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Abstract

This study proposed a gradient-based optimization framework for determining the optimal initial chlorine dosage at an injection point along a
water distribution pipe, with the aim of ensuring microbial safety and regulatory compliance while minimizing chlorine overuse and associated
costs. Leveraging the SNOPT (Sparse Nonlinear Optimizer) algorithm integrated within the COMSOL Multiphysics environment, the approach
systematically refined dosing strategies based on temperature-dependent chlorine decay dynamics. Prior to optimization, a uniform dosage of 1
mg/L yielded suboptimal outlet residuals; 0.30 mg/L, 0.23 mg/L, and 0.17 mg/L at 290K, 300K, and 310K, respectively. Post-optimization, precise
dosing of 0.66 mg/L, 0.87 mg/L, and 1.16 mg/L achieved the target residual concentration of 0.2 mg/L across the same temperature conditions,
enhancing disinfection control by 13-17%. The results demonstrate that this method delivers accurate, adaptive chlorine dosing, reducing the
risk of harmful disinfection byproducts (DBPs), improving cost efficiency, and supporting sustainable water quality management. The proposed
model is suitable for real-time integration into supervisory control systems, offering a practical pathway for advancing water safety, operational
effectiveness, and environmental stewardship.
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1. Introduction Chlorination is the most widely employed method for disinfect-
ing water due to its affordability and proven efficacy. However,

- : maintaining effective residual chlorine concentrations through-
a cornerstone of public health and sustainable development ;¢ 5 distribution network is a nuanced endeavor [3]. Chlorine

worldwide [1]. Across urban and rural contexts, water utili-  gecays over time due to chemical reactions and environmental
ties are tasked with the complex challenge of maintaining water  factors, such as temperature and flow dynamics, raising con-
quality as it moves through extensive distribution networks [2].  cerns of under-dosing, which compromises microbial safety,
and overdosing, which leads to the formation of harmful dis-
infection byproducts (DBPs) [4].

Globally and regionally, water quality standards mandate

The provision of clean and safe drinking water remains

*Corresponding author Tel. No.: +25-670-321-4138.
Email address: tulirinyajohn@gmail.com (John Tulirinya)


https://nsps.org.ng
https://creativecommons.org/licenses/by/4.0

Tulirinya et al. / J. Nig. Soc. Phys. Sci. 7 (2025) 3047 2

minimum residual chlorine concentrations to safeguard against
microbial contamination. For instance, the World Health Or-
ganization (WHO) recommends a minimum residual concen-
tration of 0.2 mg/L for domestic water safety [5]. However,
achieving this target consistently across spatially and tempo-
rally variable network conditions presents a persistent opera-
tional challenge. In many low and middle-income regions, in-
cluding parts of Sub-Saharan Africa, the optimization of chlo-
rine dosing remains limited by technical, computational, and
economic constraints [6]. These challenges are further magni-
fied in real-world networks with complex topologies and vari-
able demand patterns.

Traditionally, water utilities have relied on trial-and-error
methods or heuristic-based optimization techniques such as Ge-
netic Algorithms (GA), Particle Swarm Optimization (PSO),
and Bayesian Optimization (BO) [7]. While these methods
have shown promise, they often suffer from high computational
costs, slow convergence, and limitations in handling high-
dimensional constraints, especially those governed by nonlin-
ear partial differential equations (PDEs). These limitations
point to a significant gap in the availability of fast, accurate, and
scalable optimization strategies that can be deployed in opera-
tional environments. In response to this gap, the present study
explored a gradient-based optimization framework to determine
the optimal initial chlorine dosage at an injection point along a
water distribution pipe. Using the SNOPT (Sparse Nonlinear
OPTimizer) solver integrated within COMSOL Multiphysics,
the study aims to minimize deviations from a target chlorine
residual concentration at the network outlet. This approach
leverages local derivative information for more efficient con-
vergence while satisfying physical and regulatory constraints
on chlorine transport and decay.

The scope of this study was confined to optimizing the ini-
tial chlorine concentration at a single injection point under vary-
ing temperature conditions. While the model does not yet ac-
count for seasonal fluctuations, variable demand, or multi-point
injections, it serves as a foundational step toward real-time,
model-based chlorine management systems. The optimization
process is evaluated under different thermal conditions to assess
its robustness and responsiveness to environmental variations.

By enhancing chlorine residual control through this model-
based optimization, the study contributes to improved micro-
bial safety, regulatory compliance, and cost efficiency. The
methodology proposed holds promise for integration into su-
pervisory control and data acquisition (SCADA) systems, en-
abling dynamic and automated chlorine dosing in response to
real-time network conditions. This contributes not only to op-
erational excellence but also to public health protection and en-
vironmental sustainability by minimizing chlorine wastage and
DBP formation.[7]

2. Literature review

The study by Ref. [8] compared Bayesian Optimization
(BO) with Evolutionary Algorithms (EAs), specifically Ge-
netic Algorithm (GA) and Particle Swarm Optimization (PSO),
for optimizing chlorine dosage in water distribution systems

(WDSs) using a multi-species water quality (MS-WQ) model.
Traditional EAs require many computationally expensive sim-
ulations, making them less efficient for large-scale WDSs. The
study evaluated these methods using a real-life WDS case study
and found that BO is significantly more efficient, requiring
fewer function evaluations and exhibiting faster convergence
while maintaining high accuracy.

According to Ref. [9], the optimization of the ozonation
process in drinking water treatment to minimize disinfection
by-products (DBPs) while ensuring safe water quality was ex-
plored. Using a Box—Behnken experimental design, the study
modeled the effects of ozone dose and treatment duration on
the formation of bromate. Two treatment strategies were tested:
Strategy 1, which aimed to minimize all DBPs, and Strategy 2,
which focused on controlling bromate formation while keeping
other DBPs below 80% of regulatory limits. The findings in-
dicated that Strategy 2 is more cost-effective, reducing ozone
consumption while maintaining water quality within legal stan-
dards.

In the study of Ref. [10], the breadth-first search (BFS)
algorithm and genetic algorithm (GA) were applied to opti-
mize chlorine dosage injection in water distribution networks
to maintain spatial and temporal residual chlorine levels within
an acceptable range. This chlorine dosage injection estimation
was based on water age to maintain a minimum of 0.2 mg/L
residual chlorine at demand nodes. Results indicated that the
water age-based chlorine estimation has an average error below
10%, and a four-interval injection scheme is effective in adapt-
ing to demand fluctuations.

Although, numerous numerical optimization techniques
have been explored for chlorine dosage optimization in water
distribution networks (WDNSs), each with its strengths and lim-
itations. Evolutionary Algorithms, such as Genetic Algorithm
(GA) and Particle Swarm Optimization (PSO), are broadly used
due to their ability to handle nonlinear and complex objec-
tive functions [11]. However, they necessitate extensive func-
tion evaluations, making them computationally expensive, es-
pecially for large-scale networks [12]. Bayesian Optimization
(BO) is being proposed as a more efficient alternative, as it
reduces the number of function evaluations by using proba-
bilistic surrogate models [13]. Nonetheless, it still struggles
with handling high-dimensional problems and nonlinear PDE
constraints [14], limiting its effectiveness in detailed chlorine
transport modeling. Derivative-free solvers, such as Coordinate
Search and Nelder-Mead, avoid gradient computation but often
converge slowly and may get trapped in local optima [15]. This
study introduces a gradient-based optimization approach using
SNOPT within COMSOL Multiphysics, which achieves faster
convergence with fewer function evaluations [16]. By doing so,
it provides a more efficient and scalable solution for real-time
chlorine dosage optimization, enhancing microbial safety, reg-
ulatory compliance, and operational cost-effectiveness.

This present study has significant practical implications for
water utility companies and regulatory agencies responsible for
ensuring safe and clean water. By optimizing the initial chlo-
rine dosage, the required chlorine residual levels are maintained
throughout the distribution network. This ensures microbial
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Figure 1. Chlorine residual concentration profile along the pipeline at three
temperatures (290K, 300K, 310K) before optimization.

safety compliance with regulatory standards while reducing op-
erational costs associated with over-chlorination. Ultimately,
this optimization strategy enhances public health protection,
cost efficiency, and environmental sustainability in water treat-
ment and distribution.

3. Optimization model

3.1. Parameter optimization with COMSOL multiphysics

Parameter optimization involves finding values for a model
parameter to meet certain constraint(s) such that an optimal
value for a particular parameter is obtained. Parameter op-
timization with COMSOL Multiphysics mainly involves four
sections namely; selecting an appropriate optimization solver,
developing objective function, defining control variables and
parameters, as well as the constraints to which the objective
function is subjected.

The objective function minimized in this study is the total
deviation of the chlorine residual concentration level at point
along the water distribution network from the acceptable/target
chlorine concentration. The constraints are; chlorine residual
concentration limits and initial chlorine concentration dosage at
the pipe inlet. Table 1 shows a list of variables and parameters
that were utilized in the study.

3.2. Objective function

To optimize initial chlorine concentration dosage at the in-
jection point such that the desired/target chlorine residual con-
centration at any pipe outlet over time is maintained while
avoiding under and overdosing.

l 2
Min J(co) = 5 > (Ceo.n-Cr), (1)
t=1

where J is the total deviation from the desired chlorine residual
concentration, C(cy, t) is the chlorine residual concentration at
the pipe outlet at time ¢, C7 is the target/desired chlorine resid-
ual concentration at the pipe outlet.

3.3. Constraints of the objective function

The objective function is subject to the following con-
straints:

3.3.1. Chlorine residual transport
The chlorine residual concentration is computed from [21]:

i, 1 (1ic Bc o
ror 0rr 072

— 4+ - =
or "o T Pe )
~(Da + g8 C.

where Peclet number Pe = %, Damkohler number: Da = L—[]j‘,

and g8; = %, L and U are characteristic length and velocity re-
spectively, C is the concentration of chlorine residual at time f,
D is the molecular diffusivity, k; total decay chlorine reaction
rate (due to both bulk and wall decay rates), A is Arrhenius or
frequency factor, E is Arrhenius activation energy, T is temper-
ature, and R is ideal gas constant.

Initial and boundary conditions

i. Attr=0,C=1,z>0.

ii. symmetric condition (r = 0); % = 0.
iii. at the pipe wall (r = R); No ﬂux,(%—f =0).
iv. attheinlet; C =1,¢> 0.

v. at the outlet (z = L); 4 = 0.

3.3.2. Chlorine residual concentration limits
Chlorine residual concentration levels must remain within
permissible bounds.

Cmin <C< Cmax’ (3)

where C,;, = 0.2 mg/L and C,,qr = 0.5 mg/L are the mini-
mum and maximum chlorine residual concentration levels re-
spectively, permissible for safe water to be consumed domesti-
cally [17].

3.4. Control parameter

The initial chlorine dosage concentration, ¢ at the injection
point/pipe inlet was considered as the control parameter for this
study.

0<co<m, )

where m is the upper limit of possible chlorine dosage, with
m = 5 by WHO [18]. If ¢y = 0, then no chlorine is dosed at
injection/inlet point.

3.5. Optimization solver

The Optimization Module in COMSOL Multiphysics soft-
ware offers a variety of optimization solver algorithms, cat-
egorized into two primary types: gradient-based solvers and
derivative-free solvers as described in [19]. These categories
are tailored to address distinct problem scenarios and exhibit
differing performance attributes.
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Table 1. List of variables and parameters

Symbol  Description Unit
C Chlorine residual concentration at time # mg/L
Cr Target chlorine residual concentration at the outlet mg/L
co Initial chlorine dosage concentration at the injection point mg/L
t Time S
Z Axial coordinate along the pipe m
r Radial coordinate in the pipe cross-section m
D Molecular diffusivity of chlorine in water m*/s
u, Flow velocity along the pipe m/s
Pe Péclet number (Pe = LU/D) Dimensionless
Da Damkohler number (Da = Lk, /U) Dimensionless
ki Total chlorine decay reaction rate s
Bi Arrhenius factor Dimensionless
E Arrhenius activation energy J/mol
T Temperature of the water K
R Ideal gas constant J/(mol-K)
J(co) Objective function representing total deviation from target -
chlorine residual concentration
M Mass matrix in the finite element discretization -
A Stiffness and advection matrix in the finite element dis- -

cretization

3.5.1. Gradient-based solvers

Gradient-based solvers are basically utilized in cases where
each new iterate is based on local derivative information eval-
uated at previously visited points. The different gradient-based
algorithms include; SNOPT and IPOPT solvers which handle
large-scale problems with numerous or hard constraints, MMA
solver which best handles problems with a huge number of con-
trol variables, and Levenberg—Marquardt solver which explic-
itly solves least-squares problems.

3.5.2. Derivative-free solvers

With derivative-free solvers, there is no need to compute
any derivative of the objective function with respect to the con-
trol variables. The four different derivative-free algorithms
in COMSOL Multiphysics include; Coordinate search solver
which targets at improving the objective function along the co-
ordinate directions of the control variable space, Nelder—-Mead
solver which aims at improving the objective function values by
iteratively replacing the worst corner of a simplex in the con-
trol variable space, BOBYQA solver which aims at improving
the objective function values by using an iteratively constructed
quadratic approximation of the objective, and COBYLA solver
which solves a sequence of linear approximations constructed
from objective and constraint values sampled at the corners of
a simplex in control variable space.

In this study, SNOPT which is a gradient-based solver was
utilized due to its computational efficiency in handling nonlin-
ear PDE constraint optimization problems.

4. Method of solution

Finite Element Method (FEM) was utilized to solve the chlorine
residual transport equation (2) with COMSOL Multiphysics.

4

Below is the FEM discretization process;

4.1. Weak formulation

Multiplying equation (2) by a test function ¢(r, z) and inte-
grating over the domain Q yields:

fa_c+ a_C_L la_c+02_c+62_c dQ
o\ ot e Pe\r or  o0rr 07 9 )

+jq«Da+ﬁuf””jc)@ﬁz=0
Q

Applying integration by parts to the diffusion terms and consid-
ering the given boundary conditions:
1 0¢ 0C

Pe ), ar or

oC ocC
R E(ﬁdQ + L Mza—z¢dQ +
I [ 8¢aC

——dQ
Pe Jo 0z 0z "

6

— jX&Hﬁw$M”CMQ=O
Q
4.2. Finite element discretization

Approximating the concentration field C(r, z, f) using finite
element shape functions:

N
Crz,0 ~ ). Ciow;(r,2),

=1

@)

where (7, z) are the basis functions and C () are the unknown
nodal values.
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Similarly, we choose the test function ¢(r, z) = ¥;(r, z), lead-

ing to the system:
N o dc; N
;[Lfﬁilﬂj ]W"‘ f¢luza }
0
-0 w]) Q} ¢ ®

f a¢l 6(///
ar or Bz 0z
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Q

N
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=

This equation can be written in matrix form:

M‘Z—C +AC =0, 9

where M is the mass matrix:
stiffness and advection matrix:

oy
Aji = i, ———dQ)
J L¢M« az
1 0¢: O 0¢; O
_ A S ) 10
+PeL(6r or " 0z 0z dx (10)
+ f (]5,' (Da +ﬁ1€_E/RT) !,l/de
ol

M;; = [, ¢i;dQ and A is the

4.3. Time discretization

The implicit Euler method was utilized for time-stepping;

Cn+1 —_Cc"
_— +

m AC™! = 0. (11)

Rearranging for C"*! yields:

(M + AAHC™! = MC". (12)

System (11) was finally solved at each time step using a COM-
SOL Multiphysics software.

4.4. Reformulating the optimization problem for SNOPT

SNOPT is based on Sequential Quadratic Programming
(SQP), a powerful method for solving constrained nonlinear
optimization problems. SNOPT solves problems in a standard
optimization form [20];

min f(x). (13)
subject to:
g(x) =
hy < h(x) < hy,
X0 < x < Xy,

where x = ¢ is the decision variable, f(x) = J(cp) is the ob-
jective function, g(x) and h(x) represents the equality and in-
equality constraints respectively, /y and x( are lower constraint
bounds and /, and x, are upper constraint bounds.

4.4.1. Defining g(x) and h(x)
The constraint function g(x) is given as;

dc
g(x):ME +AC =0, (14)

and the constraint function A(x) = [CC] is defined as;
0

efef)

4.5. SQP subproblem formulation

Sequential Quadratic Programming (SQP) solves nonlinear
optimization problems iteratively by approximating the prob-
lem with a quadratic programming (QP) subproblem at each
iteration, k.

4.5.1. Lagrangian function

At each iteration k, a quadratic model of the Lagrangian is
formed. The Lagrangian function combines the objective func-
tion and the constraints into a single scalar-valued function. The
Lagrangian function of our problem is defined as;

L(co, A, 1) = J(co) — A" g(co) — p" h(co), (16)

where A is the Lagrange multiplier vector for equality con-
straint and p is the Lagrange multiplier vector for inequality
constraints. The Hessian matrix of the Lagrangian function is
then given by:

H = V*L(co, A, ). 17)

The Karush-Kuhn-Tucker (KKT) conditions below, help to
determine the Lagrange multipliers:

i. Stationarity condition: The gradient of the Lagrangian
must be zero at the optimal solution.

VL(co, A, 1) = V(c)-Vg(co) A=h(co) 1 = 0.(18)

ii. Primal feasibility condition: The solution must satisfy the
original constraints.

g(co) =0, ho < h(co) < hy. (19)

iii. Dual feasibility condition: For inequality constraints, the
multipliers must be non-negative.

u;i=0, Vi (20)

iv. Complementary slackness condition. For each inequality
constraint, either the constraint is active (binding) or its
multiplier is zero.

- (hj(co) —hoj) =0, pj-(hy;—

This ensures that if a constraint is strictly within bounds, its
multiplier is zero; otherwise, the multiplier is positive.

hy(eo)) = 0. 21)
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4.5.2. Linearizing the KKT system

To construct a Quadratic Programming (QP) subproblem in Se-
quential Quadratic Programming (SQP), we linearize the con-
straints and stationarity condition using a first-order Taylor ex-
pansion.

Stationarity Condition:

The stationarity condition of the optimization problem states
that at an optimal point, the gradient of the Lagrangian function
must be zero.

VJ(co) = Vg(co)' A = Vh(co) pt = 0. (22)

For the objective function, we approximate the gradient of the
objective function J(cp) near the current iterate c( as follows:

VJ(co+d) ~ VJ(co) + V2 J(co)d. (23)

For the constraint functions, we linearize the constraint func-
tions themselves, not their gradients.
For the equality constraints:

g(co +d) ~ g(co) + Vg(co)d. (24)
For the inequality constraints:

h(co + d) = h(co) + Vh(co)d. (25)

For the stationarity condition:

VL(co +d, A, u) = VL(cp, A, 1) + VZL(C(),/l,ﬂ)d =0. (26)

= VL(co, A, 1) = —V*L(cy, A, p)d. 27)
Equation (27) becomes;

VJ(co) = Vg(co)' A = Vh(co) pt = =V>L(co, A, p)d.  (28)
But V2L(cy, A, 1) = V2J(cp).
Equation (28) becomes;

VJ(co) = Vg(co)' A = Vh(co) 1 = =V2J (co)d. (29)
Rearranging equation (29), we obtain:

V2J(co)d = Vg(co)" A = Vh(co) 1 = =V (co). (30)

These linearizations are used to construct the QP subprob-
lem. Solving this QP yields a search direction d, which is used
to update the current iterate c, typically via a line search:

c1 = co + ad, 31

where @ € (0, 1] is a step size chosen to ensure sufficient de-
crease and constraint feasibility.
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Figure 2. Optimized chlorine residual concentration profiles at 290K, 300K,
and 310K.

4.6. Matrix form of the linearized system

The linearized stationarity condition is incorporated into the
full Sequential Quadratic Programming (SQP) subproblem:

V2] -Vg' —VhT|[d] [-VJ
V¢ 0 o ||a|=]| o |, (32)
Vi 0 D ||u 0

where V2J is the Hessian of the objective function, Vg is the
Jacobian matrix of the equality constraints, V# is the Jacobian
matrix of the inequality constraints, D ensures u > 0, for han-
dling inequality constraints.

This system is solved iteratively within the SQP algorithm
to update the decision variable ¢y and the Lagrange multipliers
Aand u.

At each iteration k, the Sequential Quadratic Programming
(SQP) method solves the following Quadratic Programming
(QP) subproblem:

1
ngn szde +VJ(c)d. (33)
subject to:
Ve(ch)d + g(ch) = 0. (34)
ho — h(ck) < Vh(ch)d < h, — h(ck), (35)

where d is the search direction (step from the current iterate
c’(‘)), H, is the Hessian approximation of the Lagrangian func-
tion at c’(‘), VJ (c’(‘)) is the gradient of the objective function at c’é,
Vg(c’(‘)) and Vh(c’é) are the Jacobian matrices of the equality and
inequality constraints, respectively.
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4.7. SNOPT Algorithm Implementation

Algorithm 1 SNOPT Algorithm Implementation
1: Initialize cg

: Solve the PDE using FEM to obtain C(cy, t)

: Compute the objective function J(co)

: Evaluate the gradient VJ(cy)

: Solve the SQP subproblem to find new ¢

: Update ¢y and iterate until convergence

[N I U I O]

5. Results and discussion

Figure 1 illustrates the variation of chlorine residual con-
centration along the length of a pipe at three temperatures (290
K, 300 K, and 310 K) before optimization. In all cases, there
is a clear monotonic decline in chlorine residual concentration
with increasing pipe length. This pattern reflects the combined
effects of chlorine decay processes such as bulk-phase reactions
with natural organic matter, reactions with inorganic species,
and potential catalytic effects from the pipe wall material. Ad-
ditionally, transport phenomena such as advection and disper-
sion contribute to the observed decrease.

The differences between the curves highlight the strong in-
fluence of temperature on chlorine stability. At higher tem-
peratures (310 K), chlorine decays more rapidly, producing a
steeper slope. This is likely due to the temperature dependence
of reaction kinetics, as elevated temperatures typically accel-
erate chemical reaction rates according to the Arrhenius equa-
tion. Conversely, at lower temperatures (290 K), reaction rates
slow down, preserving higher chlorine residuals over longer
distances.

These results carry practical implications for water distri-
bution systems. In warmer climates or during summer months,
chlorine concentrations may drop below required thresholds be-
fore reaching the far ends of the network, potentially compro-
mising microbial safety. In contrast, cooler conditions extend
chlorine persistence, allowing for more stable disinfection but
potentially increasing the formation of disinfection byproducts
if the residual remains high for prolonged periods. Therefore,
understanding the interplay between temperature and chlorine
decay is essential for designing dosing strategies, selecting pipe
materials, and planning operational adjustments to maintain
safe and compliant water quality at all points in the network.

Figure 2 depicts the variation of chlorine residual concen-
tration along the pipe length for three operating temperatures:
310 K, 300 K, and 290 K after the application of an optimiza-
tion process. The curves maintain the characteristic exponential
decay pattern, confirming that chlorine concentration contin-
ues to diminish as water moves through the pipe due to ongo-
ing bulk and wall reactions, as well as transport-related losses.
However, compared to the pre-optimization scenario, the initial
chlorine concentrations are noticeably higher, reflecting the ad-
justment made at the injection point to meet residual targets at
the far end of the distribution segment.

The results indicate that higher operating temperatures ne-
cessitate a greater initial chlorine dose to counteract the more

rapid decay rates driven by increased reaction kinetics. This is
evident from the 310 K curve, which starts at the highest con-
centration yet still declines more steeply than the lower temper-
ature curves. Conversely, at 290 K, decay rates are slower, and
the initial dosage requirement is correspondingly smaller.

The optimization objective of balancing microbial safety
with minimization of excessive chlorine loss appears to have
been achieved. In all three temperature scenarios, the terminal
chlorine concentration converges to a similar acceptable thresh-
old, ensuring regulatory compliance and public health protec-
tion while avoiding unnecessarily high residuals that could con-
tribute to disinfection byproduct formation or customer com-
plaints about taste and odor.

These findings highlight the operational value of adaptive
chlorine dosing strategies in water distribution systems. By
incorporating temperature-dependent decay characteristics into
the optimization model, utilities can dynamically adjust injec-
tion dosages seasonally or in response to temperature fluctu-
ations, thereby enhancing both water quality and system effi-
ciency. The post-optimization profiles also demonstrated that
targeted interventions can mitigate the risks associated with
variable decay rates without over-reliance on conservative over-
dosing practices.

6. Conclusion

The optimization process improved chlorine retention, as
indicated by the chlorine residual concentration at the outlet not
going below the target of 0.2 as recommended by WHO. Inter-
estingly, the ordering of concentration trends remains the same
(higher temperature leads to lower concentration retention), but
the overall concentrations are significantly improved. This sug-
gests that the optimization has enhanced chlorine persistence,
likely improving disinfection efficiency throughout the water
distribution pipe.

While the optimization framework demonstrated strong per-
formance within the COMSOL Multiphysics simulation envi-
ronment, the present study did not directly validate the results in
areal-world water distribution system. This work was intended
as a foundational modeling and optimization step, providing the
necessary computational insights before field implementation.
Future research will focus on practical deployment and exper-
imental validation in operational water distribution networks,
where the optimized dosing strategy will be tested under real
hydraulic, environmental, and demand conditions. Such valida-
tion will be essential to confirm the framework’s robustness and
effectiveness when subject to the uncertainties and complexities
inherent in real-world systems.

Data availability

No additional data was used beyond those presented in the
submitted manuscript.
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