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Abstract

This study investigates the stress distribution in functionally graded material (FGM) discs composed of compressible and incompressible con-
stituents, subjected to nonhomogeneity and external loading. Analytical results are presented for radial and tangential stresses as functions of the
radii ratio r/b the gradation parameter m, and Poisson’s ratio ν. However, the combined effect of compressibility and material gradation on the
stress response of discs remains insufficiently explored, particularly in cases where both compressible (ν < 0.5) and incompressible (ν→ 0.5) ma-
terial behaviors are considered under identical loading conditions. The methodology is designed to systematically evaluate how radial stress (σr)
and tangential stress (σθ) evolve across the disc geometry in response to the combined influences of material gradation and volumetric compress-
ibility. Figures are generated by MATLAB to provide comparative insights, separating compressible and incompressible cases, and highlighting
the stress sensitivity to parameter variations. The focus of the investigation is twofold. First, the study seeks to establish the relationship between
Poisson’s ratio and stress magnitudes, particularly assessing whether compressible materials exhibit sharper stress gradients that could lead to
structural instability. Second, the work examines the extent to which nonhomogeneity, represented by the parameter m, modifies these trends in
both compressible and incompressible regimes. Furthermore, by delineating the contrasting behavior of compressible and incompressible FGMs,
the study provides a decision-making basis for selecting appropriate material gradations in scenarios where crack initiation, fatigue resistance, or
tensile failure are of concern. Thus, the present work sets out to systematically examine how compressibility and gradation interact to determine
stress responses in FGM discs, with the ultimate objective of offering practical guidelines for the safe and efficient application of these advanced
materials in engineering design.
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1. Introduction

Functionally graded materials (FGMs) were first introduced
in 1984 by materials scientists in Japan’s Sendai region as a way
to create advanced thermal barrier materials. Unlike traditional

∗Corresponding author Tel. No: +91-941-723-6509.
Email address: jksaini83@gmail.com (Jatinder Kaur)

materials, FGMs have properties like composition, microstruc-
ture, and porosity that change gradually, leading to smooth vari-
ations in characteristics such as mechanical strength and ther-
mal conductivity according to Ref. [1]. This unique design
makes FGMs ideal for high-performance applications, from
super-refractory materials to cutting-edge functional compo-
nents. Unlike uniform materials, FGMs are engineered com-
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posites with two or more phases, where properties like Young’s
modulus, Poisson’s ratio, shear modulus, and density shift
seamlessly in specific directions, offering superior performance
[2].

Over the years, researchers have explored FGMs in vari-
ous contexts. For instance, in 2015, ZW Wang and colleagues
used an exponential function to study the mechanical prop-
erties of FGM vessels under internal pressure, applying the
Euler-Cauchy formula to derive analytical solutions for thermo-
mechanical stresses [3]. In 2016, Behravan and his team de-
veloped a semi-analytical 3D solution for transversely graded
circular plates on non-uniform elastic foundations, with proper-
ties varying across the thickness[4]. A year later, Adineh et al.
[5] examined the thermo-elastic behavior of multi-directional
FGM rectangular plates under different boundary conditions,
using the differential quadrature method to model temperature
distribution.

In 2018, Habib et al. [6] investigated stress in an FGM
cylinder with radially varying properties, using ANSYS soft-
ware for finite element analysis. In 2019, Li et al. [7] stud-
ied a pressurized FGM arch in a thermal environment, not-
ing how temperature-dependent properties affected displace-
ment and Young’s modulus. A 2020 study by Benslimane et
al. [8] explored displacements and stresses in a thick-walled
FGM cylinder, with elastic modulus and thermal conductivity
varying radially while keeping Poisson’s ratio constant; they
solved Navier’s differential equation for precise results.

In 2021, Arslan [9] examined the elastic limits of FGM
pressure vessels under combined thermal and mechanical loads,
using Reuss, Halpin-Tsai, and Voigt homogenization methods.
In 2022, Benchallal et al. [10] analyzed stress and displace-
ment in a rotating FGM thick-walled cylinder, with properties
following a power-law distribution and solutions derived from
Navier’s second-order differential equation. In 2023, Lotfi et
al. [11] tackled displacements, strains, and stresses in a porous
FGM pressure vessel with variable thickness, applying higher-
order shear deformation theory and a multi-layer method. Most
recently, in 2024, Das et al. [12] studied how Poisson’s ratio,
internal pressure, temperature, and an inhomogeneity parame-
ter influence stress and deformation in a rotating FGM pressure
vessel, highlighting their role in controlling the thermoelastic
behavior.

Gulial et al. [13] explores how steady-state creep and
strain behave in an orthotropic rotating cylinder under external
pressure, using Norton’s law to analyze various steels and al-
loys across five types of anisotropy, finding that Types I and
II anisotropic materials have lower effective stress than the
isotropic Type III, while higher density boosts all stresses.

According to Singh et al. [14] how effective stress be-
haves in internally pressurized cylinders with varying den-
sity, using Norton’s law to study a range of steels and alloys
across five types of anisotropy, revealing that Type-I and Type-
II anisotropic materials have lower effective stress than the
isotropic Type-III, while higher density increases radial, cir-
cumferential, axial, and effective stresses.

Thakur et al. [15] investigates thermoelastoplastic stress de-
formation in a rotating cylinder crafted from orthotropic materi-

als, specifically barite and copper, employing transition theory
to establish the governing equations and derive analytical solu-
tions. It examines the effects of temperature, angular speed, and
stress distribution, revealing that circumferential stress is high-
est at the cylinder’s inner surface for both materials, with ther-
mal conditions causing angular speed to increase at the internal
surface of barite but decrease in copper. Thakur et al. [15]
explore the study on rotating disks made from natural rubber
and polystyrene finds that the critical angular speed for yield
initiation drops as radius ratio and axial load increase, with
NR showing greater sensitivity due to thermal softening, while
Polystyrene offers better mechanical stability, hoop stress, the
primary driver of failure, decreases significantly in natural rub-
ber at higher temperatures.

1.1. Limitations of existing literature
Research on rotating cylinders made of orthotropic mate-

rials has greatly improved our understanding of thermoelasto-
plastic stress and creep behavior. However, several important
gaps still remain. Most studies tend to focus only on a few tra-
ditional materials like steel, barite, or copper, without exploring
the possibilities offered by functionally graded materials, which
could deliver far better performance through customized prop-
erty variations. In addition, most investigations are confined to
steady-state conditions or simplified loading cases, while prac-
tical applications often involve more complex situations such
as dynamic, multi-axial, or impact loads critical in fields like
aerospace and automotive engineering. Producing large com-
ponents with precise, defect-free material gradients is not triv-
ial, and sustainability concerns are rarely addressed, with little
attention given to recyclable or eco-friendly alternatives that are
becoming increasingly important in modern industry.

This paper address these limitations by examining the nu-
merical analysis of mechanical properties in FGM discs, where
material properties (Poisson’s ratio, Elastic Modulus, Thermal
Expansion, Temperature and Density of Material) vary radially
using B.R Seth transition theory. This study investigates the
influence of the non-homogeneity parameter on the radial and
tangential stress ratios under applied load in composite mate-
rials. Graphical analysis will examines the stress distribution
radially and circumferentially with variation of Poisson ratio
and internal force applied at inner radius, of the FGM disc Us-
ing MATLAB, we simulate radial and circumferential stresses
and strains to better understand how these advanced materials
behave under different conditions.

2. Objectives of the study

The objective of study investigates the effect of variation
on non homogeneity (m) and force applied at the external
radii on the disc made of FGM material. Analyze the stress
distribution in a functionally graded material disc composed
of both compressible and incompressible components under a
non-homogeneous external load. The obtained results are help-
ful in identifying the optimal material properties for structural
applications and highlight the stress concentration risk in com-
pressible material to prevent rupture.
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2.1. Novelty of the study
This research presents a unique exploration of stress distri-

bution in functionally graded material (FGM) discs, focusing
on the combined effects of material compressibility, Poisson’s
ratio(ν), and gradation parameter (m) under non-homogeneous
conditions and internal loading. Distinct from existing studies,
it emphasizes the critical influence of (ν) on stresses, revealing
that compressible materials (steel and copper) display increased
stress intensities and sharper gradients along radially. The
study’s original contribution lies in its detailed comparison of
compressible versus incompressible materials , demonstrating
the latter’s ability to achieve uniform stress profiles with mini-
mal m impact. It further identifies specific regions prone to ten-
sile failure in compressible materials, offering a fresh perspec-
tive on their cautious use in structural applications. By encour-
aging for incompressible-like FGMs to enhance stress distri-
bution, this work provides new guidance for designing durable
structural components, advancing material selection strategies.

3. Methodology

3.1. Problem statement and mathematical model
This study examines the response of non-homogeneous

FGM disc made of compressible (steel, copper) and incom-
pressible (rubber) subjected to applied force at the internal ra-
dius of the disc. Consider a thick-walled rotating disc with an
inner radius a and outer radius b, rotating steadily about its axis
at a constant angular velocity ω. The disc is assumed to be
isotropic, and the problem is analyzed in cylindrical coordinates
(r, θ, z), with displacement components defined as u = r(1 − β),
v = 0, and w = d · z, where β is a function of the radius and d
is a constant according to Ref. [16]. The disc is modeled under
plane stress conditions where Tzz = 0, which also implies that
the plane strain condition is satisfied.

B. R. Seth’s transition theory is used to elastic plastic tran-
sition in FGM material disc according to Ref. [17]. The evalua-
tion of stresses, angular speed, and displacement components of
a rotating isotropic disc by considering the variation in Young’s
modulus thermal expansion, Poisson’s ratio, density, and ther-
mal conductivity along the radial direction will be done using
the following relation according to Ref. [18]:
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where γ.m, s are constants and E0, α0, ν0, ρ0 and k0 represents
Young’s modulus, thermal expansion, Poisson’s ratio, density,
and thermal conductivity. Further, the stresses will be observed
numerically and graphically.

3.2. Boundary condition

The radial stress Trr must satisfy the following conditions
at the inner and outer radii of the disc:

(a) Trr(r = a) = 0,

(b) Trr(r = b) = fout.

3.3. Governing equation

Seth [17] has previously defined the displacement compo-
nents in cylindrical polar coordinates for the given system. For
thermo-elastic isotropic materials, the stress-strain relationship
is described by Parkus [19]:

Ti j = λδi jI1 + 2µei j − ξΘδi j, (i, j = 1, 2, 3), (6)

where I1 = ekk is the first strain invariant, ξ = α(3λ + 2µ), and
Θ is the temperature.

Substituting the value of generalized strain according to
Ref. [17] eii =

1
n

[
1 − (1 − 2eA

ii )
n
2

]
in equation (6), we get:

Trr =
E

n(1 − ν)
−
βnE{ν + (1 + P)n}

n(1 − ν2)
+ αΘ,

Tθθ =
E

n(1 − ν)
−
βnE{1 + ν(1 + P)n}

n(1 − ν2)
+ αΘ,

Trθ = Tθz = Tzr = Tzz = 0,

(7)

where β varies radially and E Young’s Modulus respectively.
Radial equilibrium equation in cylindrical coordinates accord-
ing to Ref. [19]:

d
dr

(rTrr) − Tθθ + ρω2r2 = 0, (8)

where ρ represents the density of the material of the rotating
cylinder. Use (7) in (8), to obtain a non-linear differential equa-
tion in β as:

nβ(n+1)P(P + 1)n−1 dP
dβ
=r(1 + ν)

(
E′

E
+

ν′

1 − ν

)
+

nr(1 − ν2)
E

(ρω2r + αΘ′ + αΘ′)+

βn
{
(1 − ν){1 − (1 + P)n} − ν′r−

{ν + (1 + P)n}
{ 2rνν′

1 − ν2 +
E′r
E
+ np

}}
,

(9)

where rβ
′

= βP (P = f (β), and β depends on r).
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3.4. Identification of the solution
To determine the transition stresses in a rotating disc, define

the transition function(φ) according to Ref. [13–17, 20–31] at
the critical point (transition point), that is at P→ ±∞,

φ =
n

2µ
(Tθθ − αΘ) =

1 + ν
1 − ν

−
βn{1 + ν(1 + P)n}

1 − ν
. (10)

After substituting the value of dP
dβ from (9) in (10) and consid-

ering P→ ±∞, we obtain:

d(logφ)
dr

= −
1 − ν

r
−

E′

E
+

ν′

(1 + ν)
+
ν′

ν
. (11)

Now integrating the equation (11), we get:

φ = B3
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rE
exp

(
ν0rm

mam

)
, (12)

where B3 are the constants of integration. which can be de-
termined by boundary conditions, and Comparing the equation
(12) and (10) to obtained the value of Tθθ,

Tθθ =
B3ν exp

(
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)
nr

+ αΘ. (13)

Substituting equation (13) in equation (8) using equations (1−5)
and then integrating, we get:
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By using boundary condition Trr = 0 at r = a, we obtain:
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Put the value of B3 in equation (15), we obtain B4:
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Now use the value of B3, B4 from equations (17,18) in equations
(13 and 14),
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Now find the stress difference |Trr − Tθθ| for elastic plastic de-
formation at r = a, r = b from equations (19,20),

|Trr − Tθθ|=
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For initial angular velocity,
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(23)

The stress difference and angular velocity is higher at inter-
nal radii.

Obtaining all above relations in non-dimensional form:
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Trr

Y
, σθ =
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Y
, ψ =

r
b
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a
b
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Y

The stress obtained using equations (19,20,23) are following:
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Ω2
i (ψ3+m

0 − 1)(Z1 − Z3)
ψψm

0 (3 + m)(Z3 − Z2)
−

Fout(Z1 − Z3)
ψ(Z3 − Z2)

−
Ω2

i (ψ3+m − ψ3+m
0 )

ψψ0(3 + m)
+

Θ1(3 + m)
ψψ2m

0

[
ψ2m+1 +

ψ2m+1
0 (Z2 − Z1)

Z3 − Z2
+

Z1 − Z3

Z3 − Z2

]


,

(24)

σθ =


Ω2

i ν0ψ
m−1(ψ3+m

0 − 1)(Z1)

ψ2m
0 (3 + m)(Z3 − Z2)

+
Foutν0ψ

m−1(Z1)
ψm

0 (Z3 − Z2)
+

Θ1(2m + 1)
ψψ2m

0

[
ψ2m+1 + ν0

ψm(Z1)(ψ2m+1
0 − 1)

ψm
0 (Z3 − Z2)(2m + 1)

]

, (25)

Ω2
i =



(3 + m)ψm+1
0 (Z3 − Z2)

(ψ3+m
0 − 1)

[
(1 − ν)Z3 − Z2

] − ψm
0 (3 + m)Fout

(ψ3+m
0 − 1)

−

Θ1(3 + m)bmψ2m+1
0

{
(1 + 2m)Z2 − (1 + 2m − ν)Z3

}
(ψ3+m

0 − 1) [(1 − ν)Z3 − Z2]
+

Θ1(3 + m)bmνZ3

(ψ3+m
0 − 1) [(1 − ν)Z3 − Z2]


,

(26)

where Z1 = exp
(
ν0ψ

m

mψm
0

)
,Z2 = exp

(
ν0

mψm
0

)
,Z3 = exp

(
ν0
m

)
.

4. Numerically illustration and discussion

Figures 1 and 2 show how radial stress, σr, changes with the
ratio of radii (r/b) for various values of the non-homogeneity
parameter m, Poisson’s ratio ν, and a constant external load
Fout = −1. The parameter m reflects how the material prop-
erties vary. Materials with ν < 0.5 are compressible, while ν
approaching 0.5 suggests an incompressible material.

In Figure 1, the radial stress exhibits a gradual decrease with
increasing radii ratio and attains maximum compressive values
near the outer boundary. At a lower Poisson’s ratio (ν = 0.25),
the stress distribution is relatively smooth, while at higher Pois-
son’s ratio (ν = 0.3), stress accumulation becomes more promi-
nent near the outer radius due to the restricted lateral deforma-
tion. The effect of the material parameter m is also significant:
with increasing m, the stress gradients intensify, particularly in
the boundary region, leading to higher compressive stresses. In
Figure 2, the nature of the stress distribution changes consider-
ably. The curve corresponding to m = 3 shows almost uniform
compressive stress throughout the domain, while m = 4 pro-
duces the steepest decline in stress, resulting in maximum com-
pressive values at the outer surface. Interestingly, at m = 5, the
stress distribution becomes nearly flat, indicating a strong sup-
pression of stress buildup even under the same external load-
ing conditions. This behavior is attributed to the absence of
volumetric deformation in incompressible media, which redis-
tributes stresses more uniformly across the cylinder.

Figures 3 and 4 present the distribution of radial stress in
the absence of external loading (Fout = 0) for compressible
and incompressible materials, respectively. In the compressible
cases (ν = 0.25, 0.3), the stress decreases monotonically with
the radii ratio, becoming more compressive toward the outer
surface. At lower Poisson’s ratio (ν = 0.25), the stress vari-
ation is relatively smooth, whereas for higher Poisson’s ratio
(ν = 0.3), stress accumulation near the boundary is more pro-
nounced, indicating stronger constraint on lateral deformation.
The influence of the material parameter m is particularly evi-
dent at m = 5, where ν = 0.25 yields nearly negligible stress
throughout the domain, while ν = 0.3 results in substantial
compressive stress at the boundary. For the incompressible case
(ν = 0.5), the stress magnitudes are comparatively higher across
all m. The stress profile for m = 3 and m = 4 demonstrates a
continuous decline with maximum compressive values near the
outer surface, whereas for m = 5, the curve flattens, reflect-
ing suppression of stress localization. These results establish
that compressible materials are more sensitive to Poisson’s ra-
tio, while incompressible materials are governed primarily by
the grading parameter m, which effectively controls the extent
of stress uniformity.

Figures 5 and 6 show the radial stress response when an
mechanical load is applied at the outer surface (Fout = 1) of the
disc. In all cases the radial stress decreases monotonically with
radii ratio and attains substantially larger compressive magni-
tudes at the outer boundary compared with the unloaded cases.
For the compressible cases (ν = 0.25, 0.3) In Fig. 5 the curves
for m = 3 and m = 4 follow similar trends and reach large com-
pressive values at r/b → 1, whereas the influence of m = 5
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Figure 1. Radial stress at Fout = −1 for compressible material.

Figure 2. Radial stress at Fout = −1 for incompressible material.

Figure 3. Radial stress at Fout = 0 for compressible material.

is strongly dependent on ν; as for ν = 0.25 the m = 5 pro-
file remains close to zero across most of the domain (i.e. stress

buildup is effectively suppressed), but for ν = 0.3 the m = 5
curve shifts toward much higher compression, producing some
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Figure 4. Radial stress at Fout = 0 for incompressible material.

Figure 5. Radial stress at Fout = 1 for compressible material.

Figure 6. Radial stress at Fout = 1 for incompressible material.

of the largest negative σr values at the boundary. This indi-
cates a coupled effect in which the same grading (large m) can

amplify boundary stress depending on material compressibility.
For the incompressible case (ν = 0.5) Fig. 6 the overall
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compressive magnitudes are even larger; for m = 3 and m = 4
produce pronounced, progressively increasing compression to-
ward the outer surface, while m = 5 again flattens the distribu-
tion and maintains very low compressive levels across the ra-
dius. Thus, in the incompressible limit the grading parameter m
becomes the dominant control on stress localization – lower m
concentrates stress at the boundary, and higher m (here m = 5)
effectively suppresses that concentration. Thus, the application
of an outward load increases radial compressive stress magni-
tudes overall, but by appropriate selection of m and ν one can
either exacerbate or strongly reduce stress concentration at the
outer surface – a useful design lever for tailoring the mechanical
response of graded rotating cylinders.

In the absence of Internal load, the results are totally alinged
with Ref. [23].

5. Conclusion

This study examined the stress response of a function-
ally graded rotating disc composed of compressible and in-
compressible materials under varying grading parameters (m),
Poisson’s ratios (ν), and external loading conditions. The re-
sults demonstrate that compressible materials (ν < 0.5) ex-
hibit higher stress magnitudes and sharper gradients, with ra-
dial stress (σr) showing stronger compression near the inner ra-
dius. The grading parameter m further amplifies these effects in
compressible media, either intensifying or reducing boundary
stress depending on the load direction. In contrast, incompress-
ible materials (ν = 0.5) reveal more uniform stress distributions
with significantly reduced magnitudes, where the role of m be-
comes negligible. Outer surface loading (Fout = 1) produces the
highest compressive stresses, while internal loading (Fout = −1)
and unloaded cases (Fout = 0) highlight the interplay between
material compressibility and gradation in governing stress lo-
calization. Overall, the findings suggest that incompressible-
like FGMs are advantageous for minimizing boundary stress
concentrations, enhancing durability, and reducing failure risks
in high-performance rotating components such as aerospace
rotors, pressure vessels, and advanced machinery. However,
the study is limited by the assumptions of symmetric loading
and purely elastic response, without considering thermal or dy-
namic effects, and by reliance on ideal gradation models, war-
ranting experimental validation for broader practical applicabil-
ity.

Data availability

No additional data was used beyond those presented in the
submitted manuscript.
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APPENDIX A.

Nomenclature

b disc’s external and
a internal radii
u Displacement in radial direction
w Displacement in axial direction
v Displacement in Tangential direction
β f (r), r is radius

r, z,θ Radial, axial and circumferential direction
ω Angular velocity of rotation
ρ Density of material
E Young’s Modulus

Ti j Stress tensor
B1, B2
B3, B4

}
Constants of integration

Ω2 angular velocity
σr Radial stress component (Trr/Y)
σθ Circumferential stress component (Tθθ/Y)
Θ Temperature
δi j Kronecker’s delta function
α Coefficient of thermal expansion
Θ1 (α0Θ0

Y )
ν Poisson Ratio
m non-homogeneity parameter
ei j strain component

9

http://divk.inovacionicentar.rs/ivk/ivk12/065-IVK1-2012-TP.pdf
http://divk.inovacionicentar.rs/ivk/ivk12/065-IVK1-2012-TP.pdf
https://doi.org/10.1108/EC-05-2015-0110
https://doi.org/10.1108/EC-05-2015-0110
https://doi.org/10.1063/5.0235869
https://doi.org/10.1063/5.0235869
https://doi.org/10.1002/zamm.202401253
https://doi.org/10.1002/zamm.202401253
https://doi.org/10.1002/zamm.202401011
https://doi.org/10.1002/zamm.202401011
https://doi.org/10.1063/5.0235966
https://doi.org/10.1002/zamm.202400254
https://doi.org/10.1002/zamm.202400254
https://doi.org/10.69644/ivk-2024-03-0309
https://doi.org/10.69644/ivk-2024-03-0305
https://doi.org/10.69644/ivk-2024-03-0305
https://doi.org/10.69644/ivk-2024-03-0301
https://doi.org/10.69644/ivk-2024-02-0167
https://doi.org/10.69644/ivk-2024-02-0167
https://doi.org/10.69644/ivk-2024-02-0167
https://doi.org/10.69644/ivk-2024-02-0167

