
J. Nig. Soc. Phys. Sci. 7 (2025) 2987

Journal of the
Nigerian Society

of Physical
Sciences

Relativistic correction on bottomia within the gaussian basis
function method

Arezu Jahanshira,∗, Jalil Najib,∗∗

aDepartment of Physics and Engineering Sciences, Buein Zahra Technical University, Qazvin 34518-66391, Iran
bDepartment of Physics, Ilam University, Ilam 69391-77111, Iran

Abstract

In this theoretical research to describe the latest experimental results from the Large Hadron Collider, Belle II, and heavy-ion collisions obtained in
high energy hadronic physics, we include relativistic corrections to improve predictions of the mass spectra of Bottomia resonance states using the
Gaussian basis function within the tanh-shaped hyperbolic plus a linear confinement potential in the framework of nonrelativistic and relativistic
quantum mechanics under the Schrödinger equation. The relativistic effects of bound states in high energy physics must be described within
the framework of approximations or perturbation methods and specific relativistic equations, but in this paper, we provided a mathematically
relativistic correction on the bound states mass spectrum; and considering the applied relativistic corrections to the Schrödinger equation using
quantum mechanics and quantum field theory principles and high energy approximation. Also, we have helped predict and solve one of the most
critical issues of resonance states in particle physics. Current theoretical work is focused on studying this problem for the mass spectra of Bottomia
within the refined hybrid potential and based on the modified Schrödinger equation. The mass spectra results agree closely with the experimental
and other theoretical data.
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1. Introduction

Resonance states of Bottomia (bb̃ : (nS ) , n = 1, 2, 3, · · · )
are strong bound states of a bottom quark and its antiquark
(Υ(1S ) was first observed in 1977 at Fermilab) in the higher
excited states. Bottomia represents an important aspect in
hadronic physics research and fills an important gap by describ-
ing the quark model in hadronic physics proposed by Murray
Gell-Mann and George Zweig in 1964 to classify the structure
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of hadrons [1, 2]. Υ(1S ) and other bb̃ : (nS ), open a new win-
dow to explore the dynamics of the strong interaction in both
nonperturbative (exact, strongly coupled, non-linear behavior)
and perturbative (approximate, analytical, series expansion-
based) regimes. Hadronic physics and the standard model were
evaluated under the bb̃ : (nS ) resonance states’ behaviors and
effects on decay and interaction of other particles.

This bound state becomes ideal for modeling different
potential forms and nonrelativistic quantum chromodynamics
(QCD) in effective field theories. bb̃ : (nS ) has a variety of ra-
dial and orbital excitation states that can describe how quarks
interact via the exchange of gluons, and confinement operates
at high energy physics. Also, the importance of research on
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bb̃ : (nS ) mass spectrum includes behaviors of QCD, rela-
tivistic corrections, and quark confinement frameworks [3, 4].
As we know, the heavy mass of the bottom quark-antiquark
in bb̃ : (nS ) states are less affected by relativistic corrections
compared to lighter mesons, but in the resonance states the rel-
ativistic behavior and spins interaction are as a relativistic main
subject and have very significant effects on the bound states
in theoretical and experimental research. So, in the study of
Υ(nS ) bound states within the theoretical calculation and mod-
eling, the relativistic corrections can’t be neglected. Hence, in
recent studies, Bottomia resonance states remain a focal point
in hadronic investigations. These results are fundamental to a
better understanding QCD and strong interaction properties and
characteristics. It is widely recognized as an important probe
for the physics of hybrids and exotic hadronic bound states. As
we know, the importance of these investigations in future years
includes: Probing quark-gluon plasma:bb̃ : (nS ) are utilized
as probes to investigate the properties of quark-gluon plasma,
where bb̃ : (nS ) in-medium masses can exist at finite tempera-
tures in the excited states bb̃ : (nS ).

This approach connects theoretical potentials directly to ex-
perimental observables, enhancing our understanding of Mbb̃
of bound states behaviors in ultra-hot environments; Theoreti-
cal modeling of potential interactions: the studies in theoretical
models, including relativistic potential, tanh-shaped hyperbolic
potential, and relativistic screened potential approaches, will be
employed to predict bb̃ : (nS ) properties [5]. This theoretical
research on Bottomia resonance states allows us to understand
the bb̃ : (nS ) mass spectra and properties within various con-
ditions; Heavy-ion collisions: recent research on Mbb̃ describes
the quantum processes that reform from unbound quark pairs
within the quark-gluon plasma; the size of bb̃ : (nS ) in xenon-
xenon and lead-lead collisions: at the Large Hadron Collider
and Belle II, the scale and size of Bottomia resonance states is
important in experimental research due to predict behaviors of
other hadrons and new aspects of QCD theory. Lead nuclei are
larger than xenon nuclei, but xenon nuclei are heavy enough to
provide valuable results from inside the ultra-hot medium and
present us with their forms and evolution. Hence, this type of
investigation on nuclear systems in high energy collision de-
termines how Bottomia resonance states react on the ultra-hot
medium and at extreme conditions, therefore we can investi-
gate and improve prediction on properties, dynamics, standard
model’s new perspectives, new phenomena in QCD, and com-
pletely improve theoretical knowledge of quark-gluon plasm
and the core of a star based on the behavior of Mbb̃ states.

For this reason, some of the great significance of Mbb̃
mass spectra included in the determination of parameters in the
Cabibbo-Kobayashi-Maskawa matrix, which is a fundamental
concept in the standard model, the violation of the combined
symmetry of charge conjugation and parity, refinement of heavy
quark effective theories, B-meson physics, relativistic correc-
tions, and perturbative behavior. It is necessary to point out,
that spin interactions, including spin-spin, spin-orbit, and ten-
sor components, are important for evaluating the mass spectra
of hadronic bound states. In this study, we focus on relativis-
tic effects and the relativistic correction of mass, as well as the

optimization of Schrödinger equation into its relativistic form.
Spin effects have been neglected to simplify calculations, as
their contribution is estimated to be less than ∼ (2− 3)%. How-
ever, the presented framework can be extended to include spin
interaction effects by incorporating the Breit-Fermi interaction
terms in the modified Schrödinger equation. This would allow
for a computational analysis of spin contributions within the
mass spectrum and relativistic mass corrections using the same
methodology outlined in this paper. In future work, we will
include this calculation in full.

Therefore, bb̃ : (nS ) resonance states will be the main
bound state for testing the principles of particle physics and
the relativistic effects of the strong interaction. The relativis-
tic modified Schrödinger equations were chosen to define the
relativistic corrections of mass in the bb̃ : (nS ) bound states.
The start point is included in the asymptotic behavior of n-point
Green’s function, and we obtain the relativistic correction us-
ing the Feynman functional path integral in the external vector
field at x → ∞ within the exponentiated model [6, 7]. n-point
Green’s function in the path integral form helps us to explain
bound states properties using QM, QCD, and quantum field the-
ory (QFT). We start our analytical techniques from the vacuum
closed loop function based on the physical behaviors of a sys-
tem through the Feynman functional path integral method in the
applied gauge field [5, 6] using the QFT perspective and frame-
work [8]. This study is organized in the following manner: in
Sect. 2-4, the important behavior of tanh-shaped hyperbolic po-
tential, and the potential form of the bound state are explained
and describe the creation of bb̃ : (nS ) resonance states, then
the modified radial Schrödinger equation (MRSE) and an an-
alytical approach for obtaining the relativistic corrections are
described.

The canonical variables at a higher order by the method of
conversion of symplectic space and description of the oscilla-
tor representation method are applied to obtain bb̃ : (nS ) mass
spectrum and relativistic correction of mass and energy eigen-
value within modified tanh-shaped hyperbolic, and the article
is concluded. In Sect. 5-6, mass spectra of Mbb̃ based on the
relativistic Schrödinger equation under the Bernoulli modifica-
tion, tanh-shaped hyperbolic potential and linear confinement
term are solved and calculated. The computational program
was performed in the open-source Octave 7.1 software, which
is licensed under the GNU General Public License.

2. Materials and methods

2.1. Aims and methodology

This theoretical study aims to improve predictions of Bot-
tomia resonance mass spectra by integrating relativistic cor-
rections into QFT and QM models. It introduces a refined
tanh-shaped hyperbolic plus linear confinement potential within
a modified Schrödinger framework, enabling explanation of
heavy quark interactions in nonperturbative QCD regimes. The
methodology begins with Green’s functions to model two parti-
cles propagation and bound states, transitions to Feynman path
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integrals for computing gauge field interactions and polariza-
tion tensors, and then using a harmonic oscillator representa-
tion to solve the modified Schrödinger equation under Gaus-
sian basis functions. In this formalism Green’s Functions used
to define the propagator for two charged scalar particles in an
external gauge field within interaction potential, explaining the
response to a delta function that is fundamental for field equa-
tions; Feynman Path Integrals represent the propagator as a sum
over all possible paths using functional integral techniques un-
der proper-Time formalism; proper-time allows reparameteri-
zation of propagators within a Schwinger proper-time variable
which makes nonperturbative techniques more efficiently then
worldline methods used to define the path integral over trajec-
tories based on QM principles. To calculation mass spectrum
and relativistic behaviors on mass of highly resonance states,
harmonic oscillator representation and Gaussian function for-
malism used to enable simplifications when evaluating Gaus-
sian path integrals. This multi-formalism approach allows for
analytical and numerical determination of mass spectra aligned
with experimental results from LHC and Belle II, and offers
predictions for higher radial excitation in future collider exper-
iments.

2.2. Tanh-shaped hyperbolic potential
In the last study of hadronic bound states, the general tanh-

shaped hyperbolic potentials became a good candidate to ana-
lytically and effectively determine the mass spectra and energy
eigenvalues of Mbb̃ system:

V (r) = −
V0

cosh2 (αr)
,

where V0 is a potential strength parameter (controls the depth of
the potential), and α is a parameter that controls the range of the
potential (related to the size of the interaction region) [9]. Dur-
ing 2023-2024, using the hyperbolic potential model and the
Dirac equation, the mass spectra of bb̃ : (nS ) are defined. The
results showed us that the hyperbolic potentials provide good
agreement with experimental data, which achieves in predict-
ing radial and orbital excited states of hadrons and Mbb̃.

This ability allows us to describe our method in this re-
search using the complex relativistic interactions characteris-
tic of bb̃ : (nS ) based on the modified Schrödinger equation
that has the relativistic kinetic and hybrid potential and confine-
ment parts correction. Our presented method on the relativistic
correction to the mass of bb̃ : (nS ), allows us to predict fu-
ture theoretical and experimental research of quarks, gluons,
and hybrids bound states in extreme conditions, such as the
quark-gluon plasma, and core of stars where we have to ex-
plain bb̃ : (nS ) mass spectra using QCD and QFT. As we know,
in strong interaction theory based on QCD principles, the po-
tential of interaction has two terms: hard (Coulomb-like forces)
and soft (confinement effects) terms that refer to two separate
behaviors of hadronic interactions. These terms describe how
particles and filed interact at high energy conditions or in dif-
ferent energy scales. Hard and soft concepts in QCD are es-
sential for studying the behavior of bb̃ : (nS ) or other quarko-
nium states. As we know hard concepts related to high energy

physics, where the interaction between quarks and gluons (par-
ticles and fields) is dominated by local interactions and high
momentum exchange effects (short-distance effects on the order
of 10−18m or smaller), in such a situation (which is the typical
phase in high energy particle collisions like those at the Large
Hadron Collider), due to asymptotic freedom, the strong cou-
pling constant αs becomes small. These characteristics of hard
QCD indicate that the interaction between particles and fields
is weaker as the interacting objects converge at ultra-relativistic
energies (small b-b̃ separation). This type of interaction, based
on relativistic corrections on the mass of bound states in the
Schrödinger equation, is the Coulomb-like force, and it can be
determined using perturbation theory in QCD.

Contrary to this phase, the soft concept (confinement ef-
fects) as the low-energy phase is also described under the per-
turbation theory, where the interaction between quarks and glu-
ons (particles and fields) includes long-distance effects [10].
Hence, strong coupling constantαs becomes large contrary to
the hard phase and the momentum of particles becomes small.
Therefore, we have to use nonperturbative methods and tech-
niques to describe the soft interactions. Now, considering
the research topic, which includes bb̃ : (nS ) bound states,
so we will examine the interaction behavior in both above-
described phases. In this research we consider bb̃ : (nS ) is
composed of a bottom quark and its antiquark with equal mass
mb = mb̃ ∼ 4.823 GeV , this system plays a main role in discov-
ering QCD in perturbative and nonperturbative regimes, i.e., in
hard and soft QCD [11]. Hence, in this research, we choose
a tanh-shaped hyperbolic with linear confinement potential po-
tentials to describe the mass spectra of Υ(nS ) resonance states
based on relativistic corrections on mass. The presented po-
tential is the modified tanh-shaped hyperbolic potential V (r) =
−V0tanh (αr) +σr, where V0 and α - constant in the hard phase
of interaction, σ- constant governs the confinement effect at the
soft phase. The tanh-shaped hyperbolic potential analytically
allows us to use the modified Schrödinger equations, which
leads to predicting the mass spectra and other properties of Mbb̃
hadronic bound state [9].

2.3. Bound states in quantum field theory

Now, we have to obtain the relativistic mass of Mbb̃ formed
by b, b̃ quarks that are provided by a high energy interacting po-
tential in a gauge field. We are interested in the creation mech-
anism of bound states, to form stable Mbb̃ resonance states. A
gauge boson interacts with virtual particle-antiparticle pairs in
QFT, and a polarization tensor arises in a vacuum state [12].
The polarization loop operator (the polarization tensor or the
self-energy) is an operator that describes quark-antiquark inter-
action. This operator for a quark with the proper mass m, the
momentum k without interactions and in the free state reads

Π (x) =
∫

d4 p
(2π)4 e−ipxΠ (p) ,

where

Π (p) =
∫

d4k
(2π)4

1
k2 − m2 + iε

.
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Hence, the polarization tensor (polarization loop operator)
presents our framework based on QFT and QM. The polariza-
tion tensor describes the modification of the field propagator,
due to the quantum correction that is extracted from the loop
integral in Feynman diagrams and involves an integral over the
internal momentum of the propagating b, b̃ quarks. The self-
interactions of gluons (the gauge bosons) in QCD and photons
(the gauge bosons) in quantum electrodynamics (QED) are de-
scribed by the polarization tensor [13, 14]. It helps us to de-
termine and understand the effects of color confinement and
asymptotic behavior (asymptotic freedom) within the interac-
tions between b, b̃ quarks and gluons in QFT allow us to cal-
culate physical observables like mass spectrum, energy eigen-
value, scattering amplitudes, cross-sections, and decay rates.
Therefore, the representation of the polarization loop operator
in the form of a Feynman functional integral is introduced, and
we investigated its asymptotic behavior for the soft QCD limit
[15]. We start the definition with the Klein-Gordon equation for
a scalar particle with the proper mass m and under the coupling
constant g in an applied gauge field A that is localized at y in
the natural unit form (ℏ = c = 1):[(

i∂µ + gA(x)
)

(i∂µ + gA(x)) + m2 + V(x)
]
ϕ(x) = δ(x − y). (1)

Equation (1) describes how the scalar field ϕ(x) reacts to
a disturbance at y. But we need equation that describes how
disturbances propagate in an external gauge filed within inter-
action potential V(x). In this case, the propagator G(x, y | A,V)
(Green’s function) is presented by equation (1) [8, 12] then the
Green’s function for a scalar particle reads:

G (x, y | A,V) =
〈

0
∣∣∣T [
ϕ(x)ϕ∗(y)

]∣∣∣0〉
A,V
.

This function in any gauge field background helps us com-
pute solutions for the scalar field ϕ(x), which is a nonphysical
field, but we can use it to describe how propagation in an ap-
plied gauge field creates, thus equation (1) reads[

(i∂µ + gAµ(x))(i∂µ + gAµ(x)) + m2 + V(x)
]

× G (x, y | A,V)

= δ(x − y).

(2)

Now, we are dealing with a particle in an applied gauge
field in QFT, and to have an effective interaction for creating the
bound states over all possible configurations of the gauge field,
we need to average over the external field, i.e., we integrate over
the field:

ϕ(x)A =

∫
DAP[A] ϕ(x, A). (3)

The notation ⟨·⟩A indicates an average (expectation value)
over the field. Thus, to obtain the scalar field ϕ(x), we apply
equation (2) and integrate function G(x, y) using equation (3)
[12]:

ei
∫

dxJµ(x)A(x)A = e−
1
2

∫ ∫
dxdy Jµ(x)Dµν(x−y)Jν(y),

where Jµ (x) , Jν(y) are the real currents. Dµν(x − y) is the
propagator of the applied filed Aµ. So, functionDµν(x−y) reads:

Dµν (x − y) = Aµ (x) Aν (x) = ∂µ∂νD (x − y) +D1 (x − y) ,

and then:

Dµν (x − y) =
∫

d4k
(2π)4 D̂ (k2)eik(x−y),

where function D (x − y) describes the properties of the interac-
tion and is represented by a field Aµ. Based on the nonAbelian
gauge theories, the field Aµ within noncommutative symme-
try groups for QCD is described. We can consider functions
D (x − y) and D1 (x − y) are the main functions that define the
gauge of Aµ(x). As we know, the physical properties of the field
and medium are independent of the function D1 (x − y) [12].

Thus, in hadronic physics, if the local gauge transformation
Λ(x) acts on ϕ(x) or Aµ(x), it is typically written in the form
Aµ → Aµ + g∂µΛ + ΛAµΛ−1 − igΛ∂µΛΛ−1 and the propagator
G(x, y | A,V) transforms in a specific context that reads:

G
(
x, y

∣∣∣ Aµ (x)→ Aµ (x) + g∂µΛ (x)
)
= eigΛ(x)G(x, y | A)e−igΛ(x).

The G(x, y | A,V) with the polarization tensor is used to de-
scribe the full propagator of a particle in the external gauge field
based on the Dyson equation, and these two functions are con-
nected by the Dyson equation as follows:

G(x, y | A,V) =
1

G(p | A,V) − Π(p | A,V)
,

where G(p | A,V) is the Green’s function of motion in the
free field, and the effects of interactions (self-interactions, in-
teractions with other particles, etc.) are included in the func-
tion G f ull(p | A,V). Now, the two-particle bound state creation
mechanism is our main goal in this research, and so the polar-
ization tensor of two scalar particles with proper masses m1,m2
reads:

Π (x − y) = ⟨G1(x, y | A,V)•G2(x, y | A,V) ⟩A . (4)

In the context of quantum chromodynamics, the soft phase
involves long-range forces (x − y)² → ∞, such as confine-
ment and mass generation processes, i.e., Ebin = M − (m1+m2)
creating a bound state system with the mass M, with the non-
perturbative interactions, thus the behavior of the polarization
tensor is particularly in the exponential form [12]:

Π(x − y) = Ce−M
√

(x−y)2
. (5)

Equation (5) can be realized as follows:

(a) M < ∞ andM = m1 + m2 , a coupled mass formation
M can be created.

(b) M = m1 + m2 , the strength of the interaction is very
weak, so a bound state can not be created, and particles
are two independent objects with no binding interaction.

Thus, we must solve to determine the coupled mass spec-
trum. The mathematical solution of equation (1) is presented as
a functional integral. In theoretical physics, QM and QFT, the
Green’s function method is a powerful mathematical approach
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used to solve this type of differential equation, hence, the prop-
agator of two particles in the applied gauge field Aµ and inter-
action V(x) reads:

G (x, y|A,V) =
∫ ∞

0
dτe−τm

2
eτ(∂µ−igAµ (x))2

e−τV(x)δ (x − y)

=

∫ ∞

0
dτ

∫
de−τm

2
eτ(∂µ−igAµ (x))2

e−τV(x)

× Ξ (ξ)
∫ ∞

0

dτ(
4τπ2)2 e−τm

2−
(x−y)2

4τ . (6)

Equation (6) is similar to the Schwinger representation of
propagators, and the propagator in an applied field Aµ is written
as an integral over proper time τ. Ξ (ξ) in equation (6) is defined
as follows:

Ξ (ξ) =
∫

dσνe
ig

∫ 1
0 dξ ∂Zµ (ξ)

∂ξ Aµ (ξ),

where

Zµ(ξ) = (x − y)µξ + yµ − 2
√
τBµ (ξ) ,

dσν = CδBµ (ξ) e−0.5
∫ 1

0 dξB2
µ(ξ),

and Bµ (ξ) is some auxiliary field, C is the normalization con-
stant, and we choose a specific normalization condition Bµ (0) =
Bµ (1) = 0,

∫
dσν = 1. These conditions certify that a prob-

ability distribution, wavefunction, Green’s function, or func-
tional integral is consistent with physical laws in hadronic and
particle physics, i.e., the correlation function (Green’s function)
is renormalized at a specific reference point within the func-
tional integral method. Parameter τ acts as a proper time param-
eter in the path-integral formulation of QFT and parameterizes
the evolution of the propagator. The term e−τm

2
is the higher-

energy contributions and reflects mass dependence in the cor-
relation function, and δ (x − y) function confirms localization at
the given points. ξ is a worldline parameter that, in functional
integral formalism, runs from 0 to 1, parametrizing the path of
the particles within the interaction in the external gauge field
Aµ. We have to integrate over the worldline parameter for all
possible trajectories of moving particles in equation (6). Func-
tion ∂Zµ(ξ)

∂ξ
is the velocity along ξ and determines how the parti-

cle interacts with Aµ [12]. Thus, due to define the simplest form
of interaction between x, y points in spacetime coordinate under
the Gaussian correlator, we have to average over Aµ using the
2-point correlator:

G
(
x, y

∣∣∣ Aµ
)
= ϕ(x, Aµ) ϕ(y, Aµ) .

The Gaussian correlator depends only on the difference be-
tween two points x and y [12]. Then the polarization tensor of
two interacting particles in an applied field Aµ is defined by av-
eraging over all possible configurations of Aµ in the form of a
path integral as follows:

Π (x − y | A,V) =
∫ ∞

0

∫ ∞

0

dµ1 dµ2(
8π2 (x − y)

)2 J(µ1, µ2)

× exp
−|x − y|

2

m2
1

µ1
+ µ1 +

m2
2

µ2
+ µ2

 . (7)

From equation (7), the functional integral J(µ1, µ2) in non-
relativistic QM and QFT, it appears similar to the Feynman path
integral formalism under the Minkowski spacetime coordinate
for the motion of two particles or fields with proper masses
m1,m2 [12]. The interaction term of these particles includes
the functional integral:

J (µ1, µ2) = C1C2

∫ ∫
dxdye−V(x,y)×

e−0.5
∫ x

0 dτ[µ1 x̂2(τ)+µ2 ŷ2(τ)], (8)

where

e−V(x,y) = exp
[
g2

2
(−1)i+ j

∫ ∞

0

∫ ∞

0
dτ1 dτ2 ×

Ẑ i
µ(τ1) Dµν

(
Z i(τ1) − Z j(τ2)

)
Ẑ j
ν (τ2)

]
. (9)

Hence, V (x, y) = V11 + V22 − 2V12 presents the local and
nonlocal interactions. The interaction of the constituent parti-
cles with the gauge field is the function Vi j within the Feynman
diagram formalism. The interaction of particles with each other
is Vii. Then, by a saddle point of the integral in the functional
form of equation (6), in the context of the soft phase (long-
range forces: (x − y)² → ∞), as described above, the po-
larization tensor of two interacting particles in an applied field
Aµ is determined. J(µ1, µ2) the functional integral interaction
reads[12, 16]:

J (µ1, µ2) = Ce−(x−y) E(µ1,µ2). (10)

Function E(µ1, µ2) is being independent of m1,m2 and de-
pendent on µ1, µ2 and g. The parameters µ1, µ2, have the same
dimensional units as mass m1 m2. Hence, bb̃ : (nS ) bound states
mass M is defined as:

M = lim
(x − y)²→∞

−
lnΠ (x − y)
|x − y|

. (11)

After some mathematical adjustments, it becomes:

M = 0.5 min
µ1,µ2

(µ2m2
1 + µ1m2

2

µ1µ2
+

µ1 + µ2 + 2E(µ1, µ2)
)
.

(12)

In the bound state, the constituent masses of particles with
the rest masses m1,m2 are µ1, µ2. All interaction potential
functions, such as nonperturbative behavior, local, and nonlo-
cal interactions that are included in the hadronic bound states
described by the function V (x), and relativistic behavior de-
fined by integrating over the time component of the function
J (µ1, µ2) in the Minkowski spacetime coordinate. Hence, based
on being independent of the fourth component of two particles
in the Minkowski spacetime coordinate, the functional integral
J (µ1, µ2) is determined by the Feynman path integral method
and describes the motion of two particles with masses µ1, µ2 in
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the nonrelativistic formalism of interaction. Hamiltonian of this
type of interaction reads:

H = −
p̂2

1

2µ1
−

p̂2
2

2µ2
+ V (x, y) . (13)

Using equation (10) and equation (13) in the context of
Feynman path integral in QFT, we can see that in equation (10)
function E(µ1, µ2) is the energy eigenvalue of the Schrödinger
equation HΨ = E(µ1, µ2)Ψ. Minimizing equation (12) for
µ1, µ2 we can define equations [12]:

2
dE(µ1, µ2)

dµ1
=

m2
1

µ1
− µ1, (14)

2
dE(µ1, µ2)

dµ2
=

m2
2

µ2
− µ2. (15)

These relations present the constituent mass of particles in the
bound states.

3. Modified radial Schrödinger equation

bb̃ : (nS ) bound states mass spectra under modified radial
Schrödinger equation (MRSE) under the Feynman path integral
method with the constituent mass µ1, µ2 becomes:

HΨ(r) = E(µ1, µ2)Ψ(r). (16)

The kinetic energy and potential energy of Mbb̃ hadronic
system in high energy physics is on the left side of equation
(16). This equation will present the relativistic behavior [17].
We know that the total relativistic energy of a system with the
rest mass m0 and radial momentum pr in special relativity of

a free system is E =
√

m2
0 + p2

r , therefore equation (7) up to
equation (11) can be adjusted within the path of integral for-
malism and “minimizing technique”. This technique in theo-
retical physics is a useful method that allows one to rewrite the
square root in a simpler form using an auxiliary parameter. An
approximation (effective mass approximation) in the form of√

m2 + p̂2
r ≈ min

µ

1
2

µ + m2 + p̂2
r

µ

 ,
gives the optimal choice of this parameter µ. This expression
represents an approximation for the relativistic bound state’s
energy in the context of high energy physics [12, 17]. We need
to use this approximation to represent the relativistic kinetic en-
ergy in functional integral forms based on the path integrals and
QFT principles, and the minimization technique in the varia-
tional methods helps us approximate hadronic bound state prob-
lems. In summary, this issue is useful for describing a system’s
heavy quark-bound states, mass spectra, and energy eigenval-
ues. Now, in the Schrödinger equation (16), the classical ki-
netic energy is replaced by the relativistic energy, and within
the “minimizing technique”, MRSE or the relativistic form of
the radial Schrödinger equation is defined and reads [17]:√

m2 + p̂2
r ≈ min

µ

1
2

µ + m2 + p̂2
r

µ

 .

The relativistic kinetic energies of the constituent b, b̃ par-
ticles in Mbb̃ with using the “minimization technique” reads:

√
m2

b + p̂2
r ≈ min

µb

1
2

µb +
m2

b + p̂2
r

µb

 , (17)

√
m2

b̃
+ p̂2

r ≈ min
µb̃

1
2

µb̃ +
m2

b̃
+ p̂2

r

µb̃

 , (18)

Then, substituting equation (17) and (18) in the MRSE (16) and
defining:(√

m2
b + p̂2

r +

√
m2

b̃
+ p̂2

r + V (r)
)
Ψ (r) =min

µb

1
2

µb +
(m2

b + p̂2
r )

µb

 +min
µb̃

1
2

µb̃ +
(m2

b̃
+ p̂2

r )

µb̃

Ψ(r)

+ V(r)Ψ(r) = E(µb, µb̃)Ψ(r), (19)

where

E
(
µb, µb̃

)
= E (µ) , | p̂2

rb| = | p̂
2
rb̃| = | p̂

2
r |,

µb and µb̃ are the relativistic mass correction of b, b̃ particles in
Mbb̃ bound states (constituent mass of particles) based on quan-
tum field theory and Feynman path integral formalism. Equa-
tion (19), after some mathematical modifications, provides an
important equation that is a good mathematical way to define
relativistic characteristics of hadronic bound states at high en-
ergy physics of (b, b̃ quarks move with relativistic velocity v) as
follows:[

p̂2
r

2µ
+ V (r) − Eℓ (µ)

]
Ψ (r) = 0, (20)

where ℓis the orbital quantum number, µ is the reduced mass of
bb̃ : (nS ) bound state 1

µ
= 1
µb
+ 1
µb̃

. The constituent mass ofbb̃
quarks in the Mbb̃ bound state using equation (14) and equation
(15) are determined as[12]:

µb =

√
m2

b − 2µ2
dE
ℓ

(µ)
dµ

, (21)

µb̃ =

√
m2

b̃
− 2µ2

dE
ℓ

(µ)
dµ

. (22)

4. Solving the modified Schrödinger equation

In this section, to solve the modified radial Schrödinger
equation, the “Gaussian basis function” method is used. We
determined the mass spectra energy eigenvalues and wave func-
tions of the hadronic bound state in the relativistic formalism of
QM and QFT [12, 18]. We are involved with complicated differ-
ential equations to determine systems’ mass and energy spectra
in theoretical physics and relativistic QFT. However, the Gaus-
sian basis function method provides an easier way to solve these

6
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complicated differential equations in the quantum harmonic os-
cillator form and approximate the properties of these states.
This method is useful for finding relativistic properties. Mbb̃
bound state problems in QCD, meson spectroscopy, and high
energy physics because of these contexts: Mbb̃ bound states are
a quantum harmonic oscillator system; it involves the creation
and annihilation operators; directly presents the quantization of
wavefunctions in an auxiliary space; and is extended to n-body
QFT formalism for hadronic physics [19].

The Gaussian basis function method presents properties of
wave functions or fields in the context of bound states in the-
oretical physics, described by complex variables. Mathemati-
cally, the Fock space does not require complex variables. At the
same time, it can easily be simplified under complex variables
to simplify physical problems in QM and QFT, for example,
in gauge theory, conformal field theory, Grassmannian and su-
persymmetry, path integral formulations, complex scalar fields,
and variational methods. Therefore, using the Gaussian basis
function method to describe Mbb̃ bound states are a powerful
quantum mechanics and quantum field theory method to sim-
plify physical problems in high energy hadronic physics. Now
we present the Gaussian basis function method based on the
quantum harmonic oscillator representation of bb̃ : (nS ) where
the dynamics of bb̃ : (nS ) the system is described in terms
of a quantum harmonic oscillator. The behavior of bb̃ : (nS )
can be approximated or modeled by harmonic oscillators us-
ing this representation, which deals with hadronic systems such
as quarks and gluons in a specific potential. The method is
established from the quantum harmonic oscillator representa-
tion, and it is associated with the second quantization method
or quantum field quantization, where canonical operators (x̂, p̂ )
and fields are quantized by creation (â+) and annihilation (â)
operators, and satisfy the commutation relation

[
â, â+

]
= 1 and[

x̂, p̂
]
= iℏ [20]. Thus, canonical operators can be presented in

the natural unit form (ℏ = c = 1) [16, 17] by:

x̂ =

√
1

2mω
(
â+ + â

)
, p̂ = i

√
mω
2

(
â+ − â

)
,

where m is the proper mass of the particle, and ω is the an-
gular frequency of the quantum harmonic oscillator. Angular
frequency is an important parameter to determine the dynam-
ics of the quantum harmonic system. By converting symplectic
space under the quantum harmonic oscillator form in the Gaus-
sian basis for the radial part of the wavefunction in a spherical
symmetry coordinate system, we obtain canonical variables at
a higher order [20]. To use this method, we follow the transfor-
mation of the radial variable r from the Cartesian coordinate Rn

to the auxiliary space Rd (d is dimension):

r = q2ρ , pr → pq,

Ψ (r)→ Ψ
(
q2

)
,

Ψ
(
q2

)
= q2ρℓΦ

(
q2

)
,

for determining Mbb̃, the properties of the bound state are pre-
sented as a hadronic quantum oscillator in the context of QFTs.

This transformationr = q2ρ is mapping quantum numbers onto
harmonic oscillator-like quantum levels and defining the wave
function with the simpler component Ψ

(
q2

)
and q2ρℓ. The aux-

iliary d space introduced in this method as a symplectic space
can be interpreted. Under transformation, variables provide a
canonical way to connect the auxiliary d with the main physi-
cal space and make calculations adjustable.

In the radial coordinate transformation formalism ρ is a
scaling parameter. It controls the distribution of the coordi-
nate grid over the spatial domain. It also adjusts the density of
grid points in the specific regions of radius r. This can be im-
portant for the behavior of the wave function and the potential
structure. The parameter ρ is a variational parameter, and using
ρ we achieve the physical features of the asymptotic behavior
of the bound state. It is defined by the condition dEℓ(µ)

dρ = 0,
which will be explained in the next paragraph. In summary, this
method helps us to understand bb̃ : (nS ) bound state properties
and define the exact mass spectrum and energy eigenvalue so-
lutions. The transformation r = q2ρ simplifies the Hamiltonian
in the process of solving Mbb̃ bound states mass spectra. We
have to represent the radial Laplacian operator in the auxiliary
d space, to solve MRSE equation (16), defining the quadratic
operators p̂2

q (momentum), q̂2(position) of the bb̃ : (nS ) system.
The radial Laplacian operator in the auxiliary space, under the
transformation r = q2ρ [12] reads:

∆r → ∆q,

d2

dr2 +
n − 1

r
d
dr
→

d2

dq2 +
d − 1

q
d
dq
,

ℓ -the angular momentum quantum number, and ρ - a varia-
tional parameter that is used to determine the behavior of the
wave function, and then we define the quadratic operators p̂2

q,
q̂2τ in the normal ordering method for the growing potential
form [20, 21]:

p2τ
q = ω

τ
ℓ

Γ( d
2 + τ)

Γ( d
2 )
+ : p2τ

q :,

q2τ =
1
ωτ
ℓ

Γ( d
2 + τ)

Γ( d
2 )
+ : q2τ :,

where τ = 1, 2, 3, 4, . . . ., the notation “: ■ :” is the normal
ordering, which reorders operators in a specific format: the cre-
ation operators are placed to the left of the annihilation oper-
ators, and to confirm the correct vacuum expectation values,
it is used in QFT. Now using the minimizing technique for the
bb̃ : (nS ) bound state with constituent quarksb, b̃. Let us define
equation (19) with | p̂2

rb| = |p̂
2
rb̃
| = | p̂2

r | in the form of:min
µb

1
2

µb +
(m2

b + p̂r)2

µb

 +min
µb̃

1
2

µb̃ +
(m2

b̃
+ p̂r)2

µb̃

Ψ(r)

+ V(r)Ψ(r) = Eℓ(µ)Ψ(r), (23)

and then inserting formulas of the quadratic operators p2
q, q2 in

the equation (19) with |p2
qb| = |p

2
qb̃
| =

∣∣∣p2
q

∣∣∣, and we determine
7
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Hamiltonin of the bb̃ : (nS ) bound states in the form of normal
ordering operators reads as follows[12]: p2

q

2
+ V

(
q2ρ

)
− Eℓ(µ)

 Φ (
q2

)
= 0 (24)

The operator momentum p2
q in the auxiliary d space, acts on

the ground state wavefunction Φ
(
q2

)
and depends only on

the qαρℓ. The energy eigenvalue refers to the set of possible
energies εℓ (Eℓ(µ)) in the form of:

εℓ (Eℓ (µ))Φ
(
q2

)
= p2

q

2
+ V

(
q2ρ

)
− E(µ)

Φ (
q2

)
= 0c, (25)

can be described. This means that εℓ (Eℓ(µ)) of the modified
Schrödinger equation based on equation (25) in some region
in the auxiliary d space satisfy the energy spectrum equal to
εℓ (Eℓ(µ)) = 0 [12]. This relation might indicate a ground
state energy solution in the specific situation in the auxiliary
d− dimension space, that we consider this situation as a Mbb̃
bound state of b, b̃-quarks. On the other words, εℓ (Eℓ(µ)) = 0
, the minimum energy level of the bound staten = 0, 1, 2, . . . ,
is formed in the auxiliary space under the second quantization
method. Under the second quantization method, we define the
radial (nr =

n−ℓ
2 ) and orbital (ℓ ) excited states, the minimum

energy level of n = 0, identify as the energy ε0 (E0 (µ)) = ε0 of
the ground state in the zeroth approximation. Hence, the Hamil-
tonian interaction in the total form using the normal ordering
method and the quadratic operators p̂2n

q , q̂2n, in the modified
Schrödinger equation reads:

H = H0 + Hq + ε0 (E0 (µ)) , (26)

where H0 is the Hamiltonian of uncoupled harmonic and in-
dependent oscillators, i.e., refers to a free oscillation H0 (â+â )
of a system, Hq - Hamiltonian of interactions has nonquadratic
canonical operators, and ε0 (E0 (µ)) is the ground state energy.
In this method, all quadratic form of the normal ordering of
canonical operators includes the principal operator (Hamilto-
nian) for the unbound oscillator, and this condition lets us con-
sider the specific condition dε0(E0(µ))

dω = 0, to determine the os-
cillator frequency ωℓ = ω0 which describes the dynamics of
the quantum harmonic bb̃ : (nS ) bound state. Using equation
equation (24) up to equation equation (26), we can define the
ground energy equation by:

εℓ (Eℓ(µ)) Φ(q2) =(
dωℓ

4
+ 4µρ2q4ρ−2V

(
q2ρ

)
− Eℓ(µ) + 2nr ωℓ

)
Φ(q2) = 0. (27)

Then from conditions ε0 (E0 (µ)) = 0 and dε0(E0(µ))
dω = 0, we

can define the energy eigenvalue E0 (µ) and the oscillator fre-
quency ω0 for the ground state. Thus, by determining εℓ (Eℓ(µ))
and ωℓ for n = 0, ℓ = 0, nr = 0, and inserting in equation (12)
and using equation (21) and equation (22), we determine within
the specific potential form, the mass spectrum of the bb̃ : (nS )
hadronic bound state in the high energy and relativistic condi-
tions.

5. bb̃ : (nS) within the refined tanh-shaped hyperbolic po-
tential

In this section, based on the phenomenological model and
due to creation Mbb̃ hadronic bound state, we choose the effec-
tive force that represents the net interaction between the b − b̃
in this way, an attractive term at short distances is described
by a hyperbolic function that is strongly peaked at r → 0 and
falls off as r → ∞. These limitations help us to bind b − b̃
together with a strong short-range attractive force. The func-
tion σr with the constant repulsiveσ is a confining component
at long distances. It describes the long-range confining behav-
ior and keeps b − b̃ together as a bound state. Hence, in this
research, the effective interaction potential is presented within
the tanh-shaped hyperbolic [9] with a linear confinement term
in the form of:

V (r) = −V0tanh (αr) + σr. (28)

V0 ≻ 0 - an attractive potential constant, σ - the confinement
constant, α- control the range of tanh-shaped hyperbolic poten-
tial. The value of V0, α, σ are adjusted to match the experimen-
tal data of bb̃ : (nS ) energy levels. We use the Bernoulli series
[22, 23]:

tanh (αr) =
∫ ∞

i=1

22i(22i − 1)(B2i(αr))2i−1

(2i)!
(29)

where B2i : B0 = 1, B1 = −
1
2 , B2 = 1/6, · · · are the Bernoulli

numbers, and refine the tanh-shaped hyperbolic potential using
third-order terms from (28) and (29):

V (r) = (σ − αV0) r +
α3V0

3
r3. (30)

To solve MRSE using the second quantization method in the
symplectic space, using the results in Section 5 and expanding
under q2n and simplifying equation (30), we define the tanh-
shaped hyperbolic potential V (q) as follows:

V (q) = (σ − αV0) q2ρ +
α3V0

3
q6ρ. (31)

Then the equation (25) under equation (27) and equation (31)
inauxiliary d space defines the energy εℓ (Eℓ(µ)) of the bound
state. Energy eigenvalue for the ground state n = 0 and excited
states nr in the zeroth approximation i.e., reads:

εn (E0 (µ)) =
p2

q

2
+ 4µρ2q4ρ−2

(
aq2ρ + bq6ρ

)
− 4µρ2q4ρ−2En (µ) + 2nrωn = 0, (32)

where a = σ − αV0, b = α
3V0
3 . Simplifying, one can define the

energy eigenvalue equation:

En (µ) =
c′

µρ2

Γ( d
2 + 1)

Γ( d
2 + 2ρ + 1)

ω
2ρ
n

+ a
Γ( d

2 + 3ρ + 1)

Γ( d
2 + 2ρ + 1)

ω
−ρ
n + b

Γ( d
2 + 5ρ + 1)

Γ( d
2 + 2ρ + 1)

ω
−3ρ
n , (33)

8
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Table 1: Nonrelativistic mass spectra, reduced mass, and oscillator frequency of resonance states of Bottomia under parameters
V0 = 1.1, α = 0.1, σ = 0.25 , all parameters and results are in units of GeV.

State ρ Mbb̄ µ ωn MTheor. i
bb̄

MTheor. ii
bb̄

MTheor. iii
bb̄

MExp. iv
bb̄

1s 0.5266 9.2692 2.4115 0.4682 9.46030 9.4600 9.4603 9.46030
2s 0.4935 10.2354 2.4115 0.1704 10.02326 10.0230 10.0232 10.0323
3s 0.4806 10.3616 2.4115 0.1082 10.35520 10.3550 10.3552 10.3522
4s 0.4727 10.4581 2.4115 0.0804 10.40540 10.5800 10.5794 10.5794

i Ref. [25], ii Ref. [26], iii Ref. [27], iv Ref. [11]

Table 2: Relativistic mass spectra, reduced mass, constituent mass, and oscillator frequency of resonance states of Bottomia under
parameters V0 = 1.1, α = 0.1, σ = 0.25, all parameters and results are in units of GeV.

State ρ Mbb̄ µ µb ωn MTheor.Rel.
bb̄

MTheor.Rel. i
bb̄

MTheor.Rel. ii
bb̄

MExp. iii
bb̄

1s 0.4895 9.4582 2.4285 4.8390 0.3911 9.42539 9.4603 9.46030 9.460
2s 0.4616 10.3068 2.4342 4.8899 0.1832 9.91895 9.9519 10.0232 10.074
3s 0.4538 10.4569 2.4433 4.9292 0.0859 10.2464 10.2792 10.3552 10.359
4s 0.4497 10.5741 2.4474 4.9501 0.0649 10.4452 10.4452 10.5794 10.683

i Ref. [23], ii Ref. [28], iii Ref. [11]

Table 3: Mass spectra of higher resonance states of Bottomia under parameters V0 = 1.1, α = 0.1, σ = 0.25, all parameters and
results are in units of GeV.

State MTheor.Nonrel.
bb̄

MTheor.Rel.
bb̄

MTheor.
bb̄

Ref. [23] MExp.
bb̄

Ref. [24]
1s 0.4895 9.4582 2.4285 0.3911
2s 0.4616 10.3068 2.4342 0.1832
3s 0.4538 10.4569 2.4433 0.0859
4s 0.4497 10.5741 2.4474 0.0649

and the oscillator frequency ωn equation:

ωn
5ρ −

aµρ2

2c′
Γ
(

d
2 + 3ρ + 1

)
Γ
(

d
2 + 1

) ωn
2ρ

−
3bµρ2

2c′
Γ
(

d
2 + 5ρ + 1

)
Γ
(

d
2 + 1

) = 0, (34)

where c′ = 1
8 +

n
d , nr =

n−ℓ
2 = 0, 1, 2, · · · . Now, to continue our

calculations, we set the frequency to the minimum and define:

ωnmin =

aµρ2

5c′
Γ
(

d
2 + 3ρ + 1

)
Γ
(

d
2 + 1

) 
1

3ρ

, (35)

for the ground state n = 0, ℓ = 0, nr = 0 under the Gaussian ba-
sis method, which describes acting on the ground state (lowest
energy state) by creation and annihilation operators represented
by canonical variables, corresponding to the quantum harmonic
oscillator representation.

6. Results

6.1. Determination of Bottomia mass spectra

Throughout this section, we will determine the mass spec-
trum of Mbb̃ in the ground state within the specific parameters

of refined tanh-shaped hyperbolic potential b − b̃ bound states,
and consider the ground state. Taking into account the Gaussian
basis method and the pure interaction at minimum oscillation
level n = 0, ℓ = 0, nr = 0, the ground and n, ℓ, nr excited
state energies are determined (neglected spin-spin, spin-orbit,
and tensor effects and interactions). The results of numerical
calculations are presented in Table 1. Using specific parame-
ters for the bottom quark [11] and tanh-shaped hyperbolic po-
tential interaction. The Gaussian wavefunction at the origin of
the coordinate is considered, and we determined the mass spec-
tra of ground and resonance statesbb̃ : (nS ) of b − b̃ quarks
with nonrelativistic and relativistic corrections to the mass are
calculated. We calculate the mass spectra of bb̃ : (nS ) mesons
consisting of radial excitation nr = 0, 1, 2, · · · and with the or-
bital quantum value ℓ = 0. From equation (33), when the spin
interactions are denied, only the orbital quantum number will
affect the mass spectra among the quantum space parameters
and change the properties of ground and excited bound states.
Using mathematical definitions and calculations, the equation
for determining the oscillator frequencies ωn and mass spectra
of bb̃ : (nS ) resonance states from equation (34) and equation
(35) are defined and calculated. The results of numerical cal-
culations for mb = 4.823(GeV), are introduced in Table 1 and
Table 2.

9
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6.2. Predicates of Bottomia mass spectra of higher radially ex-
cited states

Future discoveries and research on the bb̃ : (nS ) meson
resonance states behavior, properties, and decay characteristics
have been conducted at several high energy collider facilities
and hadronic laboratories at the Large Hadron Collider through
experiments CMS, LHCb, and HLCs. In recent years the rela-
tivistic models of the bb̃ : (nS ) mesons have been analyzed and
refined mass spectra. Additionally, for detecting new bb̃ : (nS )
resonance states researchers try to predict and refine their exper-
imental techniques and find the best ways for observing higher
resonance states such as 7s, 8s, 9s, 10s, due to understand-
ing the formation and interactions of heavier bb̃ : (nS ) un-
der quark-antiquark approaches and within ultra hot medium i
[29, 30]. Hence, the importance and application of mass spectra
and mesic characteristics of bb̃ : (nS ) resonance states at high
resonances in future experiments that will be launched around
2027 into the 2030s are used in the following cases:

(a) Study bb̃ : (nS ) resonance decay processes and search
for new physics beyond the standard model.

(b) allowing for a detailed potential discovery model of
higher states.

(c) Study experimental data of proton-antiproton collisions.

(d) Study phenomena with high luminosity of bb̃ : (nS ).

(e) Study the structure of matter and stars based on QCD.

Therefore, due to the great importance of hadronic physics
for understanding the structure and dynamics of quarks and
the strong interaction in QCD, we defined and calculated the
masses of bb̃ : (nS ) mesons in higher excited states such
as 7S , 8S , 9S , and 10S . Hence, we theoretically predicted
bb̃ : (nS ) mass spectra under the relativistic behavior of mass
with the radial excitation nr = 7, 8, 9, 10 and orbital quantum
value ℓ = 0. The results of numerical calculations of highly
resonance states of bb̃ : (nS ) are introduced in Table 3.The
variational parameter ρ is usually determined from the equa-
tions derived by minimizing the energy function dE(µ)

dρ = 0, and
to calculate the numerical value of the variation, the equation
involving the digamma function Ψ(x) = d

dx (lnΓ(x)) = Γ′(x)
Γ(x) ]

was solved using MATLAB’s built-in functions.

7. Conclusion

The polarization loop function for b, b̃ quarks in a quan-
tum gauge interaction in this study are defined and concentrated
on describing the asymptotic behavior of the wavefunction and
MRSE under nonrelativistic and relativistic correction proper-
ties. The interaction Hamiltonian of Bottomia resonance bound
states within the tanh-shaped hyperbolic with a linear confine-
ment term, is formulated (V (r) = −V0tanh (αr) + σr). The
classical kinetic energies of proper masses mb = mb̃ using the
constituent mass of b, b̃ quarks are defined. Then, the exchange
of quantum gauge interaction through Feynman diagrams is

characterized. The results of the mass spectra show the rela-
tion of constituent mass µbof b, b̃ quarks arise in bound states
under the relation Mbb̃ = 2µb + µb E′(µb) + E(µb). Numerical
results are compared with experimental and theoretical reso-
nances obtained from other models and methods for relativistic
and nonrelativistic limits. Due to future research at high energy
collider facilities and hadronic laboratories at the Large Hadron
Collider, we predicted higher resonances 7s, 8s, 9s, 10s mass
spectra using the tanh-shaped hyperbolic with a linear confine-
ment term potential model V (r) = −V0tanh (αr) + σr. Those
that have not yet been confirmed are defined and presented.
The Theoretical defined result of resonance states of bb̃ : (nS )
demonstrated good agreement with theoretical and experimen-
tal data presented in this research. The theoretical method pre-
sented in this study describing relativistic effect on mass and
modified Schrödinger equation with other interaction poten-
tials form under the Gaussian basis and harmonic oscillator
framework is applicable for hadronic bound states, from light
mesons to heavy quarkonia, glueballs, pomerons, charmonium
hybrids, gluonic excitations and exotic atoms such as π-meson
or µ-meson bound states. Its flexibility to use both perturbative
and nonperturbative QCD regimes using variational techniques,
path-integral formalism, and oscillator quantization, which are
valuable for bound states with strong coupling and nonlocal in-
teractions. This approach also offers a unified theoretical tool
for modeling bound state phenomena in short-range and long-
range quark-gluon dynamics in hadronic bound states.
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