

a33 = −a12
(
ζ∗k2 − 1

)
,

a34 = a15k2,

a35 = −a13k2 − a16,

a36 = −a14k2 − a17 + ω
2,

a37 = a18ζ
∗,

a38 = −a18
(
ζ∗k2 − 1

)
,

a39 = a20τ
0
q,

a40 = a39k2,

a41 = a21τ
0
q,

a42 = a22τ
0
q,

a43 = a19τ
0
T − τ

0
qζ
∗,

a44 = τ
0
q
(
ζ∗k2 − 1

)
− a19τ

0
T k2,

τ0
T =

(
1 + τT (−iω)

)
,

τ0
q = (−iω)

[
1 + τq(−iω) +

τ2
q

2
(−iω)2

]
.

On solving equation (35), we obtain:

(A1D8+A2D6+A3D4+A4D2+A5)(ϕ̂1, ϕ̂
∗, ψ̂∗, ϕ̂) = 0, (37)

where A1, A2, A3, A4, A5 are given in Appendix I.
The analytical solutions for equations (36) and (37) are ob-

tained and presented below:

(ϕ̂1, ϕ̂
∗, ψ̂∗, ϕ̂) =

∑4

j=1
(1,R∗j , S

∗
j ,U

∗
j )A je−m j x3 , (38)

ψ′1 =
∑6

j=5
A je−m j x3 , (39)

and m j( j = 1, 2, ..., 6) are the roots of equations:

(A1D8 + A2D6 + A3D4 + A4D2 + A5) = 0, (40)

(a3D4 + a27D2 + a28) = 0, (41)

and the coupling constants R∗j , S
∗
j and U∗j are given in the Ap-

pendix I.
4
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4. Boundary restrictions

A moving thermal shock is applied to the boundary half-
surface x3 = 0 along with the vanishing of normal stress, tan-
gential stress and equilibrated stresses. According, the bound-
ary conditions imposed on the surface x3 = 0 are expressed as
follows:

t33 = 0, t31 = 0, m32 = 0, σ3 = 0, χ3 = 0,

ϕ = F20V0ei(k1 x−ωt), (42)

where F20 is the intensity of the load applied and V0 is the ve-
locity of applied load.

Also,

t33 = c11e + 2c12

(
∂u3

∂x3

)
+ c13ϕ

∗ + c14ψ
∗ −

(
1 + ζ∗∆

)
ϕ, (43)

t31 = c12

(
∂u1

∂x3
+
∂u3

∂x1

)
− c15

(
∂2

∂x2
1

+
∂2

∂x2
3

)(
∂u1

∂x3
−
∂u3

∂x1

)
, (44)

m32 = 2c15
∂

∂x3
(
∂u1

∂x3
−
∂u3

∂x1
), (45)

σ3 = c16
∂ϕ∗

∂x3
− c17

∂ψ∗

∂x3
, (46)

χ3 = c17
∂ϕ∗

∂x3
− c18

∂ψ∗

∂x3
. (47)

where c11, c12, c13, c14, c15, c16, c17, c18 are given appendix II.
By substituting the expressions for ϕ, ψ1, ϕ

∗, ψ∗, ϕ1 from
equations (38) and (39) into the boundary conditions speci-
fied in equation (42) and utilizing equations (43) through (47)
along with equation (27), the resulting formulations for the
stress components and temperature distribution are derived as
follows:

t̃33 =
1
∆

[
Q0

1∆1e−m1 x3 + Q0
2∆2e−m2 x3 + Q0

3∆3e−m3 x3

+ Q0
4∆4e−m4 x3 + Q0

5∆5e−m5 x3 + Q0
6∆6e−m6 x3

]
, (48)

t̃31 =
1
∆

[
H0

1∆1e−m1 x3 + H0
2∆2e−m2 x3 + H0

3∆3e−m3 x3

+ H0
4∆4e−m4 x3 + H0

5∆5e−m5 x3 + H0
6∆6e−m6 x3

]
, (49)

m̃32 =
1
∆

[
M0

5∆5e−m3 x3 + M0
6∆6e−m6 x3

]
, (50)

σ̃3 =
1
∆

[
N0

1∆1e−m1 x3 + N0
2∆2e−m2 x3

+ N0
3∆3e−m3 x3 + N0

4∆4e−m4 x3
]
, (51)

χ̃3 =
1
∆

[
E0

1∆1e−m1 x3 + E0
2∆2e−m2 x3

+ E0
3∆3e−m3 x3 + E0

4∆4e−m4 x3
]
, (52)

ϕ̃ =
1
∆

[
L0

1∆1e−m1 x3 + L0
2∆2e−m2 x3

+ L0
3∆3e−m3 x3 + L0

4∆4e−m4 x3
]
. (53)

where

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q0
1 Q0

2 Q0
3 Q0

4 Q0
5 Q0

6
H0

1 H0
2 H0

3 H0
4 H0

5 H0
6

0 0 0 0 M0
S M0

6
N0

1 N0
2 N0

3 N0
4 0 0

E0
1 E0

2 E0
3 E0

4 0 0
L0

1 L0
2 L0

3 L0
4 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (54)

∆i(i = 1 − 6) are obtained by replacing jth column of equa-
tion (54) with

[
0, 0, 0, 0, 0, F20V0

]tr where Q0
j ,H

0
j ( j = 1 −

6),M0
j ( j = 5, 6),N0

j , E
0
j , L

0
j ( j = 1 − 4) are given in the Ap-

pendix III.
Particular cases are obtained as:

(i) If ζ∗ → a in the equations (48) - (53), we obtained the
corresponding expressions for MCST with two tempera-
ture and double porous medium.

(ii) If d = b1 = γo = α2 = α3 = γ2 = 0 in the equations (48) -
(53), yield the corresponding expression for MCST with
HTT and single porous material.

(iii) α0 = b = b1 = α1 = α2 = α3 = γ1 = γ2 = d = γo = 0 in
the equations (48) - (53), determine the resulting quanti-
ties for MCST with HTT.

5. Numerical results and discussion

Following Sherief and Saleh [24], copper is selected as the
material for numerical analysis, with the corresponding thermo-
physical parameters defined as follow:

λ = 776 × 107 kgm−1s−2, µ = 386 × 107 kgm−1s−2,

T0 = 0.293 × 103 K,Ce = 383.1 Jkg−1K−1,

αt = 1.78 × 10−5 K−1, ρ = 8954 kgm−3,

K = 386 Wm−1K−1, α = 5 × 10−2 kgms−2,

t = 0.01s, τT = 0.4s, τq = 0.6s.

and double porous parameters are taken as:

α0 = 1.3 × 10−5 N, α1 = 2.3 × 1010 Nm−2,

α2 = 2.4 × 1010 Nm−2, α3 = 2.5 × 1010 Nm−2,

γ0 = 1.1 × 10−5 N, γ1 = 0.16 × 105 Nm−2,

γ2 = 219 × 102 Nm−2, b1 = 0.12 × 10−5 N,

d = 1 × 109 Nm−2, b = 0.9 × 1010 Nm−2,

φ1 = 0.1456 × 10−12 Nm−2s2, φ2 = 0.1546 × 10−12 Nm−2s2.

The software MATLAB has been used to find the value of
normal stress t33, tangential stress t31, tangential couple stress
m32, conductive temperature ϕ and equilibrated stress σ3. The
variations of these values with respect to distance x1 have been
shown in Figures 2 - 11 respectively. In Figures 2 - 6, solid
line (—) corresponds to v0 = 0.5, dash line (...) corresponds
to v0 = 0.3 and dotted line (–*–*–) corresponds to v0 = 0.1.
In Figures 7 - 11, solid line (—) corresponds to MCSTDH,

5
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Figure 2: Variation of normal stress t33 with x1 for different
thermal source velocities v0.

Figure 3: Variation of tangential stress t31 with xi for different
thermal source velocities v0.

dash line (...) corresponds to MCSTDT and dotted line (–*–*–)
corresponds to MCSTDO. MCSTDH denotes modified couple
stress theory with double porous for hyperbolic two tempera-
ture (HTT), MCSTDT denotes modified couple stress theory
with double porous for two temperature (TT) and MCSTDO
denotes modified couple stress theory with porous for one tem-
perature (1T).

Figure 2 illustrates the variation normal stress t33 with re-
spect to distance x1. As seen in the plot for a higher value of
v0 = 0.5, t33 exhibits the largest amplitude and most pronounced
oscillations, indicating HTT effect and higher stress sensitivity.
With a moderate value of v0 = 0.3, the amplitude of t33 de-
creases and the waveform becomes smoother whereas, for the
lowest value v0 = 0.1, the stress response is the least dynamic
with small amplitude and damped oscillation.

Figure 3 shows the variation of t31. For v0 = 0.5, t31 dis-
plays the largest amplitude and most pronounced oscillations.
As v0 decreases to 0.3, the amplitude reduces and the waveform
becomes smoother, suggesting a moderate nonlocal influence.
With v0 = 0.1, the variation of t t31 is the most subdued showing
low amplitude and flatter oscillations.

Figure 4 demonstrates the variation of m32 with respect to
distance x1. For v0 = 0.5,m32 exhibits large amplitude and
sharp oscillations. As v0 decreases to 0.3, the amplitude of m32
reduces and the oscillations become smoother oscillations.

Figure 4: Variation of tangential couple stress m32 with x1 for
different thermal source velocities v0.

Figure 5: Variation of conductive temperature ϕ with x1 for
different thermal source velocities v0.

Figure 6: Variation of equilibrated stressσ3 with x1 for different
thermal source velocities v0.

Figure 5 shows the variation of ϕ with respect to distance
x1. For v0 = 0.5, ϕ shows large amplitude and distinct oscilla-
tory behaviour. v0 decreases to 0.3, the amplitude of ϕ reduces
and the waveform becomes smoother, whereas at v0 = 0.1, ϕ
is significantly damped with a flatter profile and minimal varia-
tion.

Figure 6 displays the variation of σ3 with respect to dis-
tance x1. For v0 = 0.5, σ3 exhibits the largest amplitude and
most pronounced oscillations. When v0 = 0.3 (red dashed line),
the amplitude of σ3 decreases, and for v0 = 0.1, σ3 shows the

6
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Figure 7: Variation of normal stress t33 with x1 for HTT, TT,
1T.

Figure 8: Variation of tangential stress t31 with x1 for HTT, TT,
1T.

smallest amplitude and the flattest variation.
Figure 7 demonstrates the variation of t33 with respect to

distance x1. In the MCSTDH model, t33 varies smoothly with a
low amplitude and long wavelength. For the MCSTDT model,
t33 exhibits moderate oscillations with increased amplitude and
a slightly shorter wavelength whereas, in the MCSTDO model,
t33 shows the most significant variation characterized by high
amplitude and rapid oscillations.

Figure 8 displays variation of t31 with respect to distance
x1. For MCSTDH, t31 varies gradually with low amplitude
and a broad wavelength. In the MCSTDT model, t31 shows
a more pronounced oscillation with increased amplitude and
shorter wavelength whereas for MCSTDO model, t31 exhibits
the highest amplitude and most rapid oscillations.

Figure 9 depicts variation of m32 with respect to x1. In the
MCSTDH model, m32 exhibits a prominent sinusoidal pattern
with large amplitude. In contrast, both MCSTDT and MC-
STDO models show significantly reduced amplitude with much
flatter variations.

Figure 10 shows the variation of ϕ with respect to x1. For
MCSTDH, ϕ exhibits a strong sinusoidal variation with large
amplitude. In contrast, both the MCSTDT and MCSTDO mod-
els display much lower amplitudes with smoother and less pro-
nounced oscillations.

Figure 11 demonstrates variation of σ3 with respect x1.

Figure 9: Variation of tangential couple stress m32 with x1 for
HTT, TT, 1T.

Figure 10: Variation of conductive temperature ϕ with x1 for
HTT, TT, 1T.

Figure 11: Variation of equilibrated stress σ3 with x1 for HTT,
TT, 1T.

For MCSTDH, σ3 exhibits a smooth low-amplitude response
with broader wavelength. In comparison, the MCSTDT model
shows a more pronounced oscillatory behaviour with higher
amplitude and shorter wavelength. The MCSTDO model dis-
plays similar behaviour to MCSTDT but with slightly higher
frequency oscillations and comparable amplitude.

7
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6. Conclusions

In this study, the deformation behaviour of a thermoelastic
half-space incorporating modified couple stress theory, double
porosity and the hyperbolic two-temperature (HTT) model un-
der a moving thermal load has been analyzed. The normal mode
analysis method was employed to derive solutions for phys-
ical field quantities such as displacements, stresses and tem-
perature distributions. The effects of the moving thermal load
and HTT model have been illustrated graphically. The numeri-
cal results reveal that the magnitudes of normal and tangential
stresses are significantly higher at the initial and final positions
for increased values of thermal wave velocity. Additionally,
tangential couple stress and equilibrated stress exhibit opposite
trends across all cases considered. The variation of HTT dif-
fers notably from both the classical one-temperature (1T) and
two-temperature (TT) models, especially in terms of tangential
couple stress and conductive temperature. It is observed that
HTT both amplifies and diminishes the magnitudes of normal
and tangential stresses, depending on position while the con-
ductive temperature shows reverse behaviour in HTT and 1T
models as the distance increases.

The study provides new insights into how microscale struc-
ture and advanced heat conduction models, such as the hyper-
bolic two-temperature theory, influence the thermo-mechanical
response of copper-based porous media under dynamic thermal
loading. These findings contribute to improved design and reli-
ability of copper components in thermal management systems,
electronic packaging and bioMEMS applications.

Data availability

The data supporting the findings of this study are available
from the corresponding author upon reasonable request.
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Appendix I

A1 = a7a14a23a43 − a8a13a23a43 + a8a13a26a39,

A2 = a7a23(a36a43 + a14a44 + a37a42) + a23a30a14a43

− a8a23(a35a43 + a13a44 + a37a41) − a23a31a13a43

+ a23a32(a14a41 − a13a42) + a43(a8a24a13 − a7a14a24 + a4a9a14)
+ a8a4(a37a39 − a15a43) − a4a14a32a39 − a5a9a13a43

+ a5a7(a15a43 − a37a39) + a5a13a32a39 − a9a26(a14a41 − a13a42)
− a7a26(a15a42 + a14a39 + a36a39 − a14a40)
+ a8a26(a15a41 + a35a39 − a13a40) − a8a25a13a39 + a26a31a13a39,

A3 = a7a23(a36a44 + a38a42) + a23a30(a36a43 + a14a44 + a37a42)
− a23a8(a35a44 + a38a41) − a23a31(a35a43 + a13a44 + a37a41)
+ a23a29(a36a41 − a35a42) + a23a33(a14a41 − a13a42)
− a7a24(a36a43 + a14a44 + a37a42) − a25a30a14a43

+ a8a24(a35a43 + a13a44 + a37a41) + a24a31a13a43

− a24a32(a14a41 − a13a42) + a4a9(a36a43 + a14a44 + a37a42)
− a4a29a14a43 + a8a4(a34a43 − a15a44 + a38a39 − a37a40)
+ a4a31(a37a39 − a15a43) − a4a32(a15a42 + a36a39 − a14a40)
− a4a14a33a39 − a5a9(a35a43 + a13a44 + a38a42) + a5a30a13a43

− a5a7(a34a43 − a15a44 + a38a39 − a37a40) − a5a30(a37a39 − a15a43)
+ a5a32(a15a41 + a35a39 − a13a40) + a5a13a33a39

− a9a26(a36a41 − a35a42) + a9a25(a14a41 − a13a42)
+ a20a26(a14a41 − a13a42) + a7a26(a34a42 + a36a40)
+ a7a25(a15a42 + a14a39 + a36a39 − a14a40)
− a26a30(a15a42 + a14a39 + a36a39 − a14a40)
− a8a26(a34a41 + a35a40) − a8a25(a15a41 + a35a39 − a13a40)
+ a26a31(a15a41 + a36a40 − a13a40) − a25a31a13a39,

A4 = a30a23(a36a44 + a38a42) − a23a31(a35a44 + a38a41)
+ a23a33(a36a41 − a35a42) − a24a7(a36a44 + a38a42)
− a24a30(a36a43 + a14a44 + a37a42) + a8a24(a35a44 + a38a41)
+ a31a24(a35a43 + a13a44 + a37a41) − a32a24(a36a41 − a35a42)
− a24a33(a14a41 − a13a42) + a4a9(a36a44 + a38a42)
− a29a4(a36a43 + a14a44 + a37a42) + a4a8(a34a44 − a38a40)
+ a4a31(a34a43 − a15a44 + a38a39 − a37a40) + a4a32(a34a42 + a36a40)
− a4a33(a15a42 − a14a40 + a36a39) − a5a9(a35a44 + a38a41)
+ a5a29(a35a43 + a13a44 + a37a41) − a5a7(a34a44 − a38a40)
+ a5a30(a34a43 − a15a44 + a38a39 − a37a40) − a5a32(a34a41 + a35a40)
+ a5a33(a15a41 + a35a39 − a13a40) + a9a25(a36a41 − a35a42)
+ a20a26(a36a41 − a35a42) − a20a25(a14a41 − a13a42)
+ a30a25(a15a42 + a14a39 + a36a39 − a14a40) + a25a8(a34a41 + a35a40)
− a26a31(a35a41 + a35a40) − a25a31(a15a41 + a35a39 − a13a40),

A5 = −a24a30(a36a44 + a38a42) + a24a31(a35a44 + a39a42) − a24a33(a36a41 − a35a42) − a4a29(a36a44 + a38a42)
+ a31a4(a34a44 − a38a40) + a4a33(a34a42 + a36a40) + a5a29(a35a44 + a38a41) − a5a30(a34a44 − a38a40)
− a5a33(a35a41 + a36a40) − a20a25(a36a41 − a35a33) − a25a30(a34a42 + a36a40) + a25a31(a34a41 + a35a40),
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R∗j =
(a9m2

j − a29)h11 + (a8m2
j + a31)h12 − (a32m2

j + a33)h13

(a7m2
j + a30)h12 − (a8m2

j + a31)h14 + (a32m2
j + a33)h15

,

S ∗j =
(−a8m2

j + a29)h14 − (a7m2
j + a30)h12 + (a32m2

j + a33)h16

(a7m2
j + a30)h12 − (a8m2

j + a31)h14 + (a32m2
j + a33)h15

,

U∗j =
(a9m2

j − a20)h15 − (a7m2
j + a30)h13 − (a8m2

j + a31)h16

(a7m2
j + a30)h12 − (a8m2

j + a31)h14 + (a32m2
j + a33)h15

,

h11 = (a14a43m4
j + a36a43m2

j + a14a43m2
j + a36a44 + a37a42m2

j + a38a42),

h12 = (−a15a43m4
j + a34a43m2

j − a15a44m2
j + a34a44 + a37a39m4

j + a38a39m2
j − a37a40m2

j − a38a40),

h13 = (a14a42m2
j − a34a42 + a14a39m4

j + a36a39m2
j − a14a40m2

j − a36a40),

h14 = (a13a43m4
j + a35a43m2

j + a13a44m2
j + a35a44 + a37a41m2

j + a38a41),

h15 = (−a13a42m2
j − a35a42 + a14a41m2

j + a36a41),

h16 = (a15a41m2
j − a34a41 + a13a39m4

j + a35a39m2
j − a13a40m2

j − a35a40),

Appendix II

c11 =
λ

β1T0
, c12 =

µ

β1T0
, c13 =

bα1

φ1ω∗2β1T0
, c14 =

dα1

φ1ω∗2β1T0
,

c15 =
α

4
ω∗2

β1T0c2
1

, c16 =
α1

ω∗2φ1
, c17 =

b1α1

ω∗2αφ1
, c18 =

γ0α1

αφ1ω∗2
.

Appendix III

Q0
j = c11m2

j + c12(m2
j − k2) + c13R∗j + c14S ∗j − [1 + ζ∗(m2

j − k2)]U∗j ,

H0
j = 2ikc12m j,

N0
j = c16m jR∗j + c17m jS ∗j ,

E0
j = c17m jR∗j + c18m jS ∗j ,

L0
j = (m2

j − k2), j = 1, 2, 3, 4.

Q0
j = −2ikc12m j,

H0
j = [c12(m2

j + k2) + c15(m2
j − k2)2],

M0
j = (m2

j − k2), j = 5, 6.
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