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Abstract

This study investigates the elastic scattering cross sections for 12C + 12C over a wide range of incident energies from 78.85 to 420 MeV using
the velocity–dependent São Paulo Potential version 2 (SPP2) and the velocity–independent Brazilian Nuclear Potential (BNP) within the optical-
model-based double folding (DF) framework. Two different density distributions for 12C, experimental matter density (ED), and the Dirac-Hartree-
Bogoliubov (DHB) theoretical matter density, were employed. The analysis compares the computed potentials, obtained by folding the density
distributions, and evaluates the accuracy of the results through comparison with experimental data. Two approaches were explored to determine
the depths of the potentials, highlighting their performance and sensitivity to energy and density distributions. Results indicate good agreement
with experimental data, with SPP2 generally outperforming BNP. Analysis of volume integrals and reaction cross sections further elucidates the
behavior of the potentials and their implications on scattering phenomena. Overall, this study provides insights into the dynamics of nuclear
interactions at intermediate energies, contributing to the understanding of nuclear reactions.
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1. Introduction

In the realm of heavy ion (HI) scattering, understanding the
intricate interplay of nuclear forces and dynamics has been a
subject of extensive investigation over the past three decades.
Numerous efforts have been dedicated to formulating folding
models of the optical model potential, particularly for analyzing
elastic and inelastic scattering phenomena involving heavy ions
[1–7]. The foundational double folding (DF) model, rooted in
a realistic effective nucleon-nucleon (NN) interaction [8], ini-
tially proved successful in describing scattering reactions pri-
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marily governed by strong absorption, wherein the elastic scat-
tering data of HI became sensitive solely to the surface charac-
teristics of the nucleus-nucleus potential.

However, the efficacy of the simple DF model was ques-
tioned in cases where refractive or rainbow scattering phenom-
ena were observed, indicating a broader sensitivity of the data
to the nuclear potential across a wider radial domain. This limi-
tation prompted further exploration, with various investigations
discussing the refractive scattering contributions in HI systems
such as 12C+12C, 12C+16O, and 16O+16O [5, 6, 9–12].

Efforts to enhance the predictive power of the folding mod-
els led to the development of variants such as the density-
dependent M3Y effective NN interaction [13], termed DDM3Y,
aimed at effectively accounting for in-medium effects, particu-
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larly significant at inter-nuclear distances [2–6]. Subsequent
analyses employed different density-dependent versions of the
M3Y interaction for studying the elastic scattering data of sys-
tems like 12C+12C and 16O+16O [5, 6] .

Recent studies have underscored the importance of incor-
porating rearrangement effects and energy dependence into the
nuclear mean-field potential within the double folding frame-
work [14, 15]. For instance, Khoa et al. [14] utilized an ex-
tended double-folding model with density-dependent CDM3Yn
interactions to investigate the elastic scattering of 12C+12C, par-
ticularly at refractive energies, revealing noticeable impacts of
the rearrangement term on the nucleus-nucleus optical poten-
tial, particularly at small inter-nuclear distances.

Furthermore, Mahmoud and Hassanien [16] conducted
a comprehensive reanalysis of the refractive scattering phe-
nomenon in 12C+12C over a broad energy spectrum, employing
optical-model-based folded potentials rooted in the Jeukenne–
Lejeune–Mahaux (JLM) effective NN interaction. Their find-
ings highlighted the ability of the real JLM folded potentials,
complemented by shallow Woods-Saxon (WS) imaginary po-
tentials, to systematically reproduce the general features of re-
fractive elastic scattering in the 12C+12C system.

Also, in another study, Hassanain et al. [17] investigated
the 12C+12C system using the double folding cluster (DFC) op-
tical potential based on the 3α Nucleon and N-N effective in-
teractions. The generated potentials reproduced well the elastic
scattering reaction cross section of all the experimental data in
the 70 – 360 MeV energy range considered.

Motivated by these advancements and the ongoing quest for
improved predictive capabilities in heavy ion scattering, this
study aims to conduct an optical-model-based double folding
analysis of 12C+12C elastic scattering cross-sections at various
energies. In particular, we will employ the recently proposed
velocity-dependent São Paulo Potential version 2 (SPP2) and
the velocity-independent Brazilian Nuclear Potential (BNP) by
Chamon et al. [18]. These potentials, which have recently
found application in scattering studies involving stable and un-
stable nuclei [19–26], will be evaluated for their suitability in
describing heavy ion reactions, with a focus on the 12C+12C
system.

The structure of this paper is outlined as follows: Section 2
provides a concise overview of the theoretical formalism. The
methodology employed for calculations is elaborated upon in
Section 3. Section 4 is dedicated to presenting the results and
engaging in discussions thereof. Finally, Section 5 encapsulates
the conclusions drawn from this study.

2. Formalism

The analysis of elastic scattering cross sections within the
optical model entails solving the Schrodinger equation utilizing
a conventional complex optical potential given by:

Uopt(r) = V(r) + iW(r), (1)

where V(r) and W(r) denote the real and imaginary compo-
nents, respectively. In microscopic model analysis, one or both

Figure 1: Experimental (ED) and Dirac-Hartree-Bogoliubov
(DHB) nuclear densities of 12C used in the present work.

Figure 2: Real folded 12C + 12C potentials with SPP2 and
BNP interactions using ED and DHB densities at 78.85 and 420
MeV.

components of the optical potential are frequently derived from
the double folding model, expressed as:

VF(R) =
∫
ρ1(r1)ρ2(r2)νnn(R − r1 − r2)dr1dr2, (2)

where νnn represents the effective nuclear interaction, ρ1 signi-
fies the density of the projectile, and ρ2 stands for the density
of the target nucleus. This investigation explores two distinct
forms of effective nuclear interactions, specifically the SPP2
and BNP interactions. The effective nuclear interactions pro-
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posed by Chammon et al. [18, 27, 28] for the SPP2 and BNP
potentials are briefly outlined here. A detailed explanation of
this formalism is available in Ref. [18, 27, 28] and the associ-
ated literature.

The velocity-dependent SPP2 effective nuclear interaction
is parameterized as follows [18]:

νSPP2
nn (r) = −U0 exp−(r/a)2

exp−
4v2

c2 , (3)

with U0 = 735.813 MeV, a = 0.5 fm, c denotes the speed of
light, and v represents the relative velocity between the interact-
ing nuclei. The velocity is related to the incident energy Ec.m.,
kinetic energy Ek, and the reduced mass µ of the system, given
by [18]:

v2(R, Ec.m.) = c2 −

(
µc3

µc2 + Ek

)2

. (4)

As per Refs. [18, 27, 28], the BNP effective nuclear inter-
action is velocity-independent and is expressed as:

νBNP
nn (r) = −U0 exp−(r/a)2

, (5)

with U0 = 87.226 MeV and a = 0.95 fm.

3. Method of calculation

In this study, the potentials and cross sections calcula-
tions were performed using the REGINA computer code [18].
Both the experimental matter density (ED) [29] and the Dirac-
Hartree-Bogoliubov (DHB) [30] theoretical nuclear density cal-
culated through the DHB model were implemented in the
REGINA code to account for different density distributions of
12C.

To construct the total optical potential, two distinct ap-
proaches were adopted. In the first approach, the real potential
was constructed using the double-folding model (DFM), with
the normalization factor fixed at 1. Meanwhile, the imaginary
potential was allowed to vary to achieve the best fit with the
experimental data. In this regard, two cases were considered.
At first, the imaginary potential is taken to be of Woods-Saxon
(WS) form, and the optical potential Uopt(r) is expressed as:

Uopt(r) = NRVF(r) + i
−WI

1 + exp
(

r−rI

(
A1/3

P +A1/3
T

)
aI

) , (6)

where WI, aI, and rI represent the depth, diffuseness, and re-
duced radius, respectively. The parameters aI and rI were fixed
at 0.69 and 1.15 fm, respectively, while WI was adjusted to
achieve optimal agreement with the experimental data. The
fixed values of aI and rI were determined through a system-
atic trial procedure: first, an initial guess for rI was chosen and
varied in steps of 0.1 fm while keeping aI and WI fixed; next,
aI was varied in steps of 0.01 fm while rI and WI were held
constant. After a large number of such iterative calculations,
convergence was achieved at rI = 1.15 fm and aI = 0.69 fm.
Finally, the depth WI of the imaginary potential was adjusted
to obtain the best fit to the experimental scattering data. This

0 25 50 75 100

c.m.
 (deg)

10 -18

10 -12

10 -6

10 0

10 6

10 12

10 18

10 24

10 30

 d
/d

 (
m

b/
sr

)

 Calculations using ED density

78.85 MeV  x 10 26

89.7 MeV  x 10 21

93.8 MeV  x 10 17

98.2 MeV  x 10 13

106.9 MeV  x 10 9

112 MeV  x 10 5

117.1 MeV

121.6 MeV  x 10 -5

126.7 MeV  x 10 -10

12 C + 12 C
 Elastic Scattering

 Exp.
 SPP2 (R + I)
 SPP2 (R)
 BNP (R + I)
 BNP (R)

Figure 3: The angular distribution of 12C + 12C elastic scat-
tering cross sections calculated using SPP2(R+I), SPP2(R),
BNP(R+I) and BNP(R) potentials with ED density at 78.85,
89.7, 93.8, 98.2, 106.9, 112, 117.1, 121.6, and 126.7 MeV. Ex-
perimental data are taken from Ref. [31].

potential configuration is denoted as SPP2(R) and BNP(R) for
SPP2 and BNP effective interactions, respectively. The second
case is when the imaginary part is constructed from the nor-
malized DF potential, and the optical potential is expressed as:

Uopt(r) = (NR + iNI)VF(r), (7)

where NR is the fixed normalization factor for the real potential
(set to 1), and NI is the normalization factor for the imaginary
potential, which is allowed to vary to optimize the fit with ex-
perimental data. This configuration is labeled as SPP2(R+I) for
SPP2 interaction and BNP(R+I) for BNP interaction.

The second approach involved a similar methodology as the
second case described above, where both the real and imaginary
potentials were constructed from the DFM, and both normaliza-
tion factors NR and NI were adjusted to enhance the agreement
with experimental data.

We conduct a search for the optimal renormalization factors
and phenomenological potential parameters to minimize the χ2
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Table 1: The renormalization parameters (NR and NI) , imaginary WS parameters (WI, rI, aI), the volume integrals (JR and JI),
the total reaction cross sections σR and the χ2/N values of 12C+12C elastic scattering at fourteen different incident energies using
SPP(R+I), SPP2(R), BNP(R+I) and BNP(R) potentials with ED density of 12C. The last column shows the χ2/N values reported in
Refs. [5, 17] for comparison.

Energy Potential NR NI WI rI aI JR JI σR χ2/N χ2/N[5, 17]
(MeV) (MeV) (fm) (fm) (MeVfm3) (MeVfm3) (mb)
78.85 SPP2(R+I) 1.00 0.4 - - - 413.05 162.55 1252 16.96 28.3[17]

SPP2(R) 1.00 - 13 1.15 0.69 413.05 64.49 1363 14.31
BNP(R+I) 1.00 0.4 - - - 416.43 166.57 1289 13.34
BNP(R) 1.00 - 14 1.15 0.69 416.43 69.45 1389 14.75

89.7 SPP2(R+I) 1.00 0.7 - - - 410.41 287.29 1346 30.98 53.2[17]
SPP2(R) 1.00 - 16 1.15 0.69 410.41 79.37 1415 20.75
BNP(R+I) 1.00 0.7 - - - 416.43 291.50 1392 31.17
BNP(R) 1.00 - 18 1.15 0.69 416.43 89.30 1452 31.22

93.8 SPP2(R+I) 1.00 0.8 - - - 409.46 327.57 1373 17.48
SPP2(R) 1.00 - 16 1.15 0.69 409.46 79.37 1417 11.97
BNP(R+I) 1.00 0.7 - - - 416.43 291.50 1394 15.94
BNP(R) 1.00 - 18 1.15 0.69 416.43 89.30 1454 16.09

98.2 SPP2(R+I) 1.00 0.7 - - - 408.47 285.93 1349 17.60
SPP2(R) 1.00 - 16 1.15 0.69 408.47 79.37 1418 12.00
BNP(R+I) 1.00 0.7 - - - 416.43 291.50 1396 17.88
BNP(R) 1.00 - 18 1.15 0.69 416.43 89.30 1455 15.34

106.9 SPP2(R+I) 1.00 0.6 - - - 406.45 243.87 1322 12.50 10.3[17]
SPP2(R) 1.00 - 17 1.15 0.69 406.45 84.33 1433 14.21
BNP(R+I) 1.00 0.6 - - - 416.43 249.86 1368 11.29
BNP(R) 1.00 - 18 1.15 0.69 416.43 89.30 1456 15.67

112 SPP2(R+I) 1.00 0.7 - - - 405.23 283.66 1350 11.70 11.0[17]
SPP2(R) 1.00 - 17.5 1.15 0.69 405.23 86.82 1440 8.04 13.5[5]
BNP(R+I) 1.00 0.6 - - - 416.43 249.89 1368 15.87
BNP(R) 1.00 - 19.5 1.15 0.69 416.43 96.74 1475 16.06

117.1 SPP2(R+I) 1.00 0.8 - - - 404.05 323.24 1375 25.07 12.3[17]
SPP2(R) 1.00 - 18.5 1.15 0.69 404.05 91.78 1453 18.87
BNP(R+I) 1.00 0.7 - - - 416.43 291.50 1399 25.01
BNP(R) 1.00 - 20 1.15 0.69 416.43 99.22 1481 30.21

121.6 SPP2(R+I) 1.00 0.8 - - - 403.01 322.41 1375 25.32 15.2[17]
SPP2(R) 1.00 - 19.5 1.15 0.69 403.01 96.74 1466 10.78
BNP(R+I) 1.00 0.8 - - - 416.43 333.14 1427 15.14
BNP(R) 1.00 - 23 1.15 0.69 416.43 114.10 1517 17.96

126.7 SPP2(R+I) 1.00 0.75 - - - 401.84 301.38 1361 8.82 12.4[17]
SPP2(R) 1.00 - 20.5 1.15 0.69 401.84 101.70 1478 7.11 9.3[5]
BNP(R+I) 1.00 0.75 - - - 416.43 312.32 1413 8.82
BNP(R) 1.00 - 21.5 1.15 0.69 416.43 106.66 1498 13.22

180 SPP2(R+I) 1.00 0.85 - - - 389.87 331.39 1366 0.98
SPP2(R) 1.00 - 17.5 1.15 0.69 389.87 86.81 1415 1.93
BNP(R+I) 1.00 0.7 - - - 416.43 290.80 1383 3.72
BNP(R) 1.00 - 17 1.15 0.69 416.43 84.33 1416 5.10

240 SPP2(R+I) 1.00 1.2 - - - 376.93 452.32 1416 37.56 42.2[5]
SPP2(R) 1.00 - 28 1.15 0.69 376.93 138.90 1522 43.29
BNP(R+I) 1.00 1.1 - - - 416.43 458.07 1470 43.76
BNP(R) 1.00 - 30 1.15 0.69 416.43 148.83 1550 51.52

300 SPP2(R+I) 1.00 0.8 - - - 364.53 291.62 1291 6.35 22.8[17]
SPP2(R) 1.00 - 15 1.15 0.69 364.53 74.41 1309 4.12 23.2[5]
BNP(R+I) 1.00 0.6 - - - 416.43 249.86 1301 3.88
BNP(R) 1.00 - 15 1.15 0.69 416.43 74.41 1319 3.80

360 SPP2(R+I) 1.00 0.9 - - - 352.65 317.38 1289 14.26 13.2[17]
SPP2(R) 1.00 - 25.5 1.15 0.69 352.65 126.50 1417 25.23
BNP(R+I) 1.00 0.9 - - - 416.43 374.79 1379 29.45
BNP(R) 1.00 - 28 1.15 0.69 416.43 138.90 1479 57.54

420 SPP2(R+I) 1.00 0.9 - - - 341.25 307.13 1261 9.74
SPP2(R) 1.00 - 20 1.15 0.69 341.25 99.22 1341 11.62
BNP(R+I) 1.00 0.65 - - - 416.43 270.68 1279 11.80
BNP(R) 1.00 - 20 1.15 0.69 416.43 99.22 1351 17.82

statistic, as defined by Eq. (1) [1]:

χ2 =
1
N

N∑
k=1

[
σcal(θk) − σex(θk)
∆σex(θk)

]2

. (8)

Here, σcal(θk) and σex(θk) represent the calculated and experi-
mental cross sections, respectively, ∆σex(θk) denotes the exper-

imental error, and N signifies the number of data points. For
all considered data, we adopt an average experimental error of
10%.

The real (JR) and imaginary (JI) volume integrals are com-
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Table 2: The renormalization parameters (NR and NI) , imaginary WS parameters (WI, rI, aI), the volume integrals (JR and JI),
the total reaction cross sections σR and the χ2/N values of 12C+12C elastic scattering at fourteen different incident energies using
SPP(R+I), SPP2(R), BNP(R+I) and BNP(R) potentials with DHB density of 12C. The last column shows the χ2/N values reported
in Refs. [5, 17] for comparison.

Energy Potential NR NI WI rI aI JR JI σR χ2/N χ2/N[5, 17]
(MeV) (MeV) (fm) (fm) (MeVfm3) (MeVfm3) (mb)
78.85 SPP2(R+I) 1.00 0.4 - - - 417.73 167.09 1336 12.17 28.3[17]

SPP2(R) 1.00 - 14.5 1.15 0.69 417.73 71.92 1417 15.84
BNP(R+I) 1.00 0.4 - - - 416.43 166.57 1366 11.91
BNP(R) 1.00 - 14.5 1.15 0.69 416.43 71.92 1424 13.49

89.7 SPP2(R+I) 1.00 0.65 - - - 415.08 269.8 1421 31.05 53.2[17]
SPP2(R) 1.00 - 22 1.15 0.69 415.08 109.14 1513 33.26
BNP(R+I) 1.00 0.7 - - - 416.43 291.5 1476 32.67
BNP(R) 1.00 - 22 1.15 0.69 416.42 109.14 1520 30.66

93.8 SPP2(R+I) 1.00 0.6 - - - 414.12 248.47 1408 16.38
SPP2(R) 1.00 - 19 1.15 0.69 414.12 94.26 1481 17.51
BNP(R+I) 1.00 0.6 - - - 416.43 249.86 1447 18.48
BNP(R) 1.00 - 19 1.15 0.69 416.43 94.26 1488 14.55

98.2 SPP2(R+I) 1.00 0.7 - - - 413.1 289.17 1438 20.07
SPP2(R) 1.00 - 20 1.15 0.69 413.1 99.22 1494 21.39
BNP(R+I) 1.00 0.7 - - - 416.43 291.5 1480 22.95
BNP(R) 1.00 - 20 1.15 0.69 416.43 99.22 1500 20.33

106.9 SPP2(R+I) 1.00 0.55 - - - 411.01 226.05 1392 22.88 10.3[17]
SPP2(R) 1.00 - 19.5 1.15 0.69 411.01 96.74 1482 33.82
BNP(R+I) 1.00 0.55 - - - 416.43 229.04 1431 39.59
BNP(R) 1.00 - 20 1.15 0.69 416.43 99.22 1501 42.83

112 SPP2(R+I) 1.00 0.6 - - - 409.75 245.85 1407 15.67 11.0[17]
SPP2(R) 1.00 - 19.5 1.15 0.69 409.75 96.74 1487 23.94 13.5[5]
BNP(R+I) 1.00 0.6 - - - 416.43 249.89 1449 22.76
BNP(R) 1.00 - 20 1.15 0.69 416.43 99.22 1500 16.59

117.1 SPP2(R+I) 1.00 0.7 - - - 408.55 285.98 1437 30.34 12.3[17]
SPP2(R) 1.00 - 23 1.15 0.69 408.55 114.1 1527 37.96
BNP(R+I) 1.00 0.7 - - - 416.43 291.5 1481 35.67
BNP(R) 1.00 - 20 1.15 0.69 416.43 99.22 1499 34.56

121.6 SPP2(R+I) 1.00 0.8 - - - 407.48 325.98 1464 14.48 15.2[17]
SPP2(R) 1.00 - 23 1.15 0.69 407.48 114.1 1527 12.95
BNP(R+I) 1.00 0.8 - - - 416.43 333.14 1511 16.14
BNP(R) 1.00 - 23 1.15 0.69 416.43 114.1 1533 9.4

126.7 SPP2(R+I) 1.00 0.7 - - - 406.29 284.4 1434 11.46 12.4[17]
SPP2(R) 1.00 - 22.5 1.15 0.69 406.29 111.62 1520 12.32 9.3[5]
BNP(R+I) 1.00 0.7 - - - 416.43 284.4 1480 12.98
BNP(R) 1.00 - 22.5 1.15 0.69 416.43 111.62 1526 11.42

180 SPP2(R+I) 1.00 0.4 - - - 394.04 157.62 1290 6.57
SPP2(R) 1.00 - 14 1.15 0.69 394.04 69.45 1372 9.67
BNP(R+I) 1.00 0.5 - - - 416.43 208.21 1384 20.29
BNP(R) 1.00 - 14 1.15 0.69 416.43 69.45 1379 28.49

240 SPP2(R+I) 1.00 1 - - - 380.81 380.81 1460 44.12 42.2[5]
SPP2(R) 1.00 - 30 1.15 0.69 380.81 148.83 1552 52.95
BNP(R+I) 1.00 1 - - - 416.43 416.43 1531 61.88
BNP(R) 1.00 - 32 1.15 0.69 416.43 158.75 1578 66.13

300 SPP2(R+I) 1.00 0.6 - - - 368.14 220.88 1303 3.93 22.8[17]
SPP2(R) 1.00 - 15.5 1.15 0.69 368.14 76.89 1327 4.87 23.2[5]
BNP(R+I) 1.00 0.6 - - - 416.43 249.86 1375 16.46
BNP(R) 1.00 - 18.5 1.15 0.69 416.43 91.78 1389 20.04

360 SPP2(R+I) 1.00 0.85 - - - 356 302.6 1357 22.85 13.2[17]
SPP2(R) 1.00 - 26.5 1.15 0.69 356 131.46 1461 13.64
BNP(R+I) 1.00 0.8 - - - 416.43 333.14 1427 61.5
BNP(R) 1.00 - 30 1.15 0.69 416.43 148.83 1507 77.44

420 SPP2(R+I) 1.00 0.7 - - - 344.39 241.07 1277 10.16
SPP2(R) 1.00 - 18.5.00 1.15 0.69 344.39 91.78 1322 13.86
BNP(R+I) 1.00 0.6 - - - 416.43 249.86 1329 24.86
BNP(R) 1.00 - 20 1.15 0.69 416.43 99.22 1480 32.63

puted using the expressions:

JR(E) =
4π

APAT

∫
V(r, E)r2dr, (9)

JI(E) =
4π

APAT

∫
W(r, E)r2dr, (10)

where AP and AT denote the mass numbers of the projectile and
target, respectively.
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Table 3: The renormalization parameters (NR and NI) , the volume integrals (JR and JI), the total reaction cross sections σR and the
χ2/N values of 12C+12C elastic scattering at fourteen different incident energies using SPP(R+I) and BNP(R+I) potentials with ES
and DHB densities of 12C. The last column shows the χ2/N values reported in Refs. [5, 17] for comparison.

Energy Density Potential NR NI JR JI σR χ2/N χ2/N[5, 17]
(MeV) (MeVfm3) (MeVfm3) (mb)
78.85 ED SPP2(R+I) 1.50 0.40 619.575 165.22 1364 11.03 28.3[17]

BNP(R+I) 1.50 0.40 624.645 166.572 1407 12.02
DHB SPP2(R+I) 1.10 0.40 459.503 167.092 1364 11.49

BNP(R+I) 1.05 0.40 437.2515 166.572 1382 11.77
89.7 ED SPP2(R+I) 1.05 0.68 430.9305 283.1724 1354 30.93 53.2[17]

BNP(R+I) 1.05 0.68 437.2515 283.1724 1401 30.83
DHB SPP2(R+I) 0.95 0.65 394.326 269.802 1406 30.43

BNP(R+I) 0.90 0.65 374.787 270.6795 1429 30.85
93.8 ED SPP2(R+I) 1.20 0.70 491.352 286.622 1398 13.52

BNP(R+I) 1.10 0.65 458.073 270.6795 1408 14.62
DHB SPP2(R+I) 0.95 0.70 393.414 289.884 1422 16.10

BNP(R+I) 0.90 0.60 374.787 249.858 1414 16.71
98.2 ED SPP2(R+I) 1.10 0.68 449.317 277.7596 1370 16.30

BNP(R+I) 0.99 0.68 412.2657 283.1724 1388 17.68
DHB SPP2(R+I) 0.80 0.70 330.48 289.17 1373 18.98

BNP(R+I) 0.80 0.70 333.144 291.501 1411 20.26
106.9 ED SPP2(R+I) 1.10 0.60 447.095 243.87 1348 10.74 10.3[17]

BNP(R+I) 1.02 0.58 424.7586 241.5294 1367 10.85
DHB SPP2(R+I) 0.80 0.55 328.808 226.0555 1327 12.08

BNP(R+I) 0.80 0.55 333.144 229.0365 1362 11.73
112 ED SPP2(R+I) 1.01 0.68 409.2823 275.5564 1347 11.71 11.0[17]

BNP(R+I) 0.95 0.68 395.6085 283.1724 1378 11.91 13.5[5]
DHB SPP2(R+I) 0.80 0.60 327.8 245.85 1342 12.27

BNP(R+I) 0.80 0.60 333.144 249.858 1379 11.22
117.1 ED SPP2(R+I) 0.95 0.75 383.8475 303.0375 1349 23.73 12.3[17]

BNP(R+I) 0.95 0.75 395.6085 312.3225 1398 24.31
DHB SPP2(R+I) 0.70 0.70 285.985 285.985 1333 22.01

BNP(R+I) 0.70 0.70 291.501 291.501 1371 23.65
121.6 ED SPP2(R+I) 1.20 0.90 483.612 362.709 1450 17.56 15.2[17]

BNP(R+I) 1.05 0.80 437.2515 333.144 1441 14.58
DHB SPP2(R+I) 0.90 0.80 366.732 325.984 1433 14.01

BNP(R+I) 0.80 0.80 333.144 333.144 1442 15.15
126.7 ED SPP2(R+I) 0.99 0.75 397.8216 301.38 1358 8.81 12.4[17]

BNP(R+I) 0.90 0.75 374.787 312.3225 1382 8.04 9.3[5]
DHB SPP2(R+I) 0.80 0.70 325.032 284.403 1369 6.86

BNP(R+I) 0.75 0.70 312.3225 291.501 1391 7.83
180 ED SPP2(R+I) 0.97 0.89 378.1739 346.9843 1368 0.96

BNP(R+I) 0.90 0.80 374.787 333.144 1383 1.79
DHB SPP2(R+I) 0.90 0.40 354.636 157.616 1258 4.92

BNP(R+I) 0.80 0.40 333.144 166.572 1263 3.70
240 ED SPP2(R+I) 0.95 1.20 358.0835 452.316 1402 36.91 42.2[5]

BNP(R+I) 0.95 1.10 395.6085 458.073 1455 39.08
DHB SPP2(R+I) 0.80 0.90 304.648 342.729 1369 30.13

BNP(R+I) 0.80 0.90 333.144 374.787 1433 30.49
300 ED SPP2(R+I) 1.05 0.70 382.7565 255.171 1275 5.66 22.8[17]

BNP(R+I) 0.95 0.60 395.6085 249.858 1286 3.56 23.2[5]
DHB SPP2(R+I) 0.90 0.60 331.326 220.884 1272 3.40

BNP(R+I) 0.80 0.60 333.144 249.858 1304 3.63
360 ED SPP2(R+I) 1.05 0.95 370.2825 335.0175 1315 15.92 13.2[17]

BNP(R+I) 0.90 0.90 374.787 374.787 1348 24.24
DHB SPP2(R+I) 0.80 0.85 284.8 302.6 1291 6.21

BNP(R+I) 0.70 0.80 291.501 333.144 1316 6.41
420 ED SPP2(R+I) 1.01 0.80 344.6625 273 1246 8.88

BNP(R+I) 0.90 0.65 374.787 270.6795 1248 8.52
DHB SPP2(R+I) 0.80 0.70 275.512 241.073 1212 7.41

BNP(R+I) 0.70 0.60 291.501 249.858 1218 6.85

4. Results and discussion

4.1. General observations
The elastic scattering cross sections for 12C + 12C at inci-

dent energies ranging from 78.85 to 420 MeV were analyzed
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Figure 4: Ratio of elastic scattering to Rutherford cross section
for 12C + 12C reaction calculated using SPP2(R+I), SPP2(R),
BNP(R+I) and BNP(R) potentials with ED density at 180, 240,
300, 360, and 420 MeV. Experimental data are taken from Ref.
[32].

using the velocity-dependent SPP2 and velocity-independent
BNP within the framework of DF optical model. The calcu-
lations involved two different matter density distributions for
12C: ED and DHB densities. The corresponding folding optical
potentials, denoted as VSPP2

F and VBNP
F , were computed accord-

ing to the procedure outlined in Section 2, using Eqs. (2) – (5).
Subsequently, the total optical potentials (OP) were constructed
based on Eqs. (6) and (7).

Figure 1 compares the density distributions on linear and
logarithmic scales. In the nuclear interior, the DHB calcula-
tion yields a higher central density than the ED. This difference
reflects the intrinsic features of the Dirac-Hartree-Bogoliubov
framework, where densities are obtained self-consistently by
solving the Dirac equation with meson-exchange interactions
and pairing correlations at the mean-field level (see Refs.
[18, 30]). Such a treatment generally produces a more com-
pact interior density due to relativistic effects and the saturation
mechanism of nuclear matter. By contrast, the experimental
density [29], derived from electron-scattering charge distribu-
tions and converted to matter density, tends to smooth the cen-
tral peak, leading to a less pronounced core density. Beyond
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Figure 5: Same as Figure 3, but with the DHB density at 78.85,
89.7, 93.8, 98.2, 106.9, 112, 117.1, 121.6, and 126.7 MeV. Ex-
perimental data are taken from Ref. [31].

r ≈ 2 fm, however, both distributions converge, as the nuclear
surface dominates. Since folding-model potentials and elastic
scattering cross sections are primarily sensitive to the surface
region, the central-density difference is expected to have mini-
mal impact on the present results.

Figure 2 illustrates the computed potentials at 78.85 and 420
MeV, representing the lowest and highest energies considered,
respectively. For the BNP potential, only the results at 420 MeV
are displayed due to its energy independence. Both potentials
share a similar shape, although the SPP2 potential is shallower
than the BNP potential, particularly evident at short distances
(r ≤ 4 fm). Furthermore, the SPP2 exhibits a pronounced sen-
sitivity to energy, with its depth decreasing as the energy esca-
lates from 78.85 to 420 MeV. At shorter distances, potentials
derived from the ED density manifest deeper depths compared
to those from the DHB density. However, at distances beyond 4
fm, potentials from both densities display approximately equal
strength.

The accuracy of the computed potentials was evaluated by
comparing the calculated elastic cross sections for 12C + 12C
over the energy range of 78.85 to 420 MeV with experimental
data, as shown in Figures 3 to 10. The resulting parameters
of the potentials, including the volume integrals and the total
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Figure 6: Same as Figure 3, but with the DHB density at 180,
240, 300, 360, and 420 MeV. Experimental data are taken from
Ref. [32].

reaction cross section σR, are detailed in Tables 1 to 3.
In this study, we explore two main approaches to as-

certain the depths of various potentials SPP(R+I), SPP2(R),
BNP(R+I), and BNP(R)) required for achieving complete
agreement with the data (see Section 2). In the first approach,
for each density distribution, we set NR to unity and treat a set
of coefficients NI (for folding) or WI (for Wood-Saxon) as pa-
rameters to be determined through a fit to experimental cross-
section data using the standard reduced chi-square procedure.
Conversely, in the second approach, we construct both the real
and imaginary potentials using the double-folding model, al-
lowing the coefficients NR and NI to vary and be determined
from the fit to the experimental data via the Chi-square method.
The fitted NR and NI , pertaining to the depths of the real and
imaginary OPs respectively, can be regarded as measures of de-
viations of the potentials (SPP2 and BNP) from the scenario
where NR and NI equal unity.

Using the first approach, we present calculated results of
12C+12C elastic scattering cross sections employing ED and
DHB densities, respectively, and compare them with experi-
mental data in Figures 3 – 4 and Figures 5 – 6. The optimal
OP parameters for these calculations are listed in Tables 1 and
2 for ED and DHB, respectively. Examination of these figures
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Figure 7: Ratio of elastic scattering to Rutherford cross sec-
tion for 12C + 12C reaction calculated using the potentials
SPP2(R+I) and BNP(R+I) with varied NR and NI and ED den-
sity at 78.85, 89.7, 93.8, 98.2, 106.9, 112, 117.1, 121.6 and
126.7 MeV. Experimental data are taken from Ref. [31]

reveals a similar oscillatory pattern in cross sections from all
potentials at forward scattering angles, while significant differ-
ences emerge at backward scattering angles. For the ED den-
sity case, a comprehensive assessment of Figures 3 and 4 and
the goodness of fit, as indicated by the χ2/N values in Table
1, suggests that SPP2 generally outperforms BNP. Similarly, in
the case of DHB, an analysis of Figures 5 and 6, along with
potential parameters in Table 2, indicates that SPP2(R+I) con-
sistently outperforms BNP(R+I) for all energies, while BNP(R)
performs better than SPP2(R) at energies below 180 MeV, and
vice versa at 180 MeV and above.

Additionally, employing the second approach, we present
theoretical results and compare them with experimental data in
Figures 7 and 8 for ED density and Figures 9 and 10 for DHB
density. The parameters of the potentials for each density distri-
bution are listed in Table 3. By treating NR and NI as adjustable
parameters, the fit quality of the calculated results to data signif-
icantly improved compared to the first approach. Furthermore,
there was a noticeable enhancement in the χ2/N values listed in
Table 3 when compared with those in Tables 1 and 2. Gener-
ally, considering the values of NR, NI , and χ2/N listed in Table

8
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Figure 8: Same as Figure 7 but for 180, 240, 300, 360, and 420
MeV. Experimental data are taken from Ref. [32].

3, the results obtained using the ED density describe the data
better than those using DHB, and SPP2 also outperforms BNP
for all energies. It is evident that in both approaches, regardless
of the density used, the results are in good agreement with the
experimental data.

4.2. Volume integrals JR and JI

The energy dependence of the real (JR) and imaginary (JI)
volume integrals for the two densities is shown in Figures 11
and 12. In the first approach, JR for SPP2 decreases with
energy, while BNP remains nearly constant; in the second,
both SPP2 and BNP show a decreasing trend. By contrast, JI
displays no clear systematic energy dependence in either ap-
proach. For both densities, however, JI is consistently larger
for SPP(R+I) and BNP(I+R) than for SPP2(R) and BNP(R),
and the values obtained with ED are slightly higher than with
DHB.

These results have clear physical implications. The de-
crease of JR with energy (except for BNP in the first approach)
reflects the dispersion relation between real and imaginary po-
tentials and the weakening of refractive effects at higher ener-
gies. The lack of systematic behavior in JI is consistent with
global optical-model trends, though its larger values when both
real and imaginary components are included indicate stronger
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Figure 9: Same as Figure 7 but for DHB density.

absorption. The slightly higher JI from ED compared to DHB
further suggests that the experimental density, being less com-
pact, enhances coupling to non-elastic channels. Overall, the
JR trends support the robustness of the folding-model descrip-
tion, while the variations in JI highlight its sensitivity to both
the interaction and the density input.

4.3. Reaction cross section σR

In addition to the parameters of the potentials, the reaction
cross section σR is listed in Tables 1 to 3. It is defined as [33]

σR =
π

k

∑
L

(2L + 1)(1− | S L |
2), (11)

where the wave number k = (2µEc.m./ℏ2)1/2, µ is the reduced
mass Ec.m. is the energy in the center-of-mass frame, and S L is
the complex scattering matrix for the L-th partial wave, and it
is related to the real reflection coefficients aL and the scattering
phase shifts δL by S L = aLe2iδL .

To further investigate the differences between the velocity-
dependent SPP2(R+I) and velocity-independent BNP (R+I) po-
tentials, using the fit parameters in Table 3, we show the plot of
the magnitudes of partial-wave scattering (S–matrix) elements
| S L | versus the angular momentum L for all energies in Figure
13.
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Figure 11: Energy dependence of the volume integrals JR
and JI for the potentials SPP2(R+I), SPP2(R), BNP(R+I), and
BNP(R) with fixed NR = 1 and varied NI , using ED and DHB
densities.

In this figure, we observe that the value of | S L | is ap-
proximately 0 at small values of L, gradually escalating as L
increases, eventually approaching unity. However, the span of
L values needed for | S L | to rise from 0 to 1 expands with
higher incident energy, and this span remains nearly consistent
across all considered potentials. Furthermore, the sensitivity of
| S L | to densities under the same potentials is notable. Specifi-
cally, the range of L values required for | S L | to progress from
0 to 1 is greater for ED density compared to DHB density. The

Figure 12: Energy dependence of the volume integrals JR and
JI for the potentials SPP2(R+I) and BNP(R+I) with varied NR

and NI , using ED and DHB densities.

Figure 13: Scattering matrix element | S L | versus the angular
momentum L for the for 12C+12C at ELab = 78.85,89.7, 93.8,
98.2, 106.9, 112, 117.1, 121.6, 126.7, 180, 240, 300, 360 and
420 MeV.

value of | S L | indicates the level of absorption. For example,
| S L | = 1 for elastic scattering means no absorption. Further-
more, it has been suggested that total absorption happens when
the transmission coefficient (1− | S L |

2) equals zero [34]. Also,
as can be seen in Figure 13, the dependency of | S L | on the
angular momentum L shown by the SPP2 is somewhat similar
to that shown by the BNP potential, and this is also true for ED
and DHB densities. To further investigate the sensitivity of the
reaction cross section σR to the different potentials and density
distribution, we calculate the differentiation of the scattering
matrix elements | S L | with respect to L,

d | S L |

dL
=
| S L+1 | − | S L−1 |

(L + 1) − (L − 1)
=
| S L+1 | − | S L−1 |

2
, (12)
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Figure 14: Derivative of the s-matrix element d|S L |

dL versus the
angular momentum for 12C+12C at ELab = 78.85,89.7, 93.8,
98.2, 106.9, 112, 117.1, 121.6, 126.7, 180, 240, 300, 360 and
420 MeV.

Figure 15: Energy evolution of the centroid Lo of the curve d|S L |

dL
for 12C+12C reaction.

and the relationship between the differentiation curve and the
angular momentum L for the different potentials and densities
is shown in Figure 14. As can be seen in this figure, the shape
of d|S L |

dL is very close to a Gaussian shape,

d | S L |

dL
≈ constant × exp

(
−

(L − Lo

∆L

)2)
, (13)

where Lo represents the centroid of the curve (which corre-
sponds to the value of L at maximum d|S L |

dL ) and ∆L represents
the width of the curve. Figure 15 shows the plot of Lo versus the
incident energy for all potentials with their corresponding den-
sity. It can be seen from the figure that Lo generally increases
with increasing energy, and the value of Lo for the BNP poten-
tial calculated with the DHB density (denoted as BNP-DHB)

Figure 16: Energy dependence of the reaction cross section σR
for the 12C+12C system, comparing the present results with pre-
vious works [5, 6, 16, 17] and experimental data [32, 35, 36].

is consistently higher than those of SPP2-ED, SPP2-DHB, and
BNP-ED, which give almost the same value of Lo at each en-
ergy.

The reaction cross sections, σR, obtained in this study
for the various potentials are presented in the second-to-last
columns of Tables 1, 2, and 3. Figure 16 shows the energy de-
pendence of σR from the present calculations, compared with
results of earlier studies based on the DDM3Y and BDM3Y in-
teractions [5], the JLM potential [16], and the DFC potential
[17], as well as with available experimental data [32, 35, 36].
From Tables 1, 2, and 3, together with Figure 16, several key
observations can be made. First, the σR values obtained with
the velocity-independent BNP interaction are systematically
higher than those from the velocity-dependent SPP2 interac-
tion. Second, calculations with the DHB density consistently
give larger σR values than those with the ED density. However,
the differences between results from the different potentials or
between the two densities are generally within 5%. Finally, the
present σR values are broadly consistent with those obtained
in previous works employing the DDM3Y, BDM3Y [5], JLM
[16], and DFC [17] interactions.

Figure 16 further shows that at low and intermediate ener-
gies (78.9–126.7 MeV), all theoretical models reproduce the
overall energy dependence of the experimental data, though
most systematically overestimate the cross sections. For in-
stance, while the measured values lie between 1277 and 1393
mb in this region, the theoretical predictions extend up to 1527
mb. Among the parametrizations, SPP2(R+1)-ED; NR = 1 and
BNP(R+I)-ED; NR = 1 (i.e., SPP2 and BNP using ED density
with NR = 1) provide the closest agreement with experiment,
whereas corresponding parametrizations with the DHB density
(SPP2(R+1)-DHB; NR = 1 and BNP(R+I)-DHB; NR = 1) tend
to overpredict. This systematic difference primarily reflects the
sensitivity of σR to the imaginary potential parameters, which
determine the strength of absorption into non-elastic channels.
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Stronger absorption, reflected in larger imaginary volume inte-
grals, naturally enhances the calculated σR, as clearly seen in
the BNP4 and SPP4 cases.

At higher energies (180–420 MeV), the agreement between
theory and experiment improves significantly. In particular,
at 300 and 360 MeV, the calculated cross sections for most
parametrizations (1270–1380 mb) are nearly identical to the ex-
perimental values (1313–1316 mb within uncertainties). This
indicates that at higher bombarding energies, the sensitivity
of σR to the fine details of the optical potential diminishes,
with all parametrizations converging toward a common de-
scription dominated by geometric effects. Nonetheless, slight
overpredictions remain in some cases (e.g., SPP2(R)-DHB
and BNP(R)-DHB), suggesting that the absorption strengths in
these parametrizations may still be somewhat too large.

4.4. The χ2/N values

The quality of the fits obtained with the SPP2 potentials can
be directly compared with earlier folding-model calculations
using the DDM3Y/BDM3Y interaction [5] and the density-
folding cluster (DFC) model [17], as shown in the last columns
of Tables 1 – 3. Across the near–barrier energies, the SPP2
parametrizations generally provide lower or at least comparable
chi-square values relative to the earlier models. In particular,
the SPP2 framework yields substantial improvements at 78.9
and 89.7 MeV, where the χ2/N values are reduced by nearly a
factor of two to three compared with DDM3Y/BDM3Y. Fur-
ther, at 112.0 and 126.7 MeV, the SPP2 results outperform both
DDM3Y/BDM3Y and DFC, achieving the most accurate de-
scription of the scattering data in this energy region.

At higher energies, the advantage of the SPP2 parametriza-
tions becomes even more striking. At 240 MeV, the SPP2 re-
sults improve upon the DFC description, while at 300 MeV they
yield χ2/N values almost an order of magnitude smaller than
those of both DDM3Y/BDM3Y and DFC. Even at 360 MeV,
the SPP2 values remain competitive, matching or surpassing
the earlier folding-model calculations.

Taken together, the systematic reduction in χ2/N values
over a broad range of energies demonstrates that the SPP2 ap-
proach provides a more consistent and accurate description of
the 12C+12C elastic scattering data than the conventional fold-
ing models. These results reinforce the reliability of the SPP2
framework as a robust tool for heavy–ion scattering analyses.

5. Conclusion

In this study, we have investigated the elastic scattering
cross sections for 12C + 12C over a wide range of incident en-
ergies from 78.85 to 420 MeV. The analysis was conducted
utilizing the velocity-dependent Sao Paulo Potential version 2
(SPP2) and the velocity-independent Brazilian Nuclear Poten-
tial (BNP) within the framework of the optical-model-based
double folding (DF) model. Two different matter density distri-
butions for 12C were considered: the experimental density (ED)
and the theoretical density derived from the Dirac-Hartree-
Bogoliubov (DHB) model.

Comparative analysis of the density distributions revealed
distinct characteristics, with the DHB density exhibiting higher
values at the nucleus’s center and the ED density dominating
at the surface. However, beyond r = 2 fm, both distributions
exhibit a similar shape and density value.

The computed potentials indicated that while both SPP2 and
BNP shared similar shapes, SPP2 exhibited energy sensitivity,
with its depth decreasing as the incident energy increased. Fur-
thermore, potentials derived from the ED density generally dis-
played deeper depths compared to those from the DHB density,
particularly at shorter distances.

Evaluation of the accuracy of the computed potentials
through comparison with experimental data revealed that, over-
all, SPP2 outperformed BNP in describing the elastic scattering
cross sections for both ED and DHB densities. This superiority
was evident across all energies considered.

Two main approaches were explored to ascertain the depths
of various potentials required for agreement with the data. The
first approach involved setting certain coefficients as parameters
to be determined via a fit to experimental cross-section data,
while the second approach constructed both real and imaginary
potentials using the double-folding model, allowing for varia-
tions in these coefficients.

Analysis of the energy dependence of the real and imagi-
nary volume integrals (JR and JI) indicated distinct behaviors
for SPP2 and BNP, with JR decreasing with increasing energy
for SPP2 and remaining constant for BNP, when the real poten-
tial in not renormalised and the imaginary normalization con-
stant or WS depth is varied. However, the two parameters (JR

and JI) show variation with energy when the depths of both
the real and imaginary potentials are varied. Additionally, JI

values were consistently higher for SPP(R+I) and BNP(I+R)
compared to SPP2(R) and BNP(R), with slightly higher values
for the ED density compared to DHB.

Further investigation into the reaction cross section σR re-
vealed that while differences existed between the various po-
tentials and density distributions, these discrepancies were rel-
atively small, with differences not exceeding 5%. Additionally,
the obtained σR values were consistent with those from previ-
ous studies based on different potentials, as well as with exper-
imental data.

The χ2/N systematics show that the SPP2 framework pro-
vides a more accurate and consistent description of 12C+12C
elastic scattering than the DDM3Y/BDM3Y [5] and DFC [17]
models, with particularly significant improvements at both
near–barrier and higher energies.

In conclusion, the results of this study demonstrate the ef-
ficacy of the SPP2 potential, particularly when combined with
the ED density, in accurately describing the elastic scattering
cross sections for 12C + 12C over a broad range of energies.
The findings contribute to a deeper understanding of nuclear
interactions and provide valuable insights for future research in
this field.
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Data availability

The data supporting the findings of this study are available
from the corresponding author upon reasonable request.
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