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Abstract

This study introduces the Improved Fletcher-Reeves (IFR)-Improved Dai-Yuan (IDY) hybrid conjugate gradient method, which combines the
strengths of the IFR and IDY parameters through a minimum-operator strategy to enhance robustness in unconstrained optimization. The method
is shown to satisfy descent and global convergence properties under the strong Wolfe line search. Numerical experiments on 134 benchmark
functions demonstrate that IFR-IDY achieves superior performance, solving 98 problems more than IFR and IDY and exhibiting faster CPU
times and fewer iterations in most cases. The method is also used to solve an IDX30 portfolio optimization problem, which results in an optimal
allocation with an expected return of 0.00042 and a risk of 0.000050545. These results highlight the efficiency of IFR-IDY and its practical
applicability in real-world decision-making.
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1. Introduction

Optimization problems are prevalent in everyday life. For
example, a driver may seek the fastest route to a destination,
a trader may aim to maximize profits, or a manufacturer may
strive to design the most efficient production process. Such

∗Corresponding author Tel. No: +62-8988072292.
Email address: m.malik@sci.ui.ac.id (Maulana Malik)

problems are addressed by identifying the best possible solu-
tion to a given task [1]. The optimal solution depends on the
objective of the problem, which is mathematically expressed
through an objective function. An objective function serves as
a quantitative measure—such as time, profit, or other numer-
ical criteria—determined by specific characteristics known as
variables [2]. Optimization is achieved by selecting values for
these variables such that the objective function attains its opti-
mal value.
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The conjugate gradient method is a widely used approach
for solving large linear systems and can also be adapted for
nonlinear optimization problems [3]. Originally introduced
by Hestenes and Stiefel [4] for solving linear systems with
positive-definite coefficient matrices, it became known as the
linear conjugate gradient method. Later, Fletcher and Reeves
[5] extended the method to address large-scale nonlinear opti-
mization problems, leading to the development of the nonlinear
conjugate gradient method [2]. Owing to its simple iterative
formula and relatively low memory requirements, the conju-
gate gradient method is regarded as one of the most efficient
techniques for unconstrained optimization [3].

To date, numerous variants of the conjugate gradient
method have been developed to address optimization problems.
According to Andrei [1], the primary differences among these
methods lie in two aspects: the strategy used to update the
search direction at each iteration and the computational proce-
dure employed to determine the step size along that direction.
Nevertheless, all conjugate gradient methods are founded on the
same core principle—the search direction is selected to satisfy
the descent condition. In general, conjugate gradient methods
can be categorized into several classes, including standard con-
jugate gradient methods, hybrid conjugate gradient methods,
spectral conjugate gradient methods, and three-term conjugate
gradient methods [1].

Several well-known standard conjugate gradient methods
include the Hestenes–Stiefel (HS) [4], Fletcher–Reeves (FR)
[5], Polak–Ribiere–Polyak (PRP) [6], Conjugate Descent (CD)
of Fletcher [7], Liu–Storey (LS) [8], and Dai–Yuan (DY) [9]
methods. Over time, these standard methods have been exten-
sively modified to enhance their convergence properties and nu-
merical performance. Jiang and Jian [10] proposed two such
methods, namely the Improved Fletcher–Reeves (IFR) and Im-
proved Dai–Yuan (IDY) methods, as refinements of the stan-
dard FR and DY approaches. The main idea behind these im-
provements was to combine the conjugate parameters of the FR
and DY methods with the second inequality condition of the
strong Wolfe line search procedure [10]. Both IFR and IDY
methods have been proven to satisfy the global convergence and
descent conditions under certain assumptions and when using
the strong Wolfe line search. However, despite meeting these
theoretical properties, both methods exhibit limited efficiency,
as some test functions remain unsolved. Further details on mod-
ifications of the conjugate gradient methods can be found in
[11–17].

Therefore, building upon the above discussion and consid-
ering the strengths and limitations of the IFR and IDY conjugate
gradient methods, this paper proposes a hybrid IFR–IDY conju-
gate gradient parameter for solving unconstrained optimization
problems. The main contributions of this study are as follows:

• Proposing a novel hybrid IFR–IDY conjugate gradient
method that integrates the characteristics of the IFR and
IDY methods.

• Demonstrating that the proposed method satisfies the de-
scent property under the strong Wolfe line search proce-
dure.

• Establishing the global convergence of the proposed
method under appropriate assumptions.

• Evaluating the efficiency and robustness of the proposed
method in comparison with existing conjugate gradient
algorithms in terms of computational performance.

• Illustrating the practical applicability of the proposed
method through its implementation in stock portfolio se-
lection problems.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the proposed algorithm incorporating parameter
mixing. Section 3 discusses the descent property and global
convergence analysis under suitable assumptions. Section 4
reports the results of numerical experiments, while Section 5
demonstrates the application of the proposed method to portfo-
lio selection problems. Finally, Section 6 provides concluding
remarks.

2. A hybrid IFR-IDY conjugate gradient algorithm

In this section, we start with the following general mini-
mization problem:

min
x∈Rn

f (x) (1)

where f : Rn → R is a continously differentiable function with
its gradient ∇ f (xk) by gk and R denotes the set of real num-
ber. This study focuses on conjugate gradient (CG) methods for
solving problem (1). The CG algorithm addresses problem (1)
by generating a sequence of iterative points as follows [1]:

xk+1 = xk + αkdk, k = 1, 2, . . . , (2)

where x1 is the initial point, xk is the k-th approximation to the
solution, and dk is the search direction, defined by:

dk =

−gk, k = 1,
−gk + βkdk−1, k > 1,

(3)

where βk is the conjugate gradient parameter [2], and αk > 0 is
the step length, obtained either by exact or inexact line search.
In this paper, we employ an inexact line search, namely the
strong Wolfe line search, defined as follows:

f (xk + αkdk) ≤ f (xk) + δαkgT
k dk, (4)∣∣∣g(xk + αkdk)T dk

∣∣∣ ≤ −σgT
k dk, (5)

where gT
k is transpose gk and 0 < δ < σ < 1 [1].

There are many choices for the parameter βk in the conju-
gate gradient method. Among them are βIFR

k and βIDY
k , corre-

sponding to the IFR and IDY conjugate gradient methods, re-
spectively.

The IFR and IDY conjugate gradient methods, introduced
by Jiang and Jian [10], are modified versions of the FR and DY
conjugate gradient methods, respectively. Al-Baali [18] demon-
strated that the FR method satisfies the descent condition and
achieves global convergence under the strong Wolfe line search
with 0 < σ < 1

2 .
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Table 1: Numerical results of IFR, IDY, and hybrid IFR-IDY conjugate
gradient methods.

Fungsi Dimensi IFR IDY IFR-IDY
TCPU Itr TCPU Itr TCPU Itr

COSINE
6000 0.4121 134 F F 0.2947 49

10000 13.0754 413 F F 1.4218 36
80000 F F F F 27.4349 74

DIXMAANA 2000 1.645 117 0.5862 25 0.4593 17
30000 7.8969 54 4.7393 29 4.4518 22

DIXMAANB 8000 2.4661 54 2.0151 30 1.6669 23
16000 9.6033 108 2.966 25 5.6459 51

DIXMAANC 900 0.4875 73 0.36 34 0.2261 19
9000 1.9547 36 1.6753 21 1.4330 15

DIXMAAND 4000 2.3487 94 1.7341 44 1.3340 33
30000 27.6264 191 F F 14.8430 75

DIXMAANE 800 4.7696 808 3.3623 463 4.6260 755
16000 F F 139.1142 1423 F F

DIXMAANF 5000 F F 65.4642 1561 F F
20000 F F F F F F

DIXMAANG 4000 F F 46.6299 1794 F F
30000 F F F F F F

DIXMAANH 2000 F F 16.36363 1290 F F
50000 F F F F F F

DIXMAANI 120 F F F F F F
12 0.1601 686 0.1958 423 0.3058 544

DIXMAANJ 1000 F F 16.3476 1932 F F
5000 36.61 972 29.6561 705 64.3916 1344

DIXMAANK 4000 15.8173 630 26.8473 745 37.6879 1032
40 0.3979 1026 0.633 759 0.3577 963

DIXMAANL 800 2.1393 392 6.0858 903 2.8627 324
8000 25.026 521 47.585 769 57.6559 815

DIXON3DQ 150 F F 0.1612 860 F F
15 0.0421 466 0.0474 219 0.0834 449

DQDRTIC 9000 0.3728 366 0.5008 210 0.6056 245
90000 1.7841 280 1.5862 214 2.0224 288

DQRTIC 5000 1.3288 124 1.3373 74 0.5305 30
150000 43.141 164 94.5834 226 22.6362 100

EDENSCH
7000 3.8466 248 7.4374 423 1.0488 57

40000 11.3761 148 15.6409 159 4.5358 99
500000 305.1124 313 1702.5 1619 138.8814 463

EG2 35 F F 0.1386 346 0.0718 385
1000 0.0439 430 0.0603 225 0.1094 397

FLETCHCR
1000 0.1148 565 0.0623 165 0.061 168

50000 4.2824 850 F F 3.0733 533
200000 10.7434 579 F F 4.7304 196

FREUROTH 460 F F F F F F
10 0.1074 1415 0.0848 429 0.1386 867

GENROSE 1000 F F F F F F
100 F F 0.2445 1409 F F

HIMMELBG 70000 0.0614 2 0.0878 2 0.089 2
240000 0.0935 2 0.2289 2 0.2273 2

LIARWHD 15 0.0346 186 0.0245 103 0.0406 164
1000 0.0329 239 0.0543 192 0.1352 722

PENALTY1 1000 0.6525 232 F F F F
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8000 101.6616 156 25.6781 101 5.9235 34

QUARTC
4000 0.685 95 1.1156 116 0.5065 44

80000 19.7324 150 51.1821 213 19.7324 80
500000 470.2391 187 598.165 297 80.4703 120

TRIDIA 300 0.182 1816 0.1117 901 0.3268 1877
50 0.0574 624 0.0415 343 0.1135 582

WOODS 150000 4.2713 396 6.1109 481 15.9805 1155
200000 10.8526 760 7.531 487 17.151 1017

BDEXP
5000 0.0296 2 0.0059 2 0.0176 2

50000 0.0553 2 0.0758 2 0.1398 2
500000 0.4771 2 0.6053 2 0.9591 2

EXDENSCHNF
90000 1.2392 128 1.918 207 0.3712 24
280000 2.9712 120 2.2558 78 3.2893 99
600000 5.8497 119 6.5723 104 1.9089 25

EXDENSCHNB
6000 0.0768 119 0.0269 56 0.0205 16

24000 0.3082 129 0.1403 77 0.1034 19
300000 2.6393 129 3.063 124 0.8791 19

GENQUARTIC
300000 0.061 29 0.1087 83 0.0515 15

9000 1.0657 125 0.8221 92 0.4608 32
90000 5.6442 142 6.015 122 1.8367 33

BIGGSB1 110 0.1004 1046 0.0541 531 0.2719 1401
200 F F 0.1184 1048 F F

SINE 100000 F F F F F F
50000 F F F F F F

FKETCBV2 15 0.0216 97 0.032 75 0.0302 118
55 F F 0.0747 542 F F

NONSCOMP 5000 0.121 240 0.2 191 0.0675 59
80000 2.1955 309 F F F F

POWER1 150 F F 0.2939 1820 F F
90 F F 0.2148 1127 F F

RAYDAN1 500 0.152 659 0.5071 1593 0.134 364
5000 F F F F 1.4426 1586

RAYDAN2
2000 0.0291 22 0.0547 21 0.0732 31

20000 0.1856 18 1.0939 51 0.3319 17
500000 9.3988 45 22.1415 83 9.3988 181

DIAGONAL1 800 F F F F 1.4372 1266
2000 F F F F 2.8432 1748

DIAGONAL2 100 0.0333 179 0.0608 161 0.0759 193
1000 0.4238 625 0.3625 274 0.9859 699

DIAGONAL3 500 F F F F 0.5186 888
2000 F F F F F F

BV 2000 4.8518 66 9.7677 119 14.578 174
20000 1.0148 0 1.2975 0 1.6111 0

IE 500 37.0519 80 15.5645 31 7.7288 14
1500 790.0997 117 302.2989 65 54.8539 17

SINGX 1000 14.6019 707 14.9872 519 F F
2000 200.4983 1449 136.8045 1696 F F

LIN 100 0.0971 14 0.0697 14 0.0491 14
500 0.234 13 0.5153 13 0.4844 13

OSB2 100 0.3566 1346 0.3382 765 F F

PEN1 200 F F F F 0.9877 533
1000 F F F F 49.2886 1026

PEN2 100 0.2949 869 0.4253 697 0.3162 483
110 1.1198 1575 F F 0.4939 245

ROSEX 500 1.8315 269 2.1154 175 7.3636 1104
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1000 10.7184 362 10.42 165 28.6056 794

TRID 500 F F F F F F
50 0.1371 530 0.178 322 0.0928 264

HIMMELH 70000 F F 11.4835 245 6.7694 112
240000 16.3869 100 F F 16.7023 94

BADSCB 2 F F F F F F
BD 4 F F F F 0.108 454

BIGGS 6 F F 0.1056 415 F F
OSB1 11 F F F F F F

WHITE 10 0.1933 636 0.0559 247 0.2346 1061

EXBEALE 5000 6.1376 690 F F 4.5667 451
10000 F F F F F F

HIMMELBC 500000 8.4679 192 5.2873 117 1.1468 25
1000000 11.803 147 9.7806 119 8.7409 101

ARWHEAD1 100 F F F F 0.0102 20
1000 F F F F F F

BDQRTIC 10 F F F F F F

ENGVAL11 500000 126.3965 1092 F F 54.1269 856
1000000 F F F F 144.354 1418

DENSCHNA 500000 179.1522 125 103.6448 60 63.0315 103
1000000 367.4751 125 358.8993 99 28.6341 29

DENSCHNB 500000 5.3705 144 1.7115 48 1.2008 22
1000000 6.6871 99 11.3401 141 2.4978 29

DENSCHNC 10 0.0873 237 0.0584 205 0.013 49
500 0.339 209 F F F F

DENSCHNF 500000 9.5053 178 F F 7.3281 141
1000000 F F F F F F

ENGVAL8 500000 F F F F F F
1000000 F F F F 226.6371 1126

Table 2. Summary of functions successfully and unsuccessfully solved by the IFR-IDY, IFR, and IDY methods.
Method Successful Unsuccessful
IFR-IDY 98 36
IFR 92 42
IDY 93 41

5



Mulansari et al. / J. Nig. Soc. Phys. Sci. 8 (2026) 3105 6

Figure 1. Performance profile curves based on number of iteration.

Similarly, Dai and Yuan [19] showed that the DY method
satisfies the descent condition and converges globally under
the Wolfe line search. Although both methods possess strong
convergence properties, their numerical performance can suf-
fer from stagnation. Motivated by the strong Wolfe line search
framework, Jiang and Jian [10] proposed modifications to these
methods to enhance numerical performance while preserving
their convergence properties. The coefficients βk for the IFR
and IDY methods are defined as follows:

βIFR
k =

|gT
k dk−1|

−gT
k−1dk−1

· βFR
k

=
|gT

k dk−1|

−gT
k−1dk−1

·
∥gk∥

2

∥gk−1∥
2 . (6)

βIDY
k =

|gT
k dk−1|

−gT
k−1dk−1

· βDY
k

=
|gT

k dk−1|

−gT
k−1dk−1

·
∥gk∥

2

dT
k−1(gk − gk−1)

. (7)

The limitations of existing conjugate gradient methods con-
tinue to drive the development of new modifications aimed at
achieving both strong descent and global convergence proper-
ties while delivering improved numerical performance. Among
the well-known conjugate gradient methods are the LS [9]
and CD [5] methods. For general objective functions, the LS
method is recognized for its strong convergence properties;
however, it is often prone to stagnation in numerical perfor-
mance. In contrast, the CD method typically exhibits good
computational performance but may fail to converge in gen-
eral cases. To exploit the strengths of both approaches, Yang
et al. [20] proposed a hybrid LS–CD method in which the βk

coefficients are constructed using maximum and minimum op-
erators. The βk coefficients for the LS–CD hybrid conjugate
gradient method are defined as follows:

βLS−CD
k = max{0,min{βLS

k , β
CD
k }}, (8)

where βLS
k and βCD

k are defined as follows,

βLS
k = −

gT
k (gk − gk−1)

dT
k−1gk−1

, (9)

βCD
k = −

∥gk∥
2

dT
k−1gk−1

. (10)

Inspired by the modification process of the LS-CD method, in
this study, similar modifications were made to the IFR and IDY
gradient conjugate methods. This method is called the IFR-IDY
hybrid gradient conjugate method with the parameter βk given
as follows.

βIFR−IDY
k = max{0,min{βIFR

k , β
IDY
k }}, (11)

where βIFR
k and βIDY

k are given by the equations (6) and (7).
However, since Jiang & Jian (2018) have shown that the conju-
gate parameters βIFR

k ≥ 0 and βIDY
k ≥ 0, then the form (11) is

equivalent to the following form.

βIFR−IDY
k = min{βIFR

k , β
IDY
k }. (12)

The algorithm of the proposed IFR-IDY hybrid conjugate
gradient method is given as follows.

Algorithm 1 The Hybrid IFR-IDY Conjugate Gradient Algo-
rithm

1: Select an initial guess x1 ∈ Rn and choose the Wolfe pa-
rameters δ and σ such that 0 < σ < δ < 1, d1 = −g1,
ϵ > 0.

2: If ∥gk∥ ≤ ϵ, stop; otherwise go to Step 3.
3: Compute the step size αk using the strong Wolfe line search

procedures (4) and (5).
4: Set xk+1 = xk + αkdk. Compute the gradient gk+1 := g(xk+1)

and the parameter βk+1 using (12).
5: Compute the search direction dk+1 = −gk+1 + βk+1dk, set

k := k + 1, and return to Step 2.

3. Convergence analysis

In this section, we analyze the convergence of the hy-
brid IFR-IDY conjugate gradient method by showing that this
method satisfies the descent condition and global convergence
properties. The following assumptions are required in the
proof.

Assumption 1. The level set Λ = {x ∈ Rn | f (x) ≤ f (x1)} is
finite, where x1 is the starting point.

Assumption 2. In some neighborhood U of Λ, g(x) is contin-
uously differentiable and its gradient is Lipschitz continuous;
i.e., there exists a constant L > 0 such that

∥g(x) − g(y)∥ ≤ L∥x − y∥, ∀x, y ∈ U.

6
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Table 3. List of stocks that have been constituents of the IDX30 Index for the period of February 2022 - January 2024
No. Code Stock Name
1 ADRO Adaro Energy Tbk
2 ANTM Aneka Tambang Tbk
3 ASII Astra International Tbk
4 BBCA PT Bank Central Asia Tbk
5 BBNI PT Bank Negara Indonesia (Persero) Tbk
6 BBRI PT Bank Rakyat Indonesia (Persero) Tbk
7 BMRI PT Bank Mandiri (Persero) Tbk
8 BRPT Barito Pacific Tbk
9 BUKA PT Bukalapak.com Tbk
10 CPIN Charoen Pokphand Indonesia Tbk
11 EMTK Elang Mahkota Teknologi Tbk
12 INCO Vale Indonesia Tbk
13 INDF Indofood Sukses Makmur Tbk
14 KLBF Kalbe Farma Tbk
15 MDKA PT Merdeka Copper Gold Tbk.
16 PGAS PT Perusahaan Gas Negara Tbk.
17 PTBA Bukit Asam Tbk
18 SMGR Semen Indonesia (Persero) Tbk
19 TLKM PT Telkom Indonesia (Persero) Tbk
20 TOWR Sarana Menara Nusantara Tbk
21 UNTR United Tractors Tbk
22 UNVR Unilever Indonesia Tbk

The conjugate gradient method algorithm must guarantee
that the search direction or dk is a descent direction. This is to
ensure that the search direction descends towards the optimum
point. Based on the form βIFR−IDY

k = min(βIFR
k , β

IDY
k ), then

in proving the descent condition it is divided into two cases,
namely βIFR−IDY

k = βIFR
k and βIFR−IDY

k = βIDY
k .

Therefore, to prove the descent condition of the hybrid IFR-
IDY conjugate gradient method, the two theorems below are
needed.

The first theorem below establishes the descent condition
for the IFR conjugate gradient method. In what follows, we
restate the proof in accordance with the original article [10],
while providing additional clarification to enhance readability.

Theorem 1. Suppose Assumptions 1 and 2 are satisfied and

0 < σ <
√

2
2 , and dk is generated by the IFR conjugate gradient

method, then

gT
k dk

∥gk∥
2 ≤ −1 +

σ2

1 − σ2 , ∀k ≥ 1. (13)

Proof. The proof is done by mathematical induction. Consider
again the direction of the IFR gradient conjugate method search
on (3). For k = 1, by multiplying both sides of (3) by gT

1 the
following result is obtained

gT
1 d1 = gT

1 (−g1) = −∥g1∥
2 ≤ 0.

Therefore, for k = 1, (13) is satisfied. Furthermore, assuming
that (13) is satisfied for k − 1 (k > 2), the following proves that
(13) is also satisfied for k.

Next, for k ≥ 2, by multiplying both sides of (3) by gT
k and

substituting the form (6) we obtain

gT
k dk = gT

k (−gk + β
IFR
k dk−1)

= −∥gk∥
2 + gT

k (βIFR
k dk−1)

= −∥gk∥
2 +

|gT
k dk−1|

−gT
k−1dk−1

∥gk∥
2

∥gk−1∥
2 gT

k dk−1. (14)

By dividing both sides of (14) by ∥gk∥
2 we get

gT
k dk

∥gk∥
2 = −1 +

|gT
k dk−1|

−gT
k−1dk−1

∥gk∥
2

∥gk−1∥
2

gT
k dk−1

∥gk∥
2 . (15)

Then, by using the strong Wolfe search line procedure (5)
and (15) we obtain

gT
k dk

∥gk∥
2 = −1 +

|gT
k dk−1|

−gT
k−1dk−1

∥gk∥
2

∥gk−1∥
2

gT
k dk−1

∥gk∥
2

≤ −1 +
−σgT

k−1dk−1

−gT
k−1dk−1

1
∥gk−1∥

2 gT
k dk−1

= −1 + σ
gT

k dk−1

∥gk−1∥
2

≤ −1 + σ
|gT

k dk−1|

∥gk−1∥
2 .

(16)

7
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Table 4. Selected stocks to form a portfolio optimization model.
No. Stock Code Return Expectation
1 ADRO 0.018%
2 ANTM 0.054%
3 ASII 0.029%
4 BRPT 0.029%
5 BUKA 0.192%
6 CPIN 0.082%
7 EMTK 0.354%
8 INCO 0.071%
9 INDF 0.008%
10 KLBF 0.041%
11 MDKA 0.104%
12 PGAS 0.061%
13 PTBA 0.046%
14 SMGR 0.041%
15 TLKM 0.019%
16 TOWR 0.048%
17 UNTR 0.072%
18 UNVR 0.023%

Table 5. Proporsi saham portofolio optimal
No. Nama Saham Proporsi Alokasi Modal
1 ADRO -2.83% -Rp28,278,912.01
2 ANTM 3.94% Rp39,383,536.48
3 ASII 6.87% Rp68,700,314.02
4 BRPT 0.86% Rp8,586,129.60
5 BUKA 2.02% Rp20,182,389.91
6 CPIN 3.96% Rp39,582,077.47
7 EMTK 1.97% Rp19,711,542.18
8 INCO 5.73% Rp57,292,998.83
9 INDF 28.92% Rp289,191,223.80

10 KLBF 1.45% Rp14,455,135.91
11 MDKA -3.17% -Rp31,745,869.35
12 PGAS 6.29% Rp62,910,466.58
13 PTBA 4.89% Rp48,851,283.22
14 SMGR 1.75% Rp17,464,651.13
15 TLKM 19.36% Rp193,615,909.35
16 TOWR 5.63% Rp56,265,474.07
17 UNTR 4.27% Rp42,719,069.83
18 UNVR 8.11% Rp81,112,578.99

Next, using the strong Wolfe search line (5), (16), and (13)
for k − 1 then,

gT
k dk

∥gk∥
2 ≤ −1 + σ

|gT
k dk−1|

∥gk−1∥
2

≤ −1 − σ2 gT
k−1dk−1

∥gk−1∥
2

≤ −1 +
σ2

1 − σ2 . (17)

Thus, it is proven that (13) is satisfied ∀k ≥ 1.

Next, the second theorem establishes the descent condition
for the IDY conjugate gradient method. As before, we restate

the proof following the structure of the original article and pro-
vide additional clarification where appropriate.

Theorem 2. Suppose Assumptions 1 and 2 are satisfied and

0 < σ <
√

2
2 , and dk is generated by the IDY conjugate gradient

method, then the following descent condition is satisfied

gT
k dk ≤ −(1 − σ)∥gk∥

2, ∀k ≥ 1. (18)

Proof. The proof is done by mathematical induction. Recall the
search direction of the IDY method shown by (3). For k = 1,
by multiplying both sides by gT

1 , we get the following result

gT
1 d1 = gT

1 (−g1) = −∥g1∥
2 ≤ 0.

Therefore, for k = 1, (13) is satisfied. Furthermore, assuming
that (13) is satisfied for k − 1 (k > 2), we prove that (13) is also
satisfied for k.

Next, for k ≥ 2, by multiplying both sides of (3) by gT
k and

substituting the form βIDY
k we get the following result,

gT
k dk = gT

k (−gk + β
IDY
k dk−1)

= −∥gk∥
2 + βIDY

k gT
k dk−1

= −∥gk∥
2 +

|gT
k dk−1|

−gT
k−1dk−1

·
∥gk∥

2

dT
k−1(gk − gk−1)

· gT
k dk−1. (19)

By algebraic manipulation the form (19) is obtained,

gT
k dk = −∥gk∥

2 +
|gT

k dk−1|

−gT
k−1dk−1

·
∥gk∥

2

dT
k−1(gk − gk−1)

· dT
k−1gk

= −∥gk∥
2 +

|gT
k dk−1|

−gT
k−1dk−1

·
∥gk∥

2

dT
k−1(gk − gk−1)

· (dT
k−1(gk − gk−1) + gT

k−1dk−1)

= −∥gk∥
2 +

|gT
k dk−1|

−gT
k−1dk−1

· ∥gk∥
2 +

|gT
k dk−1|

−gT
k−1dk−1

·
∥gk∥

2 gT
k−1dk−1

dT
k−1(gk − gk−1)

= −
(
1 −

|gT
k dk−1|

−gT
k−1dk−1

)
∥gk∥

2 +
|gT

k dk−1|

−gT
k−1dk−1

·
∥gk∥

2 gT
k−1dk−1

dT
k−1(gk − gk−1)

.

(20)

Before further analyzing the form of (20), several condi-
tions are required.

By describing the strong Wolfe search line procedure (5) we
get,

|g(xk + αkdk)T dk |≤ −σgT
k dk

⇐⇒ |gT
k+1dk |≤ −σgT

k dk

⇐⇒ |gT
k dk−1|≤ −σgT

k−1dk−1

⇐⇒
|gT

k dk−1|

−gT
k−1dk−1

≤ σ

⇐⇒
|gT

k dk−1|

−gT
k−1dk−1

∥gk∥
2 ≤ σ∥gk∥

2

⇐⇒ −∥gk∥
2 +

|gT
k dk−1|

−gT
k−1dk−1

∥gk∥
2 ≤ −∥gk∥

2 + σ∥gk∥
2

⇐⇒ −(1 −
|gT

k dk−1|

−gT
k−1dk−1

)∥gk∥
2 ≤ −(1 − σ)∥gk∥

2. (21)

8
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Figure 2. Performance profile curves based on CPU time.

Furthermore, based on the strong Wolfe search line proce-
dure (5) the following inequality is also obtained,

|g(xk + αkdk)T dk |≤ −σgT
k dk

⇐⇒ |gT
k+1dk |≤ −σgT

k dk

⇐⇒ |gT
k dk−1|≤ −σgT

k−1dk−1

⇐⇒ σgT
k−1dk−1 ≤ gT

k dk−1 ≤ −σgT
k−1dk−1.

Based on Wolfe’s strong search line inequality above, then

dT
k−1(gk − gk−1) = gT

k dk−1 − dT
k−1gk−1

≥ σgT
k−1dk−1 − dT

k−1gk−1

= σdT
k−1gk−1 − dT

k−1gk−1

= (σ − 1)dT
k−1gk−1

= (σ − 1)gT
k−1dk−1. (22)

Since 0 < σ <
√

2
2 , and assuming that (18) holds for k − 1,

that is, gT
k−1dk−1 < 0, then from (22) we get

dT
k−1(gk − gk−1) > 0.

Then assuming that gT
k−1dk−1 < 0 and with algebraic manip-

ulations we obtain

gT
k−1dk−1 < 0 ⇐⇒ ∥gk∥

2gT
k−1dk−1 < 0

⇐⇒
∥gk∥

2gT
k−1dk−1

dT
k−1(gk − gk−1)

< 0

⇐⇒ |gT
k dk−1| ·

∥gk∥
2gT

k−1dk−1

dT
k−1(gk − gk−1)

< 0

⇐⇒
|gT

k dk−1|

−gT
k−1dk−1

·
∥gk∥

2gT
k−1dk−1

dT
k−1(gk − gk−1)

< 0. (23)

Then a further analysis of the form (20) is carried out using
(21) and (23),

gT
k dk = −(1 −

|gT
k dk−1|

−gT
k−1dk−1

)∥gk∥
2 +

|gT
k dk−1|

−gT
k−1dk−1

·

∥gk∥
2 · gT

k−1dk−1

dT
k−1(gk − gk−1)

≤ −(1 − σ)∥gk∥
2 +

|gT
k dk−1|

−gT
k−1dk−1

·
∥gk∥

2 · gT
k−1dk−1

dT
k−1(gk − gk−1)

≤ −(1 − σ)∥gk∥
2. (24)

Thus, the form (18) is satisfied for ∀k ≥ 1.

Using theorems 1 and 2 below, we give a theorem that
shows that the hybrid IFR-IDY conjugate gradient method sat-
isfies the descent condition.

Theorem 3. Suppose Assumptions 1 and 2 are satisfied and dk

is constructed by Algorithm 1. If the parameter σ is 0 < σ <
√

2
2 , then the following descent condition is satisfied

gT
k dk < 0. (25)

Proof. First, consider (3) again. For k = 1 and by multiplying
both sides by gT

k , we get

gT
k dk = gT

k (−gk) = −∥gk∥
2 < 0.

So, for k = 1, the form (25) is satisfied. Then, for k ≥ 2, by
multiplying both sides (3) by gT

k we get

gT
k dk = gT

k (−gk + β
IFR−IDY
k dk−1)

= −∥gk∥
2 + gT

k (βIFR−IDY
k dk−1). (26)

Then, note that βIFR−IDY
k = min(βIFR

k , β
IDY
k ). This implies,

βIFR−IDY
k has two possible values, namely βIFR−IDY

k = βIFR
k or

βIFR−IDY
k = βIDY

k . Thus, the proof is divided into two cases.

• Case 1: βIFR−IDY
k = βIFR

k
By substituting the value of βIFR−IDY

k = βIFR
k into (26),

the following results are obtained,

gT
k dk = −∥gk∥

2 + gT
k (βIFR−IDY

k dk−1)

= −∥gk∥
2 + gT

k (βIFR
k · dk−1). (27)

Based on Theorem 1 and the form of (27), we obtain

gT
k dk = −∥gk∥

2 + gT
k (βIFR

k · dk−1) < 0.

Thus, for the case βIFR−IDY
k = βIFR

k , (25) is satisfied.

• Case 2: βIFR−IDY
k = βIDY

k By substituting the value of
βIFR−IDY

k = βIDY
k into (26), the following results are ob-

tained

gT
k dk = −∥gk∥

2 + gT
k (βIFR−IDY

k dk−1)

= −∥gk∥
2 + gT

k (βIDY
k · dk−1). (28)

Based on Theorem 2 and the form (28), we obtain

gT
k dk = −∥gk∥

2 + gT
k (βIDY

k · dk−1) < 0.

Thus, for the case βIFR−IDY
k = βIDY

k , (25) is satisfied.
9



Mulansari et al. / J. Nig. Soc. Phys. Sci. 8 (2026) 3105 10

Based on the results of the description for the two cases above,
namely βIFR−IDY

k = βIFR
k and βIFR−IDY

k = βIDY
k it has been shown

that the hybrid IFR-IDY gradient conjugate method satisfies the
descent condition.

Before proving the global convergence property of the hy-
brid IFR-IDY conjugate gradient method, the following Lemma
is given first.

Lemma 1. Suppose Assumptions 1 and 2 are satisfied. The se-
quence {xk} is generated based on the equation with dk satisfy-
ing the descent condition, and αk is generated using the strong
Wolfe search line procedure then the following inequality is sat-
isfied,
∞∑

k=0

(gT
k dk)2

∥gk∥
2 < +∞. (29)

Proof. Consider again the inequality of the two strong Wolfe
search line procedures (5) as follows

|gT
k+1dk | ≤ −σgT

k dk

⇐⇒ σgT
k dk ≤ gT

k+1dk ≤ −σgT
k dk

⇐⇒ σgT
k dk ≤ gT

k+1dk. (30)

By adding both sides (30) with −gT
k dk we get

σgT
k dk ≤ gT

k+1dk

⇐⇒ σgT
k dk − gT

k dk ≤ gT
k+1dk − gT

k dk

⇐⇒ (σ − 1)gT
k dk ≤ (gT

k+1 − gT
k )dk. (31)

Based on Assumptions 2, (2), and the Cauchy-Scwarz in-
equality, the following results are obtained,

∥g(xk+1) − g(xk)∥ ≤ L∥xk+1 − xk∥

⇐⇒ ∥gk+1 − gk∥ ≤ L∥xk+1 − xk∥

⇐⇒ ∥gk+1 − gk∥∥dk∥ ≤ L∥xk+1 − xk∥∥dk∥

⇐⇒ ∥gk+1 − gk∥∥dk∥ ≤ L∥αkdk∥∥dk∥

⇐⇒ ∥gk+1 − gk∥∥dk∥ ≤ Lαk∥dk∥
2. (32)

Based on the Cauchy-Scwarz inequality and (32) note that,

(gT
k+1 − gT

k )dk = (gk+1 − gk)T dk

≤ ∥gk+1 − gk∥∥dk∥

≤ L∥αk∥dk∥
2. (33)

Based on (31) and (33) the following results are obtained,

(σ − 1)gT
k dk ≤ Lαk∥dk∥

2

⇐⇒ αk ≥
(σ − 1)gT

k dk

L∥dk∥
2 . (34)

Based on the strong Wolfe search line procedure (4) the fol-
lowing results are obtained,

f (xk + αkdk) ≤ f (xk) + δαkgT
k dk

⇐⇒ f (xk) − f (xk + αkdk) ≥ −δαkgT
k dk

≥ −δ(
(σ − 1)gT

k dk

L∥dk∥
2 )gT

k dk

≥ Z
(gT

k dk)2

∥dk∥
2 . (35)

with Z = −δ(σ−1)
L > 0.

By substituting some values of k into (35), the following
results are obtained.
For k = 0,

f (x0) − f (x0 + α0d0) ≥ Z
(gT

0 d0)2

∥d0∥
2 .

Based on (2), we obtain

f (x0) − f (x1) ≥ Z
(gT

0 d0)2

∥d0∥
2 .

For k = 1,

f (x1) − f (x2) ≥ Z
(gT

1 d1)2

∥d1∥
2 .

For k = 2,

f (x2) − f (x3) ≥ Z
(gT

2 d2)2

∥d2∥
2 .

So on until k = n − 1 is obtained,

f (xn−1) − f (xn) ≥ Z
(gT

n−1dn−1)2

∥dn−1∥
2 .

So the following results are obtained,

f (xn−1) − f (xn) ≥ Z
∞∑

i=0

(gT
k dk)2

∥dk∥
2 .

Then, for n→ ∞

f (xn−1) − lim
n→∞

f (xn) ≥ Z
∞∑

i=0

(gT
k dk)2

∥dk∥
2

⇐⇒
f (xn−1) − limn→∞ f (xn)

Z
≥

∞∑
i=0

(gT
k dk)2

∥dk∥
2 .

Since f (x) is a bounded function, limn→∞ f (xn) has a finite
value, and so do f (x0) and Z. Since it has a finite value, this
means that

∑∞
i=0

(gT
k dk)2

∥dk∥
2 < ∞.

The following is a theorem stating that the hybrid IFR-
IDY conjugate gradient method satisfies the global convergence
property.

Theorem 4. Suppose Assumptions 1 and 2 hold and the se-
quence {xk} generated by Algorithm 1 with αk is determined
using the strong Wolfe search procedure (4) and (5), then

lim
k→∞

inf∥gk∥ = 0. (36)

10
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Proof. The proof of the above theorem is done by the method of
contradiction. Suppose (36) is not true, there exists a constant
γ > 0 such that ∥gk∥

2 ≥ γ,∀k.
Consider again the search direction equation (3),

dk = −gk + β
IFR−IDY
k dk+1

⇐⇒ dk + gk = β
IFR−IDY
k dk+1. (37)

By squaring both sides of (37) we get the following result,

(dk + gk)2 = (βIFR−IDY
k dk−1)2

⇐⇒ ∥dk∥
2 + 2gT

k dk + ∥gk∥
2 = (βIFR−IDY

k )2∥dk−1∥
2

⇐⇒ ∥dk∥
2 = (βIFR−IDY

k )2∥dk−1∥
2 − 2gT

k dk − ∥gk∥
2.

Next, by dividing both sides by (gT
k dk)2 we get the following

result,

∥dk∥
2

(gT
k dk)2

=
(βIFR−IDY

k )2∥dk−1∥
2 − 2gT

k dk − ∥gk∥
2

(gT
k dk)2

=
(βIFR−IDY

k )2∥dk−1∥
2

(gT
k dk)2

−
2gT

k dk

(gT
k dk)2

−
∥gk∥

2

(gT
k dk)2

=
(βIFR−IDY

k )2∥dk−1∥
2

(gT
k dk)2

−
2

gT
k dk
−
∥gk∥

2

(gT
k dk)2

=
(βIFR−IDY

k )2∥dk−1∥
2

(gT
k dk)2

− 1
∥gk∥

+
∥gk∥

gT
k dk

2 + 1
∥gk∥

2

≤
(βIFR−IDY

k )2∥dk−1∥
2

(gT
k dk)2

+
1
∥gk∥

2 . (38)

Note that βIFR−IDY
k = min(βIFR

k , β
IDY
k ). This implies that

βIFR−IDY
k has two possible values, namely βIFR−IDY

k = βIFR
k or

βIFR−IDY
k = βIDY

k . Thus, the proof is divided into two cases.
Case 1: βIDY

k < βIFR
k

That is, in this case βIFR−IDY
k = min(βIFR

k , β
IDY
k ) = βIDY

k . Look
again at (22) and (24). Since −(1 − σ)∥gk∥

2 < 0 it can be con-
cluded that,

gT
k dk ≤

|gT
k dk−1|

−gT
k−1dk−1

·
∥gk∥

2gT
k−1dk−1

dT
k−1(gk − gk−1)

= βIDY
k (gT

k−1dk−1). (39)

Next, by multiplying both sides of (39) by 1
(gT

k−1dk−1) , the follow-
ing result is obtained,

gT
k dk

(gT
k−1dk−1)

≥ βIDY
k . (40)

Next, by substituting (40) into (38) we get the following results,

∥dk∥
2

(gT
k dk)2

≤
(βIFR−IDY

k )2∥dk−1∥
2

(gT
k dk)2

+
1
∥gk∥

2

=
(βIDY

k )2∥dk−1∥
2

(gT
k dk)2

+
1
∥gk∥

2

≤

( gT
k dk

gT
k−1dk−1

)2∥dk−1∥
2

(gT
k dk)2

+
1
∥gk∥

2

=
∥dk−1∥

2

(gT
k−1dk−1)2

+
1
∥gk∥

2 . (41)

By substituting some values of k into (41) we get the fol-
lowing result: following.
For k = 2,

∥d2∥
2

(gT
2 d2)2

≤
∥d1∥

2

(gT
1 d1)2

+
1
∥g2∥

2

=
∥g1∥

2

(∥g1∥
2)2 +

1
∥g2∥

2

=
1
∥g1∥

2 +
1
∥g2∥

2

=

2∑
k=1

1
∥gk∥

2 .

For k = 3,

∥dk∥
2

(gT
k dk)2

≤
∥d2∥

2

(gT
2 d2)2

+
1
∥g3∥

2

≤
1
∥g1∥

2 +
1
∥g2∥

2 +
1
∥g3∥

2

=

3∑
k=1

1
∥gk∥

2 .

So on until for k = n,

∥dn∥
2

(gT
n dn)2 ≤

∥dn−1∥
2

(gT
n−1dn−1)2

+
1
∥gn∥

2 =

n∑
k=1

1
∥gk∥

2 . (42)

Since ∥gk∥
2 > γ ⇐⇒ 1

∥gk∥
2 ≤

1
γ
, the following results are

obtained,

1
∥gk∥

2 ≤
1
γ
⇐⇒

n∑
k=1

1
∥gk∥

2 ≤
n
γ
. (43)

Based on (42) and (43), the following results are obtained,

∥dn∥
2

(gT
n dn)2 ≤

n
γ

⇐⇒
(gT

n dn)2

∥dn∥
2 ≥

γ

n
. (44)

Thus, by taking the sum of both sides of (44), we obtain the
following result,

∞∑
k=1

(gT
k dk)2

∥dk∥
2 ≥

∞∑
k=1

γ

k
= ∞.

11
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Note that
∑∞

k=1
(gT

k dk)2

∥dk∥
2 ≥ ∞, which contradicts (1). Thus, for the

case βIFR−IDY
k = βIDY

k (36) holds.
Case 2: βIFR

k < βIDY
k

That is, in this case, βIFR−IDY
k = min(βIFR

k , β
IDY
k ) = βIFR

k .
Look again at the formula βIFR

k (6). Since −gT
k−1dk−1 > 0, it

is clear that 0 < βIFR
k < βFR

k . So by substituting βIFR
k into (38),

the following results are obtained,

∥dk∥
2

(gT
k dk)2

≤
(βIFR−IDY

k )2∥dk−1∥
2

(gT
k dk)2

+
1
∥gk∥

2

=
(βIFR

k )2∥dk−1∥
2

(gT
k dk)2

+
1
∥gk∥

2 (45)

≤
(βFR

k )2∥dk−1∥
2

(gT
k dk)2

+
1
∥gk∥

2

=
( ∥gk∥

2

∥gk−1∥
2 )2∥dk−1∥

2

(gT
k dk)2

+
1
∥gk∥

2 . (46)

By substituting some values of k into (46) we get the following
results,
For k = 2,

∥d2∥
2

(gT
2 d2)2

≤

(
∥g2∥

2

∥g1∥
2

)2
∥d1∥

2

(gT
2 d2)2

+
1
∥g2∥

2

=
( ∥g2∥

2

∥g1∥
2 )2∥g1∥

2

(∥g2∥
2)2 +

1
∥g2∥

2

=
1
∥g1∥

2 +
1
∥g2∥

2 =

2∑
k=1

1
∥gk∥

2 .

For k = 3,

∥d3∥
2

(gT
3 d3)2

≤
( ∥g3∥

2

∥g2∥
2 )2∥d2∥

2

(gT
3 d3)2

+
1
∥g3∥

2

=
( ∥g3∥

2

∥g2∥
2 )2∥g2∥

2

(∥g3∥
2)2 +

1
∥g3∥

2

=
1
∥g2∥

2 +
1
∥g3∥

2

≤
1
∥g1∥

1 +
1
∥g2∥

2 +
1
∥g3∥

2 =

3∑
k=1

1
∥gk∥

2 .

So on until for k = n,

∥dn∥
2

(gT
n dn)2 ≤

( ∥gn∥
2

∥gn−1∥2 )2∥dn−1∥
2

(gT
n dn)2 +

1
∥gn∥

2

≤
1
∥g1∥

2 +
1
∥g2∥

2 + ... +
1
∥gn∥

2 =

n∑
k=1

1
∥gk∥

2 . (47)

Since ∥gk∥
2 > γ ⇐⇒ 1

∥gk∥
2 ≤

1
γ
, the following results are

obtained,

1
∥gk∥

2 ≤
1
γ
⇐⇒

n∑
k=1

1
∥gk∥

2 ≤
n
γ
. (48)

Based on (47) and (48), the following results are obtained,

∥dn∥
2

(gT
n dn)2 ≤

n
γ
⇐⇒

(gT
n dn)2

∥dn∥
2 ≥

γ

n
. (49)

Thus, by taking the sum of both sides of (49) we get the follow-
ing result,

∞∑
k=1

(gT
k dk)2

∥dk∥
2 ≥

∞∑
k=1

γ

k
= ∞.

Note that
∑∞

k=1
(gT

k dk)2

∥dk∥
2 ≥ ∞, this contradicts (1). Thus, for the

case βIFR−IDY
k = βIFR

k (36) holds.

Since for both possible values of βk (36) always holds, it
is proven that the hybrid conjugate gradient method IFR-IDY
converges globally under strong Wolfe search.

4. Numerical experiments

In this section, numerical experiments are conducted on the
hybrid IFR-IDY conjugate gradient method using 134 test func-
tions recommended by Andrei [1]. The list of test functions
used is presented in Table 1 in columns one and two. When
proposing a new algorithm, numerical experiments are essen-
tial to evaluate and compare its numerical performance with its
predecessors. The key aspects considered in this evaluation are
the number of iterations and computation time required to find
the solution for the given unconstrained optimization problems.
The benchmark methods for comparison with the hybrid IFR–
IDY conjugate gradient method are its foundational methods,
namely the IFR and IDY conjugate gradient methods.

The numerical experiments in this study were conducted
using Matlab R2022a on a personal laptop running Microsoft
Windows 11, equipped with an Intel Core i5-1235U processor
and 16.0 GB of RAM. In these experiments, several parame-
ters were set, including a stopping tolerance of ϵ = 10−6 strong
Wolfe line search constants δ = 0.01 and σ = 0.1, and a maxi-
mum of 2000 iterations. The output results, including the num-
ber of iterations and computation time required to solve the un-
constrained optimization problems for the 134 test functions,
are presented in the following Table 1 in column one and two.
Based on Table 1, the number of functions successfully and un-
successfully solved by the hybrid IFR-IDY conjugate gradient
method, the IFR conjugate gradient method, and the IDY con-
jugate gradient method is shown as follows.

From Table 2, it is evident that the IFR-IDY hybrid conju-
gate gradient method successfully solved more test functions
compared to the IFR and IDY conjugate gradient methods.
However, the results presented in Table 2 alone are not suffi-
cient to draw definitive conclusions regarding which method is
superior. Therefore, the following subsection will introduce a
performance profile curve as an analytical tool. When compar-
ing the numerical performance of different methods, tabular for-
mats can be difficult to analyze and interpret, especially when a
large number of test functions are involved.
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An alternative approach, such as computing the total or av-
erage number of iterations and computation time, may intro-
duce bias and disadvantage methods that successfully solve a
larger number of test functions (i.e., the most robust methods).
Dolan and More [21] introduced performance profiles as a tool
for evaluating and comparing the numerical performance of op-
timization software. The performance profile of a method rep-
resents the cumulative distribution function of a performance
metric, which is defined as the ratio of the computation time of
a given method to that of the best-performing method.

Suppose there are nS methods and np test functions, and
the primary aspect of interest is computation time. Let tp,s be
the computation time required by method s to solve problem p.
The performance ratio, which compares the computation time
of method s for a test function with that of the best-performing
method, is defined mathematically as:

rps =
tp,s

min{tp,s : s ∈ S }
.

Let rM ≥ rps for all cases, where rM = rps if and only if method
s fails to solve test function p. Dolan and Moré then define ρs as
the probability that the performance ratio rp,s of method s ∈ S
falls within a factor τ ∈ R of the best possible performance
ratio. ρs(τ) is given by:

ρs(τ) =
1
np

size{p ∈ P : rp,s ≤ τ}.

The function ρs represents the cumulative distribution func-
tion for the performance ratio. The performance profile ρs :
R→ [0, 1] of a method is a piecewise constant, non-decreasing,
and right-continuous function. The value of ρs(1) indicates the
probability that a method outperforms all others. In general,
the method with the highest ρs(τ) value is considered the best.
Figure 1 and Figure 2 illustrate the performance profile curves
for computation time (CPU Time in second) and the number
of iterations of the IFR-IDY, IFR, and IDY conjugate gradient
methods, respectively.

5. Application in portfolio selection

In this section, the IFR-IDY hybrid gradient conjugate
method is applied to the IDX30 stock portfolio selection prob-
lem. The purpose of this application is to determine the in-
vestment weights for each stock of interest in order to obtain
minimum portfolio risk. Several studies on the application of
the conjugate gradient method to stock portfolio selection can
be found in Sabi’u et al. [22], Malik et al. [23], Deepho et al.
[24], and Malik et al. [25].

The steps in this section are shown as follows.

1. Selecting stocks that are consistent constituents of the
IDX30 stock index in the period February 2022-January
2024.

2. Retrieving closing price data of selected stocks.

3. Calculating the return and expexted return values using
the following formulas, respectively.

ri j =
pi j − pi j−1

pi j−1
, (50)

r̄i =

∑m
j=1 ri j

m
, (51)

where pi j is closing price of asset i at time j, m is number
of observation periods, ri j (i = 1, . . . , n, j = 1, . . . ,m)
denotes the return of asset i at time j, and r̄i is average
return of the ith asset over m periods [26].

4. Selecting stocks with positive expexted returns and cal-
culating the covariance between stocks using the follow-
ing formula.

σik =

∑m
j=1(ri j − r̄i)(rk j − r̄k)

m
, (52)

where σik is covariance between the ith asset and the kth
asset, rk j is rate of return of the kth asset in the jth period,
and r̄k is average return of the kth asset over m periods.

5. Forming a portfolio optimization model.
6. Optimizing the model that has been formed using the hy-

brid conjugate gradient method IFR-IDY.

The IDX30 stock index was first launched on April 23, 2012.
This index measures the price performance of 30 selected con-
stituents that meet several criteria: (1) having a large market
capitalization, (2) having high liquidity, and (3) having strong
company fundamentals.

Stock liquidity is assessed based on transaction value, trans-
action frequency, the number of days transactions occur in the
regular market, and free-float market capitalization. Mean-
while, fundamentals are evaluated based on financial perfor-
mance, compliance, and other factors.

Below is a list of stocks that have been constituents of the
IDX30 index during the period from February 2022 to January
2024.

The list of stocks that constitute the IDX30 stock index is
updated every semester. In this study, only stocks that con-
sistently remained constituents of the IDX30 stock index for
four consecutive semesters during the period of February 2022
- January 2024 are considered. The stocks that consistently re-
mained constituents of the IDX30 stock index during the pe-
riod of February 2022 - January 2024 are as follows: ADRO,
ANTM, ASII, BBCA, BBNI, BBRI, BMRI, BRPT, BUKA,
CPIN, EMTK, INCO, INDF, KLBF, MDKA, PGAS, PTBA,
SMGR, TLKM, TOWR, UNTR, and UNVR. Therefore, only
these 22 stocks will be the focus, and their daily closing price
data will be collected from the Yahoo Finance website.

Next, the returns of the 22 selected stocks, as shown in Ta-
ble 3, are calculated by substituting the stock closing price val-
ues into formula (50). The calculations are performed using
Microsoft Excel.After obtaining the stock return values, the ex-
pected return and the return covariance for each stock are cal-
culated using formulas (51) and (52), respectively. Stocks in-
cluded in the portfolio are those with positive expected returns,
as shown in Table 4.
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Next, a stock portfolio model is constructed with the objec-
tive of minimizing risk. Let y1, y2, y3, ..., y18 sequentially rep-
resent the weights of the stocks ADRO, ANTM, ASII, BBCA,
BBNI, BBRI, BMRI, BRPT, BUKA, CPIN, EMTK, INCO,
INDF, KLBF, MDKA, PGAS, PTBA, SMGR, TLKM, TOWR,
UNTR, and UNVR.Since the goal is to minimize risk, the ob-
jective function of the optimization for the 18 selected stocks is
as follows.Minimize : V = yT Qy

Subject to :
∑18

i=1 yi = 1,
(53)

where V is the value of the portfolio risk to be minimized, y
is vector of fund allocation weights for each stock in the port-
folio, where yi is the weight of the i-th stock, Q is covariance
matrix of returns between stocks (size 18 × 18 in this case), yT

is transpose of vector y, and
∑18

i=1 yi = 1 is the constraint that the
total investment weight must be equal to 100% of the available
capital [26].

By applying the IFR-IDY hybrid conjugate gradient method
to solve problem (53), we obtained the following weights for
the selected stocks:

y1 = −0.0282; y2 = 0.0394; y3 = 0.0686; y4 = 0.0084;

y5 = 0.0201; y6 = 0.0395; y7 = 0.0197; y8 = 0.0574;

y9 = 0.2895; y10 = 0.0142; y11 = −0.0317; y12 = 0.0629;

y13 = 0.0490; y14 = 0.0174; y15 = 0.1936; y16 = 0.0562;

y17 = 0.0428; y18 = 0.0811

By substituting these weight values into formula

R =
n∑

i=1

r̄iyi

and into the objective function (53), the expected return and
risk of the portfolio are obtained as 0.00042 and 0.000050545,
respectively.

Based on the obtained weights, if an investor has a cap-
ital of Rp1,000,000,000 and intends to invest in the stocks
ADRO, ANTM, ASII, BRPT, BUKA, CPIN, EMTK, INCO,
INDF, KLBF, MDKA, PGAS, PTBA, SMGR, TLKM, TOWR,
UNTR, and UNVR, the allocation of funds for each stock to
minimize risk is shown in Table 5.

The negative value of the proportion of ADRO and MDKA
shares means that investors are doing short selling. Short sell-
ing is a transaction of buying and selling shares carried out by
investors who do not yet own the shares with the speculation
that there will be a decrease in the share price.

6. Conclusion

This study has demonstrated that the proposed hybrid IFR–
IDY conjugate gradient method possesses strong theoretical
and practical merits. Under appropriate assumptions, the

method satisfies the descent condition and exhibits global con-
vergence, ensuring its robustness for solving unconstrained op-
timization problems. These theoretical guarantees provide a
solid foundation for its reliable application to large-scale nu-
merical problems.

Extensive numerical experiments involving 134 benchmark
test functions confirm the computational efficiency of the hy-
brid IFR–IDY conjugate gradient method. The results indicate
that the proposed method consistently outperforms the classical
IFR and IDY conjugate gradient methods in terms of compu-
tation time and number of iterations, highlighting its superior
convergence behavior and numerical stability.

Furthermore, the applicability of the method to real-world
problems has been illustrated through its implementation in an
IDX30 stock portfolio optimization problem. The obtained op-
timal asset allocation demonstrates the method’s capability in
effectively minimizing portfolio risk while maintaining a rea-
sonable expected return. This practical application emphasizes
the potential of the hybrid IFR–IDY conjugate gradient method
as a valuable tool in financial optimization.

Future research may extend this work by applying the pro-
posed method to other complex optimization problems, such
as constrained optimization, multi-objective portfolio models,
or risk measures beyond variance. In addition, further inves-
tigation into adaptive parameter strategies and large-scale real
financial datasets may enhance the method’s performance and
broaden its applicability.
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