_ Journal of the
Published by R . .
NIGERIAN SOCIETY OF PHYSICAL SCIENCES Nigerian Society
Available online @ https://journalnsps.org.ng/index.php/jnsps o
of Physical

A hybrid IFR-IDY conjugate gradient algorithm for
unconstrained optimization and its application in portfolio
selection

Diva Marchandra Mulansari®, Maulana Malik®"*, Sindy Devila®?, Ibrahim Mohammed Sulaiman®9,
Dian Lestari®*", Fevi Novkaniza®®, Fida Fathiyah Addini®®

“Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
b Advanced Risk, Actuarial, and Financial Analitycs Laboratory (ARAFA Lab), Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424,
Indonesia
€College of Applied and Health Sciences, A’Shargiyah University, Ibra 400, Sultanate of Oman
dFaculty of Education and Arts, Sohar University, Sohar 311, Oman

Abstract

This study introduces the Improved Fletcher-Reeves (IFR)-Improved Dai-Yuan (IDY) hybrid conjugate gradient method, which combines the
strengths of the IFR and IDY parameters through a minimum-operator strategy to enhance robustness in unconstrained optimization. The method
is shown to satisfy descent and global convergence properties under the strong Wolfe line search. Numerical experiments on 134 benchmark
functions demonstrate that IFR-IDY achieves superior performance, solving 98 problems more than IFR and IDY and exhibiting faster CPU
times and fewer iterations in most cases. The method is also used to solve an IDX30 portfolio optimization problem, which results in an optimal
allocation with an expected return of 0.00042 and a risk of 0.000050545. These results highlight the efficiency of IFR-IDY and its practical
applicability in real-world decision-making.
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1. Introduction problems are addressed by identifying the best possible solu-
tion to a given task [1]. The optimal solution depends on the
objective of the problem, which is mathematically expressed
example, a driver may seek the fastest route to a destination,  hrough an objective function. An objective function serves as
a trader may aim to maximize profits, or a manufacturer may a quantitative measure—such as time, profit, or other numer-
strive to design the most efficient production process. Such jca] criteria—determined by specific characteristics known as
variables [2]. Optimization is achieved by selecting values for
these variables such that the objective function attains its opti-
mal value.

Optimization problems are prevalent in everyday life. For
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The conjugate gradient method is a widely used approach
for solving large linear systems and can also be adapted for
nonlinear optimization problems [3]. Originally introduced
by Hestenes and Stiefel [4] for solving linear systems with
positive-definite coefficient matrices, it became known as the
linear conjugate gradient method. Later, Fletcher and Reeves
[5] extended the method to address large-scale nonlinear opti-
mization problems, leading to the development of the nonlinear
conjugate gradient method [2]. Owing to its simple iterative
formula and relatively low memory requirements, the conju-
gate gradient method is regarded as one of the most efficient
techniques for unconstrained optimization [3].

To date, numerous variants of the conjugate gradient
method have been developed to address optimization problems.
According to Andrei [1], the primary differences among these
methods lie in two aspects: the strategy used to update the
search direction at each iteration and the computational proce-
dure employed to determine the step size along that direction.
Nevertheless, all conjugate gradient methods are founded on the
same core principle—the search direction is selected to satisfy
the descent condition. In general, conjugate gradient methods
can be categorized into several classes, including standard con-
jugate gradient methods, hybrid conjugate gradient methods,
spectral conjugate gradient methods, and three-term conjugate
gradient methods [1].

Several well-known standard conjugate gradient methods
include the Hestenes—Stiefel (HS) [4], Fletcher—Reeves (FR)
[5], Polak—Ribiere—Polyak (PRP) [6], Conjugate Descent (CD)
of Fletcher [7], Liu—Storey (LS) [8], and Dai—Yuan (DY) [9]
methods. Over time, these standard methods have been exten-
sively modified to enhance their convergence properties and nu-
merical performance. Jiang and Jian [10] proposed two such
methods, namely the Improved Fletcher—Reeves (IFR) and Im-
proved Dai—Yuan (IDY) methods, as refinements of the stan-
dard FR and DY approaches. The main idea behind these im-
provements was to combine the conjugate parameters of the FR
and DY methods with the second inequality condition of the
strong Wolfe line search procedure [10]. Both IFR and IDY
methods have been proven to satisfy the global convergence and
descent conditions under certain assumptions and when using
the strong Wolfe line search. However, despite meeting these
theoretical properties, both methods exhibit limited efficiency,
as some test functions remain unsolved. Further details on mod-
ifications of the conjugate gradient methods can be found in
[11-17].

Therefore, building upon the above discussion and consid-
ering the strengths and limitations of the IFR and IDY conjugate
gradient methods, this paper proposes a hybrid IFR-IDY conju-
gate gradient parameter for solving unconstrained optimization
problems. The main contributions of this study are as follows:

e Proposing a novel hybrid IFR-IDY conjugate gradient
method that integrates the characteristics of the IFR and
IDY methods.

e Demonstrating that the proposed method satisfies the de-
scent property under the strong Wolfe line search proce-
dure.

e Establishing the global convergence of the proposed
method under appropriate assumptions.

e Evaluating the efficiency and robustness of the proposed
method in comparison with existing conjugate gradient
algorithms in terms of computational performance.

e [llustrating the practical applicability of the proposed
method through its implementation in stock portfolio se-
lection problems.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the proposed algorithm incorporating parameter
mixing. Section 3 discusses the descent property and global
convergence analysis under suitable assumptions. Section 4
reports the results of numerical experiments, while Section 5
demonstrates the application of the proposed method to portfo-
lio selection problems. Finally, Section 6 provides concluding
remarks.

2. A hybrid IFR-IDY conjugate gradient algorithm

In this section, we start with the following general mini-
mization problem:
min f(x) ey
xeR"
where f : R" — R is a continously differentiable function with
its gradient Vf(x;) by g, and R denotes the set of real num-
ber. This study focuses on conjugate gradient (CG) methods for
solving problem (1). The CG algorithm addresses problem (1)
by generating a sequence of iterative points as follows [1]:

X1 = Xp +apdy, k=1,2,..., 2)

where x; is the initial point, x; is the k-th approximation to the
solution, and dy is the search direction, defined by:

“&k» k= 19
=15 3)
—8k + Brdi_1,

where Sy, is the conjugate gradient parameter [2], and a; > 0 is
the step length, obtained either by exact or inexact line search.
In this paper, we employ an inexact line search, namely the
strong Wolfe line search, defined as follows:

FOo + axdy) < f(xe) + Sangy di )
|sCa + awd) di| < —og] d., (5)

where g,{ is transpose gr and 0 < § < o < 1 [1].

There are many choices for the parameter §; in the conju-
gate gradient method. Among them are 8™ and BPY, corre-
sponding to the IFR and IDY conjugate gradient methods, re-
spectively.

The IFR and IDY conjugate gradient methods, introduced
by Jiang and Jian [10], are modified versions of the FR and DY
conjugate gradient methods, respectively. Al-Baali [18] demon-
strated that the FR method satisfies the descent condition and
achieves global convergence under the strong Wolfe line search

with0<0'<%.
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Table 1: Numerical results of IFR, IDY, and hybrid IFR-IDY conjugate
gradient methods.

Fungsi Dimensi IFR IDY IFR-IDY

g TCPU  Ir  TCPU  Itr  TCPU  Itr
6000 04121 134 F F 02047 49

COSINE 10000 13.0754 413 F F 14218 36
80000 F F F F 274349 74

2000 1645 117 05862 25 04503 17

DIXMAANA 30000 78060 54 47393 29 44518 22
8000 24661 54 20151 30 16660 23

DIXMAANB 16000 96033 108 2966 25 56450 5l
900 04875 73 036 34 02261 19

DIXMAANC o000 19547 36 16753 21 14330 15
1000 23487 94 17341 44 13340 33

DIXMAAND 30000 27.6064 191 F F 148430 75
800 47606 808 33623 463 4.6260 755

DIXMAANE - (600 F F o 139.1142 1423 F F
5000 F F 654642 1561 F F

DIXMAANE 55000 F F F F F F
000 F F 466200 1794 F F

DIXMAANG 34000 F F F F F F
2000 F F 1636363 1200 F F

DIXMAANH 550 F F F F F F
DIXMAANI 120 F F F F F F
12 0.1601 686 01958 423 03058 544

1000 F F 163476 1932 F F

DIXMAANJ 5000 3661 972 296561 705 643916 1344
4000 158173 630 268473 745 37.6879 1032

DIXMAANK 40 03979 1026 0633 759 03577 963
800 2.1303 302 60858 903 28627 324

DIXMAANL ¢000 25026 521  47.585 769  57.6559 815
150 F F 01612 860 F F

DIXON3DQ 15 00421 466  0.0474 219 00834 449
9000 03728 366 05008 210 0.6056 245

DQDRTIC 90000 17841 280 15862 214 20224 288
5000 13288 124 13373 74 05305 30

DQRTIC 150000 43141 164 945834 226 226362 100
7000 38466 248 74374 423 10488 57

EDENSCH 40000 113761 148 156409 159 45358 99
500000 305.1124 313 17025 1619 138.8814 463

o 35 F F 0138 346 00718 385
1000 00439 430 00603 225  0.1094 397

1000 01148 565 00623 165 0061 168

FLETCHCR 50000 42824 850 F F 30733 533
200000 107434 579 F F 47304 196

60 F F F F F F

FREUROTH 10 0.1074 1415 00848 429  0.1386 867
1000 F F F F F F

GENROSE 100 F F 02445 1409 F F
70000 00614 2 00858 2 0080 2
HIMMELBG 10000 00935 2 02289 2 02273 2
15 00346 186 00245 103 00406 164

LIARWHD 1000 00329 239 00543 192 01352 722
PENALTYI 1000 06525 232 F F F F



Mulansari et al. / J. Nig. Soc. Phys. Sci. 8 (2026) 3105

8000 101.6616 156  25.6781 101 5.9235 34
4000 0.685 95 1.1156 116 0.5065 44
QUARTC 80000 19.7324 150  51.1821 213 19.7324 80
500000 470.2391 187  598.165 297  80.4703 120
300 0.182 1816  0.1117 901 0.3268 1877
TRIDIA 50 0.0574 624 0.0415 343 0.1135 582
WOODS 150000 42713 396 6.1109 481 15.9805 1155
200000  10.8526 760 7.531 487 17.151 1017
5000 0.0296 2 0.0059 2 0.0176 2
BDEXP 50000 0.0553 2 0.0758 2 0.1398 2
500000 0.4771 2 0.6053 2 0.9591 2
90000 1.2392 128 1.918 207 0.3712 24
EXDENSCHNF 280000 29712 120 2.2558 78 3.2893 99
600000 5.8497 119 6.5723 104 1.9089 25
6000 0.0768 119 0.0269 56 0.0205 16
EXDENSCHNB 24000 0.3082 129 0.1403 77 0.1034 19
300000 2.6393 129 3.063 124 0.8791 19
300000 0.061 29 0.1087 83 0.0515 15
GENQUARTIC 9000 1.0657 125 0.8221 92 0.4608 32
90000 5.6442 142 6.015 122 1.8367 33
110 0.1004 1046  0.0541 531 0.2719 1401
BIGGSBI 200 F F 0.1184 1048 F F
100000 F F F F F F
SINE 50000 F F F F F F
15 0.0216 97 0.032 75 0.0302 118
FKETCBV2 55 F F 0.0747 542 F F
5000 0.121 240 0.2 191 0.0675 59
NONSCOMP 80000 2.1955 309 F F F F
150 F F 0.2939 1820 F F
POWERI 90 F F 0.2148 1127 F F
500 0.152 659 0.5071 1593 0.134 364
RAYDANI 5000 F F F F 1.4426 1586
2000 0.0291 22 0.0547 21 0.0732 31
RAYDAN?2 20000 0.1856 18 1.0939 51 0.3319 17
500000 9.3988 45 22.1415 83 9.3988 181
800 F F F F 1.4372 1266
DIAGONALI 2000 F F F F 2.8432 1748
100 0.0333 179 0.0608 161 0.0759 193
DIAGONAL2 1000 0.4238 625 0.3625 274 0.9859 699
500 F F F F 0.5186 888
DIAGONALS3 2000 F F F F F F
BV 2000 4.8518 66 9.7677 119 14.578 174
20000 1.0148 0 1.2975 0 1.6111 0
IE 500 37.0519 80 15.5645 31 7.7288 14
1500 790.0997 117  302.2989 65 54.8539 17
SINGX 1000 14.6019 707 149872 519 F F
2000 200.4983 1449 136.8045 1696 F F
LIN 100 0.0971 14 0.0697 14 0.0491 14
500 0.234 13 0.5153 13 0.4844 13
OSB2 100 0.3566 1346 0.3382 765 F F
200 F F F F 0.9877 533
PENI 1000 F F F F 49.2886 1026
PEN? 100 0.2949 869 0.4253 697 0.3162 483
110 1.1198 1575 F F 0.4939 245
ROSEX 500 1.8315 269 2.1154 175 7.3636 1104
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1000 10.7184 362 10.42 165  28.6056 794
500 F F F F F F
TRID 50 0.1371 530 0.178 322 0.0928 264
70000 F F 11.4835 245 6.7694 112
HIMMELH 240000  16.3869 100 F F 16.7023 94
BADSCB 2 F F F F F F
BD 4 F F F F 0.108 454
BIGGS 6 F F 0.1056 415 F F
OSBI1 11 F F F F F
WHITE 10 0.1933 636 0.0559 247 0.2346 1061
5000 6.1376 690 F F 4.5667 451
EXBEALE 10000 F F F F F F
500000 8.4679 192 5.2873 117 1.1468 25
HIMMELBC 1000000  11.803 147 9.7806 119 8.7409 101
100 F F F F 0.0102 20
ARWHEADI 1000 F F F F F F
BDQRTIC 10 F F F F F F
500000 126.3965 1092 F F 54.1269 856
ENGVALT1 1000000 F F F F 144.354 1418
500000 179.1522 125 103.6448 60 63.0315 103
DENSCHNA 1000000 367.4751 125 358.8993 99 28.6341 29
500000 5.3705 144 1.7115 48 1.2008 22
DENSCHNB 1000000  6.6871 99 11.3401 141 24978 29
10 0.0873 237 0.0584 205 0.013 49
DENSCHNC 500 0.339 209 F F F F
500000 9.5053 178 F F 7.3281 141
DENSCHNF 1000000 F F F F F F
500000 F F F F F F
ENGVALS 1000000 F F F F 226.6371 1126

Table 2. Summary of functions successfully and unsuccessfully solved by the IFR-IDY, IFR, and IDY methods.

Method Successful  Unsuccessful
IFR-IDY 36
IFR 42
IDY 41
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Figure 1. Performance profile curves based on number of iteration.

Similarly, Dai and Yuan [19] showed that the DY method
satisfies the descent condition and converges globally under
the Wolfe line search. Although both methods possess strong
convergence properties, their numerical performance can suf-
fer from stagnation. Motivated by the strong Wolfe line search
framework, Jiang and Jian [10] proposed modifications to these
methods to enhance numerical performance while preserving
their convergence properties. The coefficients §; for the IFR
and IDY methods are defined as follows:

T
IFR _ |8 di-1] . BFR
g _g]{_ldk—l k
_ lsidil P ©)
—gl dioy gkl
T
DY _ I8 i1l py
¢ —gl iy "
gt di1| llgxl?
7 (7

T gl dier dl (g - i)

The limitations of existing conjugate gradient methods con-
tinue to drive the development of new modifications aimed at
achieving both strong descent and global convergence proper-
ties while delivering improved numerical performance. Among
the well-known conjugate gradient methods are the LS [9]
and CD [5] methods. For general objective functions, the LS
method is recognized for its strong convergence properties;
however, it is often prone to stagnation in numerical perfor-
mance. In contrast, the CD method typically exhibits good
computational performance but may fail to converge in gen-
eral cases. To exploit the strengths of both approaches, Yang
et al. [20] proposed a hybrid LS—CD method in which the S
coeflicients are constructed using maximum and minimum op-
erators. The B coefficients for the LS—CD hybrid conjugate
gradient method are defined as follows:

L5 CP = max{0, min{8-°, B, ®)

where 855 and BCP are defined as follows,

T
8, (8k — &k-1)
Be = -, ©9)
¢ dZ_lgk—l
llgkll?
BEP = — . (10)
k dz_lgk—l

Inspired by the modification process of the LS-CD method, in
this study, similar modifications were made to the IFR and IDY
gradient conjugate methods. This method is called the [FR-IDY
hybrid gradient conjugate method with the parameter 8, given
as follows.

(Y = max(0, min{B™*, g7, an

where Bif® and BIPY are given by the equations (6) and (7).
However, since Jiang & Jian (2018) have shown that the conju-
gate parameters ,Bg R >0 and ﬂiD Y > 0, then the form (11) is
equivalent to the following form.

ﬂiFR—IDY — min{ﬁiFR,ﬂiDY}' (12)

The algorithm of the proposed IFR-IDY hybrid conjugate
gradient method is given as follows.

Algorithm 1 The Hybrid IFR-IDY Conjugate Gradient Algo-
rithm
1: Select an initial guess x; € R" and choose the Wolfe pa-
rameters 0 and o such that 0 < o0 < 0 < 1, d; = —-gy,
€>0.
2: If ||gkll < €, stop; otherwise go to Step 3.
3: Compute the step size @ using the strong Wolfe line search
procedures (4) and (5).
4: Set xg4+1 = Xx + aidy. Compute the gradient gy := g(xx+1)
and the parameter S;.; using (12).
5: Compute the search direction diyy; = —gi+1 + Br+1dk, Set
k := k+ 1, and return to Step 2.

3. Convergence analysis

In this section, we analyze the convergence of the hy-
brid IFR-IDY conjugate gradient method by showing that this
method satisfies the descent condition and global convergence
properties. The following assumptions are required in the
proof.

Assumption 1. The level set A = {x € R" | f(x) < f(x1)} is
finite, where x is the starting point.

Assumption 2. In some neighborhood U of A, g(x) is contin-
uously differentiable and its gradient is Lipschitz continuous;
i.e., there exists a constant L > 0 such that

llg(x) —gWIl < Lilx = yll,  Yx,ye U
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Table 3. List of stocks that have been constituents of the IDX30 Index for the period of February 2022 - January 2024

No. Code Stock Name
1 ADRO Adaro Energy Tbk
2 ANTM Aneka Tambang Tbk
3 ASII Astra International Tbk
4 BBCA PT Bank Central Asia Tbk
5 BBNI  PT Bank Negara Indonesia (Persero) Tbk
6 BBRI  PT Bank Rakyat Indonesia (Persero) Tbk
7 BMRI PT Bank Mandiri (Persero) Tbk
8 BRPT Barito Pacific Tbk
9 BUKA PT Bukalapak.com Tbk
10 CPIN Charoen Pokphand Indonesia Tbk
11 EMTK Elang Mahkota Teknologi Tbk
12 INCO Vale Indonesia Tbk
13 INDF Indofood Sukses Makmur Tbk
14  KLBF Kalbe Farma Tbk
15 MDKA PT Merdeka Copper Gold Tbk.
16  PGAS PT Perusahaan Gas Negara Tbk.
17  PTBA Bukit Asam Tbk
18 SMGR Semen Indonesia (Persero) Tbk
19 TLKM PT Telkom Indonesia (Persero) Tbk
20 TOWR Sarana Menara Nusantara Tbk
21  UNTR United Tractors Tbk
22 UNVR Unilever Indonesia Tbk

The conjugate gradient method algorithm must guarantee
that the search direction or d; is a descent direction. This is to
ensure that the search direction descends towards the optimum

point. Based on the form B{f*~/PY = min(8/*R, BIPY), then
in proving the descent condition it is divided into two cases,
namely BIFR-IDY = BIFR and BIFR-IDY — gIDY

Therefore, to prove the descent condition of the hybrid IFR-
IDY conjugate gradient method, the two theorems below are
needed.

The first theorem below establishes the descent condition
for the IFR conjugate gradient method. In what follows, we
restate the proof in accordance with the original article [10],
while providing additional clarification to enhance readability.

Theorem 1. Suppose Assumptions 1 and 2 are satisfied and

O<o< \/i , and dy, is generated by the IFR conjugate gradient
method, then
T 2
gk dk a
<—1+——, Vk> 1. (13)
llgxll* 1-o?

Proof. The proof is done by mathematical induction. Consider
again the direction of the IFR gradient conjugate method search
on (3). For k = 1, by multiplying both sides of (3) by ng the
following result is obtained

=gl (-g1) = -llg1l* < 0.

Therefore, for k = 1, (13) is satisfied. Furthermore, assuming
that (13) is satisfied for k — 1 (k > 2), the following proves that
(13) is also satisfied for k.

Next, for k > 2, by multiplying both sides of (3) by g,{ and
substituting the form (6) we obtain
grdie = g (—g + B Rdi-y)
= —llgill® + g B d-1)
gk di-1] gl

= —llgull® + ——— gidici. (14
gl diy g P
By dividing both sides of (14) by llgkll> we get
Side _ | lscdiarl ligel? 8{dis 15)
llgll? =gl diy llge-1lP llgwll®

Then, by using the strong Wolfe search line procedure (5)
and (15) we obtain

g1 di lg} di-1]

llgxll®

llgll? 8f dir
—g diy gl llgal
—O'g,{,lqu 1

T
8y di-1
—g! dit NlgiP7F

- 81 di-i
llgi-111?
lg} di1
llgr-1l?

(16)
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Table 4. Selected stocks to form a portfolio optimization model.

No. Stock Code

Return Expectation

1 ADRO
2 ANTM
3 ASII
4 BRPT
5 BUKA
6 CPIN
7 EMTK
8 INCO
9 INDF
10 KLBF
11 MDKA
12 PGAS
13 PTBA
14 SMGR
15 TLKM
16 TOWR
17 UNTR
18 UNVR

0.018%
0.054%
0.029%
0.029%
0.192%
0.082%
0.354%
0.071%
0.008%
0.041%
0.104%
0.061%
0.046%
0.041%
0.019%
0.048%
0.072%
0.023%

Table 5. Proporsi saham portofolio optimal

No. Nama Saham Proporsi Alokasi Modal
1 ADRO -2.83%  -Rp28,278,912.01
2 ANTM 3.94% Rp39,383,536.48
3 ASII 6.87% Rp68,700,314.02
4 BRPT 0.86% Rp8,586,129.60
5 BUKA 2.02% Rp20,182,389.91
6 CPIN 3.96% Rp39,582,077.47
7 EMTK 1.97% Rp19,711,542.18
8 INCO 5.73% Rp57,292,998.83
9 INDF 28.92%  Rp289,191,223.80
10 KLBF 1.45% Rp14,455,135.91
11 MDKA -3.17%  -Rp31,745,869.35
12 PGAS 6.29% Rp62,910,466.58
13 PTBA 4.89% Rp48,851,283.22
14 SMGR 1.75% Rp17,464,651.13
15 TLKM 19.36% Rp193,615,909.35
16 TOWR 5.63% Rp56,265,474.07
17 UNTR 4.27% Rp42,719,069.83
18 UNVR 8.11% Rp81,112,578.99

Next, using the strong Wolfe search line (5), (16), and (13)

for k — 1 then,

gL dk - 0_|g,{dk71|
llgel> ~ llgk—11?
T
_ 2 81t
llgx-111?
2
<-1+ g .
1-0?

Thus, it is proven that (13) is satisfied Yk > 1.

Next, the second theorem establishes the descent condition
for the IDY conjugate gradient method. As before, we restate

the proof following the structure of the original article and pro-
vide additional clarification where appropriate.

Theorem 2. Suppose Assumptions 1 and 2 are satisfied and

V2

0 <o < 5=, and d. is generated by the IDY conjugate gradient

method, then the following descent condition is satisfied
—(1 = ollgll, Yk = 1.

Proof. The proof is done by mathematical induction. Recall the
search direction of the IDY method shown by (3). For k = 1,
by multiplying both sides by ng, we get the following result

(18)

gid =gl (-g1) =-llg1l* <0.

Therefore, for k = 1, (13) is satisfied. Furthermore, assuming
that (13) is satisfied for k — 1 (k > 2), we prove that (13) is also
satisfied for k.

Next, for £ > 2, by multiplying both sides of (3) by g,{ and
substituting the form B;”" we get the following result,

gide = g (—gk + B  dior)
= —llgill* + B gl di-y

lg di-1] llgkll®

= ~lgell® + : “gidicr. (19)
—gl it dl(g—gi)
By algebraic manipulation the form (19) is obtained,
|gt di-1l llgxll?
T 2 k k T
8 di = —llgkll” + : “di_ 18k
¢ —gl it dl(g—g)
- el lgedial  llglP?
—gl iy dl(gk — 8k-1)
(A (8K — 8k-1) + 841 di-1) (20)
lgt di1l Ig dial gl gp_ dia
= —llgill® + ——— - llgull® + e
8 1di-1 —gl_di-r d]_ (8 — gk-1)
|g{ de-1l , gt dk 1| llgxll® gf_ di—
=—(1- ——)llgll” + i .
81 dk-1 =gl di-r dl_ (g — gr-1)

Before further analyzing the form of (20), several condi-
tions are required.
By describing the strong Wolfe search line procedure (5) we
get,
lgCxx + axdp) dil< —og] dy
= g dil< —ogd

— |gkdk 1= ‘Tgk 1dk 1

|g{ de-1l
g i
gl dj_1
= ———Ilgl* < ollgull?
=& 19k-1
g} di
= gl + ———llgill® < —llgill” + ligull®
=& 19k-1
gt di1l
= —(1-—% 4 — gl < - - llgel®. @D
k-1
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Figure 2. Performance profile curves based on CPU time.

Furthermore, based on the strong Wolfe search line proce-
dure (5) the following inequality is also obtained,

lg(xi + audp)” dil< —orgj di
&= g, dil< —ogdy
= |gy di1|S —og(_ di
= og|_di-1 < gl di-1 < —0g_ dr-1.
Based on Wolfe’s strong search line inequality above, then
di_1(8k = 8k-1) = 8 dim1 — di_1 8kt
> ogl_die1 —d]_ g1
—d{_ g1
= (0= Ddy_ -1
= (0= Dgi_di-1. (22)

_ T
= od;_8k-1

V2

Since 0 < o < -5 and assuming that (18) holds for k£ — 1,
that is, g} _,di-1 < 0, then from (22) we get
di_\(8k = gk-1) > 0.

Then assuming that g,lldk_l < 0 and with algebraic manip-
ulations we obtain

g di-1 <0 = llgillPgl_di-1 <0
llgkl*gr_ di-1
dl | (8k — 8k-1)

lgell*g;_, di-
8kll” 81 %k-1 <

<0

= lgidil-
¢ dl_,(gr = gi-1)
2
|gt di-1 . lLrgkIl gy di1 <0, 3
_gk,ldkfl dk,l(gk - gkfl)

Then a further analysis of the form (20) is carried out using
(21) and (23),

lg{ di-1l .

—g_ i

|gk 11

T
d=—1—
8 Ak ( dk

2,
——lgll” +
1

lgll® - g7 di—
dl (8 — 8k-1)
lgPdi1|  lIgell* - g1 di—1
-(1 - o)llgil® + —5 P
- k_ldk—l dk_l(gk - gk—l)
—(1 - o)llgel*. (24)
Thus, the form (18) is satisfied for Yk > 1. O

Using theorems 1 and 2 below, we give a theorem that
shows that the hybrid IFR-IDY conjugate gradient method sat-
isfies the descent condition.

Theorem 3. Suppose Assumptions 1 and 2 are satisfied and dj,
is constructed by Algorithm 1. If the parameter o is 0 < o <

2

5, then the following descent condition is satisfied
gld <O0. (25)

Proof. First, consider (3) again. For k = 1 and by multiplying
both sides by g/, we get

gidi =gt (—g1) = —llgil* < 0.

So, for k = 1, the form (25) is satisfied. Then, for k > 2, by
multiplying both sides (3) by g,{ we get

gid = g{ (—gx + B di)

= —llgll® + g B  dyy). (26)
Then, note that B{f*~PY = min

BEIPY has two possible values, namely B’F R-IDY
BRIPY = gIPY Thus, the proof is divided into two cases.

R BIPY). This implies,

[FR
BT or

e Case I: = BIFR
By substituting the value of ﬁ]’f R-IDY

the following results are obtained,

BIFR-IDY
&
= B"® into (26),

g di = =llgell + g B P dir)
= —llgxll® + &7 (B - di-). @7
Based on Theorem 1 and the form of (27), we obtain

—llgkll* + gf B - di-y) < 0.

[FR-IDY
By

grdi =
Thus, for the case = BiR, (25) is satisfied.

o Case 2: BIFR-IDY -
[FR-IDY DY
By = By

BPY By substituting the value of
into (26), the following results are ob-
tained

grdi = —ligll* + g BFRTPYdyy)

= —ligell* + gf BPY - diy). (28)

Based on Theorem 2 and the form (28), we obtain

gidi = —llgill® + gL (BPY - di-1) < 0.

Thus, for the case B} *~/P¥

= BIPY, (25) is satisfied.
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Based on the results of the description for the two cases above,
namely B/ *~1PY = gIFR and piFR-IPY = BIPY it has been shown
that the hybrid IFR-IDY gradient conjugate method satisfies the
descent condition. O

Before proving the global convergence property of the hy-
brid IFR-IDY conjugate gradient method, the following Lemma
is given first.

Lemma 1. Suppose Assumptions 1 and 2 are satisfied. The se-
quence {x;} is generated based on the equation with d; satisfy-
ing the descent condition, and « is generated using the strong
Wolfe search line procedure then the following inequality is sat-
isfied,

< (gf di)*

Z llgxll?

k=0

(29)

Proof. Consider again the inequality of the two strong Wolfe
search line procedures (5) as follows

lgt, 1dil < —ogl di

= og dy < gi,dx < —0ogldi

= ogldy < gi,,dk. (30)
By adding both sides (30) with —g] dj we get
o8 di < 8pdk
= o-g,{dk - g,{dk < g,{ﬂdk - g,{dk
= (0 - Dgpdi < (8541 — & dx- (€29

Based on Assumptions 2, (2), and the Cauchy-Scwarz in-
equality, the following results are obtained,

lgCxrr1) — Il < Lilxgr1 — Xl
& llgrs1 — &ill < Lllxke1 — xill
& g1 — grlllldill < Lllxier — xelllldill
= llgk+1 — 8elllldill < Lilardilllldyll

= liges1 — gillldill < LaelldilP. (32)

Based on the Cauchy-Scwarz inequality and (32) note that,

(gh., —gDdr = (gis1 — g0 di
< llges1 — gelllldill

< Lllaglldy]*. (33)

Based on (31) and (33) the following results are obtained,
(0 = g di < Ll

(0 - Dgidy

= aj >
LlldxlI*

(34)

Based on the strong Wolfe search line procedure (4) the fol-
lowing results are obtained,

fOo + ardy) < f(xe) + Sangy di

10

10
= flx) — fO+ ardy) > —0aug; di
(c-Dglde
> —0(—————)g. d,
Lliddp 8k
(gf di)?
. (35)
lldi|I?

with Z = =2¢=D > 0.
By substituting some values of k into (35), the following
results are obtained.

Fork =0,
Td 2
f(x0) = f(xo + aodo) > Z(go 02) .
lldoll
Based on (2), we obtain
(g0 do)*
(x0) = f(x1)=>Z .
Flm) = 7 e
Fork =1,
(gld,)?
x1)— f(xn) > Z——.
Jfx) = f(x2) AT
Fork =2,
(g5d>)?
X)) — f(x3) > Z .
Jflx2) = f(x3) TEATE
So on until £k = n — 1 is obtained,
(gT_ldn—l)z
n—-1) — n > Zn—
Sxn-1) = f(xn) e
So the following results are obtained,
(g1 di)?
(Xp-1) = fxp) 2 Z .
o) =1 2 lldil?

i=0

Then, forn — oo

© Td )2
F = Jim o 27y S
n—oo pary el
e L) i f ) § (8¢ i)’
z =l

Since f(x) is a bounded function, lim,_ f(x,) has a finite

value, and so do f(xp) and Z. Since it has a finite value, this
o (g;zdk)z D

means that 37 57

The following is a theorem stating that the hybrid IFR-
IDY conjugate gradient method satisfies the global convergence

property.

Theorem 4. Suppose Assumptions 1 and 2 hold and the se-
quence {x;} generated by Algorithm 1 with «a; is determined
using the strong Wolfe search procedure (4) and (5), then

lim infllgil| = 0. (36)



Proof. The proof of the above theorem is done by the method of

contradiction. Suppose (36) is not
v > 0 such that ||gil|> > v, Vk.
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true, there exists a constant

Consider again the search direction equation (3),

di = =gk + By
— dk+gk

IFR—-IDY
BRIV g

IFR—IDde |

(37

By squaring both sides of (37) we get the following result,

(dk +gk)2 (ﬂIFR IDYd )2
= |ldil* +2gf di + llgill* =

2
= |ldill” =

(ﬁIFR IDY)2|Id _ ||2

IIcFR IDY)ZHdk_l”z — 2g di - “gk”

Next, by dividing both sides by (g, Tdy)* we get the following

result,
el BERTPYYdiy I — 287 dic — llgil?
@ (8] di)?
BN 2gide gl
Gld?  (gld)? (g d?
_ BNl 2 llgell?
- (¢ di)? gldy (¢l dp?
3 (BRIP4 |17
- (8] di)?
8
ligell g7 dk llgxll?
- (BIFRAPY Y2 dy_y |2 1 ‘ 38)
(gf dp)? llgxll?
Note that g;"*-/PY min(B{"®, gPY).  This implies that

[FR-IDY
. has
ﬁ]l(FR—IDY

Case 1: BIDY ﬁIFR

two possible Values namely B;f*-/PY
= BIPY. Thus, the proof is divided into two cases.

= g or

That is, in this case ,BIFR DY = min(B"%, BiPY) = piPY. Look
again at (22) and (24). Since —(1 — 0')||gk||2 < 0 it can be con-

cluded that,
o < lgf di1l  llgxlPg)_ dis
Kk <
CEZ g disy dl (8- gie)
=B (g di). (39)
Next, by multiplying both sides of (39) by T d the follow-
ing result is obtained,
T
gk dk [DY. (40)

(gl i) ~ "

Next, by substituting (40) into (38) we get the following results,

i I*

el U

(8 dk)2 -

(g di)?

llgxll*

11

11
_ BNl
(grd? sl
Td,
(g Pldial?
2 + 2
(g} di) llgxll
il ! an
(g di1)* gkl

By substituting some values of k into (41) we get the fol-
lowing result: following.

Fork =2,
lldo|? lld, 112 N 1
(1d)? ~ (gid1)? g2l
llg1l? 1
= SV 2
(lgill=)=  llgall
_1 1
llgil?  llgall?
= llgkll?”
For k = 3,
lldi | llda|? 1
(gfdi)* ~ (ghdr)?  llgsll
< 1 N 1 . 1
Tl lg2A? o llgsli?
— llgkll?”
So on until for k = n,
d,|? d,_1|? 1 o1
| ||2_ lldp—1ll . = . 2)
&rd* = (g" dp-1)? gl i lgxll
Since ||gil> >y = w < %, the following results are
obtained,
<! Z < (43)
||gk||2 Ty gl ~ ¥

Based on (42) and (43), the following results are obtained,

lldall?
(grd,)? ~
(8ndn)
lld,|I?

:_I\< <R I3

(44)

Thus, by taking the sum of both sides of (44), we obtain the
following result,
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o (gTdi)? . .
Note that > ;7 % > oo, which contradicts (1). Thus, for the

case i R-IPY = BIPY (36) holds.

Case 2: BIFR < pIPY
That is, in this case, ﬁ’FR ~IPY = min(B K, piPY) = B’FR.

Look again at the formula 8{"® (6). Since —g/_,di—1 > 0, it
is clear that 0 < B < BIR. So by substituting ;" ¥ into (38),
the following results are obtained,

lldil* (ﬁIFR DYV dje_y |1 . 1
(g dk)2 - (gf di)? llgxll?
RY |2 1 45
FRY + 5 (45)
(&1 di) gl
< BER) Iy 11 1
(gl dp)? llgxll?
(”Hgk\lhz )2||dk— ”2 1
@ Tl (40)
81 Ak 8k

By substituting some values of k into (46) we get the following
results,
Fork =2,

2
llda|I? - (”81”2) Iyl {
(82d2)2 - (g2d2)2 ||82||2
AP e

a1 P
(||82||2)2 IIgzII2

IIglll2 IIgzll2 Z llgxll?”
For k =3,

llgsI?
sl _ Gl

(g3 d3)2 T (s llgsll?
(”gZHZ)ZHg ”2 1

lgal
(llgsIP)? ||g3||2

1 1
"l " sl

<! + : +

“ gt g2l llgsl

_ N
Zi g

So on until for k = n,

A e i e
7S 2 + 2
(g,,dn) (gnd ) ”gn”
1 1 1 o1
< 5 + 5+t 5 = 5. (47
llgall*  llg2ll llgnll = [l1g«ll
Since ||gil? > ¥ = IIglllz < %, the following results are
obtained,
1 1 51
S = c< . (48)
sl =y ZijlglE =y

12

12
Based on (47) and (48), the following results are obtained,
d,|? Td,)?
(g7 dn) Iyl n

Thus, by taking the sum of both sides of (49) we get the follow-
ing result,

Z (g di)? i Yoo
2 = co.

£ ||d| ik

(gf di)?

Note that Y7,
[FR-IDY
By

dar 2 this contradicts (1). Thus, for the
case = B® (36) holds.

Since for both possible values of G (36) always holds, it
is proven that the hybrid conjugate gradient method IFR-IDY
converges globally under strong Wolfe search. O

4. Numerical experiments

In this section, numerical experiments are conducted on the
hybrid IFR-IDY conjugate gradient method using 134 test func-
tions recommended by Andrei [1]. The list of test functions
used is presented in Table 1 in columns one and two. When
proposing a new algorithm, numerical experiments are essen-
tial to evaluate and compare its numerical performance with its
predecessors. The key aspects considered in this evaluation are
the number of iterations and computation time required to find
the solution for the given unconstrained optimization problems.
The benchmark methods for comparison with the hybrid IFR—
IDY conjugate gradient method are its foundational methods,
namely the IFR and IDY conjugate gradient methods.

The numerical experiments in this study were conducted
using Matlab R2022a on a personal laptop running Microsoft
Windows 11, equipped with an Intel Core i5-1235U processor
and 16.0 GB of RAM. In these experiments, several parame-
ters were set, including a stopping tolerance of € = 107 strong
Wolfe line search constants 0 = 0.01 and o = 0.1, and a maxi-
mum of 2000 iterations. The output results, including the num-
ber of iterations and computation time required to solve the un-
constrained optimization problems for the 134 test functions,
are presented in the following Table 1 in column one and two.
Based on Table 1, the number of functions successfully and un-
successfully solved by the hybrid IFR-IDY conjugate gradient
method, the IFR conjugate gradient method, and the IDY con-
jugate gradient method is shown as follows.

From Table 2, it is evident that the IFR-IDY hybrid conju-
gate gradient method successfully solved more test functions
compared to the IFR and IDY conjugate gradient methods.
However, the results presented in Table 2 alone are not suffi-
cient to draw definitive conclusions regarding which method is
superior. Therefore, the following subsection will introduce a
performance profile curve as an analytical tool. When compar-
ing the numerical performance of different methods, tabular for-
mats can be difficult to analyze and interpret, especially when a
large number of test functions are involved.
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An alternative approach, such as computing the total or av-
erage number of iterations and computation time, may intro-
duce bias and disadvantage methods that successfully solve a
larger number of test functions (i.e., the most robust methods).
Dolan and More [21] introduced performance profiles as a tool
for evaluating and comparing the numerical performance of op-
timization software. The performance profile of a method rep-
resents the cumulative distribution function of a performance
metric, which is defined as the ratio of the computation time of
a given method to that of the best-performing method.

Suppose there are ng methods and n,, test functions, and
the primary aspect of interest is computation time. Let 7, ; be
the computation time required by method s to solve problem p.
The performance ratio, which compares the computation time
of method s for a test function with that of the best-performing
method, is defined mathematically as:

Ips
minft,:s€ S}

Tps =

Let ry > rp, for all cases, where ry = 7, if and only if method
s fails to solve test function p. Dolan and Moré then define p, as
the probability that the performance ratio r,, ; of method s € §
falls within a factor 7 € R of the best possible performance
ratio. ps(7) is given by:

ps(T) = i size{pe P:r,s <7}
np

The function p; represents the cumulative distribution func-
tion for the performance ratio. The performance profile p; :
R — [0, 1] of a method is a piecewise constant, non-decreasing,
and right-continuous function. The value of p,(1) indicates the
probability that a method outperforms all others. In general,
the method with the highest p,(7) value is considered the best.
Figure 1 and Figure 2 illustrate the performance profile curves
for computation time (CPU Time in second) and the number
of iterations of the IFR-IDY, IFR, and IDY conjugate gradient
methods, respectively.

5. Application in portfolio selection

In this section, the IFR-IDY hybrid gradient conjugate
method is applied to the IDX30 stock portfolio selection prob-
lem. The purpose of this application is to determine the in-
vestment weights for each stock of interest in order to obtain
minimum portfolio risk. Several studies on the application of
the conjugate gradient method to stock portfolio selection can
be found in Sabi’u et al. [22], Malik ez al. [23], Deepho et al.
[24], and Malik et al. [25].

The steps in this section are shown as follows.

1. Selecting stocks that are consistent constituents of the
IDX30 stock index in the period February 2022-January
2024.

2. Retrieving closing price data of selected stocks.

13
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3. Calculating the return and expexted return values using
the following formulas, respectively.

Pij — Pij-1

rij = > (50)
Pij-1
231:1 rij
= —, 51
p (51

where p;; is closing price of asset i at time j, m is number
of observation periods, r;; (i =1,...,n,j =1,...,m)
denotes the return of asset i at time j, and 7; is average
return of the ith asset over m periods [26].
Selecting stocks with positive expexted returns and cal-
culating the covariance between stocks using the follow-
ing formula.

2l (rij = F)(rej = )

Tk = >
m

(52)

where o, is covariance between the ith asset and the kth
asset, r¢; is rate of return of the kth asset in the jth period,
and 7y is average return of the kth asset over m periods.
5. Forming a portfolio optimization model.
6. Optimizing the model that has been formed using the hy-
brid conjugate gradient method IFR-IDY.

The IDX30 stock index was first launched on April 23, 2012.
This index measures the price performance of 30 selected con-
stituents that meet several criteria: (1) having a large market
capitalization, (2) having high liquidity, and (3) having strong
company fundamentals.

Stock liquidity is assessed based on transaction value, trans-
action frequency, the number of days transactions occur in the
regular market, and free-float market capitalization. Mean-
while, fundamentals are evaluated based on financial perfor-
mance, compliance, and other factors.

Below is a list of stocks that have been constituents of the
IDX30 index during the period from February 2022 to January
2024.

The list of stocks that constitute the IDX30 stock index is
updated every semester. In this study, only stocks that con-
sistently remained constituents of the IDX30 stock index for
four consecutive semesters during the period of February 2022
- January 2024 are considered. The stocks that consistently re-
mained constituents of the IDX30 stock index during the pe-
riod of February 2022 - January 2024 are as follows: ADRO,
ANTM, ASII, BBCA, BBNI, BBRI, BMRI, BRPT, BUKA,
CPIN, EMTK, INCO, INDF, KLBF, MDKA, PGAS, PTBA,
SMGR, TLKM, TOWR, UNTR, and UNVR. Therefore, only
these 22 stocks will be the focus, and their daily closing price
data will be collected from the Yahoo Finance website.

Next, the returns of the 22 selected stocks, as shown in Ta-
ble 3, are calculated by substituting the stock closing price val-
ues into formula (50). The calculations are performed using
Microsoft Excel.After obtaining the stock return values, the ex-
pected return and the return covariance for each stock are cal-
culated using formulas (51) and (52), respectively. Stocks in-
cluded in the portfolio are those with positive expected returns,
as shown in Table 4.
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Next, a stock portfolio model is constructed with the objec-
tive of minimizing risk. Let y;, y», ¥3, ..., ¥13 sequentially rep-
resent the weights of the stocks ADRO, ANTM, ASIIL, BBCA,
BBNI, BBRI, BMRI, BRPT, BUKA, CPIN, EMTK, INCO,
INDF, KLBF, MDKA, PGAS, PTBA, SMGR, TLKM, TOWR,
UNTR, and UNVR.Since the goal is to minimize risk, the ob-
jective function of the optimization for the 18 selected stocks is
as follows.

{Minimize : V=y'Qy (53)

Subjectto: X% yi =1,

where V is the value of the portfolio risk to be minimized, y
is vector of fund allocation weights for each stock in the port-
folio, where y; is the weight of the i-th stock, Q is covariance
matrix of returns between stocks (size 18 x 18 in this case), y”
is transpose of vector y, and }, ,1281 y; = 1 is the constraint that the
total investment weight must be equal to 100% of the available
capital [26].

By applying the IFR-IDY hybrid conjugate gradient method
to solve problem (53), we obtained the following weights for
the selected stocks:

y1 = —0.0282; y» = 0.0394; y; = 0.0686; y4 = 0.0084;

ys = 0.0201; ye = 0.0395; y; = 0.0197; ys = 0.0574;

Yo = 0.2895; y10 = 0.0142; y;; = —0.0317; y;» = 0.0629;

yi3 = 0.0490; yi4 = 0.0174; y15 = 0.1936; y16 = 0.0562;
yi7 = 0.0428; yVis = 0.0811

By substituting these weight values into formula

R = z": Fiyi
P

and into the objective function (53), the expected return and
risk of the portfolio are obtained as 0.00042 and 0.000050545,
respectively.

Based on the obtained weights, if an investor has a cap-
ital of Rp1,000,000,000 and intends to invest in the stocks
ADRO, ANTM, ASII, BRPT, BUKA, CPIN, EMTK, INCO,
INDF, KLBF, MDKA, PGAS, PTBA, SMGR, TLKM, TOWR,
UNTR, and UNVR, the allocation of funds for each stock to
minimize risk is shown in Table 5.

The negative value of the proportion of ADRO and MDKA
shares means that investors are doing short selling. Short sell-
ing is a transaction of buying and selling shares carried out by
investors who do not yet own the shares with the speculation
that there will be a decrease in the share price.

6. Conclusion

This study has demonstrated that the proposed hybrid IFR-
IDY conjugate gradient method possesses strong theoretical
and practical merits. Under appropriate assumptions, the
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method satisfies the descent condition and exhibits global con-
vergence, ensuring its robustness for solving unconstrained op-
timization problems. These theoretical guarantees provide a
solid foundation for its reliable application to large-scale nu-
merical problems.

Extensive numerical experiments involving 134 benchmark
test functions confirm the computational efficiency of the hy-
brid IFR-IDY conjugate gradient method. The results indicate
that the proposed method consistently outperforms the classical
IFR and IDY conjugate gradient methods in terms of compu-
tation time and number of iterations, highlighting its superior
convergence behavior and numerical stability.

Furthermore, the applicability of the method to real-world
problems has been illustrated through its implementation in an
IDX30 stock portfolio optimization problem. The obtained op-
timal asset allocation demonstrates the method’s capability in
effectively minimizing portfolio risk while maintaining a rea-
sonable expected return. This practical application emphasizes
the potential of the hybrid IFR-IDY conjugate gradient method
as a valuable tool in financial optimization.

Future research may extend this work by applying the pro-
posed method to other complex optimization problems, such
as constrained optimization, multi-objective portfolio models,
or risk measures beyond variance. In addition, further inves-
tigation into adaptive parameter strategies and large-scale real
financial datasets may enhance the method’s performance and
broaden its applicability.
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