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Abstract

Block of hybrid methods with three off-step points based on collocation technique are presented in this work for direct approximation of solution
of third-order Initial and Boundary Value Problems (IVPs and BVPs). These off-step points are formulated such that they exist only on a single
step at a time. Hence, these points are shifted to three positions respectively in order to obtain three block different integrators for computational
analysis. These analysis includes; order of the methods, consistency, stability and convergence, global error, number of functions evaluation and
CPU time. The superiority of these methods over existing methods is established numerically on different test problems in literature.
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1. Introduction

Third-order problems considered in this work are of the
form:

Y7 = f(x,,y,y"), x¢€la,b] )]

with appropriate initial conditions and boundary conditions re-
spetively.

It is assumed that; the function f is continuous in [a, b] X R3.
Also, as discussed in [1, 2], the existence and uniqueness of the
solution of (1) is assumed. The problem in (1) is assumed well
posed and the numerical solution is the interest in this work.
Numerical methods for the solution of (1) with initial condi-
tions or boundary conditions and for third order singularly per-
turbed boundary value problems are numerous. Some include,
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Collocation method [3, 4, 5, 6], Non-polynomial splines [7],

Quartic Splines [8], Adomian Decomposition Method [9], Ex-

ponential Quartic Spline [10], Quartic B-spline method [11],

and many others.

In this work, the collocation technique is employed. This method
is found to be flexible and more efficient in that since it approx-

imates the solution of (1) at several intra-points, its block for-

mulations consists of several linear multistep methods which

are required for direct solution of (1), such that it overcomes

the overlapping of pieces of solutions and it is self starting.

In this work we seek the numerical solution of (1) directly with
three different three-step continuous hybrid block methods with
three off-step points. These methods are developed using the
collocation approach.
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2. Derivation of the Methods

Here, the derivation of a continuous implicit three mid intra-step hybrid block method is described, for the solution of (1) over
the integration interval [a, b],

ay={a=xp<x3 <---

with & the constant step-size, h = x; — x;-1, i = 1,2,...,N.

For the solution of (1) with initial condition, the method proposed in [12], three off-step points in the interval 0 < x, < x; < x; < 1
are given such that (r, s, 1) = (g g, 7). Also, an optimized two-step method with three off-step points proposed in [13] is such that
r, s,v are in the interval 0 < r, s, ¢ < 2.

Here, on the interval [x,, x,+3], we consider the following subintervals; [x,, X,+1], [*n+1, Xn+2] and [X,42, X,43] Where the points
(rys,u), (', s",u’)and (r”, s”,u’’") are the assigned off-set points in each of the subinterval respectively as x, < Xp1+r < Xp+s < Xppu <
Xnrl < Xpg2 < Xpa3, < Xy < Xppl < X < Xppy < Xppw < Xpg2 < xn+3 and < Xn < Xptl < X2 < Xpgpr < Xpag? < Xpwr < Xp43.
where (r,s,u) = (1. 4. ), (. " .w) = 3. 3. ) and (7, 5" u”) = (3. 3. 1),

< xy_1 < xy = b}

201
Consider the approximation w(x) of y(x) given by the polynomial

9
YO = wx) = ) a. @)
i=0
and the third derivative .
Y0 =W () = Y prii = 1) - 2 3)
i=3

where q; are coefficients to be determined.

2.1. Specifications 1

To obtain the method in the interval x,, < X4 < Xpis < Xnsu < Xnt1 < Xns2 < Xp43, We Interpolate (2) at x = x4, 1 = 0, 1,2

and collocating (3) at the points x = Xy i i=0,1,...,4,8,12, a system of 10 equations with 10 unknown a;, i = 0, 1,...,9. This
system can be written in matrix form as
1 ox )zcﬁ fi ici,‘ Jf 262 J;Z yn
[ X+l xé+1 AT X‘2+1 xg+1 x6+1 a0 Yn+l
. xﬁ+2 Xov2 xi+2 xh+% X2 X2 a )’n+2
0 0 0 6 24x, 60x2 120x] 504x8 @ W,
0 0 0 6 24x, 60> | 120 5040 | a3 W
n+g n+g nt+yg aq _ n+Z
0 0 0 6 24x,. 60xi+% 120xi+% 504xi+% as | 7| Phs
0 0 0 6 24x,. 6022 . 1200 | 50420 as w fn+4
7 n+x n+g ar
0 0 0 6 24x.  60x2,, 12023, 504x°, a hgfm
0 0 0 6 245 60r, 120, CTURCIN | R W o2
0 0 0 6 24ru; 60x, 1205, 50430 W fvs

where yil]zi = YD (Xrd)s fori = S ntis Ynris Yoo Yoy)» On solving the above system and obtaining the coefficients a;’s (not
included here) which are then substituted into the polynomial (2), the following formula is obtained:

2 3 3
WO = Y @@y + 1| D B fasi + ) B foes @
i=0 i=0 i=1

where the @ and 8 are continuous coefficients (which are large expressions and are not included here, but can be easily obtained
with the help of Maple software).

Evaluating w(x) in (4) at the points x = x,, FEPE ST A and x,.3 and after some simplifications, we obtain the following methods:
2 4
185897, 25T83f,4 46109

— 2lyn + Tynsl _ 3‘;14-7 h3 34621 fu + "3 "+7 + 79271 fy41 + 3019fy42 _ 403 fy43

R ) 16 8847360 ~ "TOTIT0 368640 829440 1474560 T 2949120 T 18247680
5459f RIf 34

S RN R Y ney ] gy 209900 3083f, | 94l

Yned = % 967680 ~ 194040 7520 4536 322560 T 2257920 31933440
218389f | 159311f | 343927f :

= Sy W 3w 323831 a2 2 "y w3 2206897, | 36983 _ 4513774

I3 = T T TR 6193152 — 9934848 2580430 5806080 4128768 T 36126720 2043740160
sf1a0g, Bl MWLl S s os3n, | 1Sh

— . _ _ ntl n+2 n+3

Yne3 = Yn = 3vnet + ne2 — I\ Igop ~ syt I T s 315 2205 2474
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If w’(x) of (4) is evaluated at x = x i i =0(1)4, 8, 12, following formulae for approximating the first derivatives are obtained:

R 5056f 1 1784f 4 12352f 3
P D U NS BE T A 1e S e gy 26U | 8l | 3
Yn 2h h 2h 5670 72765 4725 42525 7560 33075 ~ 3742200
1754231 1696777f 4 2343911 A
foo— Dy Bl Yued g2 [ 916957y i S i) ng o, SST6RIf, | 422549f,, _ 90212343
yn+,% - 4h 2h 4h 92897280 ~ ~ 2661120 9676800 1555200 6193152 154828800 15328051200
577 4 121 337f
v _ _In + ‘u+l h2 73fn + my + ) + n+1 42 Sfas fn+2 + Jns3
y,H% - h 725760 72765 4725 42525 48384 8467200 119750400
1048031 f 1702583f 4 219329f
’ _ _3wm 4 Ymel | Yne2 _hz 958907 fn _ n+z + n+y "** 4451939 f41 2958517 fn4p _ 128971f43
yn+,% - 4h 2h 4h 92897280 18627840 9676800 1555200 30965760 1083801600 2189721600
7681 | 1516f | 145281 3
ST TR Y £/ g 2 g g S 170 R
Yn+1 = 2h 22680 ~ 72765 4725 42525 1890 264600 1871100
6592f 7304f 4 10816f 3
r Yn _ 2},14,1 + 3yn+2 + 2 607fn _ nt+g + L A n+ 7951 fu41 + 208fnip _ 2693fy43
Yni2 = 2h 5670 10395 4725 6075 7560 4725 3742200
56384f 52396f 1 4426881 3 A A
5 — 3y _ Aner + S5yns2 h2 22889fn _ nty + ) g + 169 fue1 _ 44249f040 _ 105641143
Yn+3 = 2h h 2h 22680 10395 4725 42525 54 37800 1871100

Similarly, evaluating w”’(x) of (4), at the points x = x i i =0(1)4, 8, 12, we obtain the formulae which approximates the second

derivatives:

i = 2
y:,l% = B
AT
y@lg =
y;z,+1 = ;\TZ
y;l,+2 = ;%21
yr,1,+3 = ;T;

2.2. Specification 2

_ 2Vn+1 Yn+2

h2+

_ 2Vn+1

"2 +

2pnri
"2

_ 2Vn+1

2¥ns1

h2+

_ 2Vn+1
W2

4 Yu2

_ 2Vn+1

)

L1232y 147f
4 + ma g 1 fue1 _ far2 _ 61fus3
315 2835 2520 90 ~ 249480
5998If 2021f | 8929f _ :
(299 _ 3o, my o ntd 5326161 |, 16361fna  4967fu3
645120 388080 3360 5120 92160 1505280 — 21288960
6452f \  T3f1  1564f 3
_h |45fn _ g ) M3, 22973y 1031w 947fne3
24255 105 2835 30320 94080~ 3991680
964330 f,, SS6LAf | 4433hf
_p(3ms _ 3, gy w3 374419 f 4 A91230f | 14941,
1935360 388080 10080 6480 645120 4515840 63866880
6464f | GAf | 832f
—h |07 n + my o ”+ 6]fn+l + H/u+7 _ Jnt3
24255 105 945 126 176 ~ 4158
56512 1 S84f | 17984f 3
+ |3 + i) nt 1243fn1 | 3N fusd _ T39ns3
945 24255 105 2835 360 1470~ 249480
453952 1792 112064
e s el 060Tfyy M7y 16573,
24255 3 2835 630 17640 62370

To obtain the method in the interval < x,, < Xp41 < Xp4r < Xpty < Xnpw < Xns2 < Xu43, We Interpolate (2) at x = x,,4, 1 =0, 1,2

and collocating (3) at the points x = x

form is given as

S O O OO O ===

(=]

n+

Xn X’%
2
n+l X+l
An+2 x121+2
0 0
0 0
0 0
0 0
0 0
0 0
0 0

i; 1)
x, X x
3 4 5
xg+l XZJrl x2+l
X2 X2 xn+%
6 24x, 60xn
6 24x,41 60xﬂ o
6 24x, 3 60)6’H s
2
6 24x,, 3 60)5’H 3
2
6 24x, 41 60x .1
6 24 x40 60xﬂ 2
6 24x,43 60xn 3

n+2
120x,§

120x§1 1
120x° 4
n+3y Y
120%°
nt+s
120x3 r
Z
120x,j o

120x

x

6+1

n+2

504xn

504x
504x

5 04
5 O4x

+3
+7
+3
+3
+7
+37

504x
g+
504x) 4

On solving the above system and obtaining the coefficients a;’s (not included here), are then substituted into the polynomial (2),
the following formula is obtained:

ap
aj
a
as
ag
as
ae
a;
ag
ag

2 3 7
w00 = > @i + 1| D B fasi + Y B s
i=0 i=0 =5

Yn
Yn+1
Yn+2
1w fy

h3fn+l
h3f
4
Wy
W Fur3
h fn+2
h3fn+3

i =0,4(1)8, 12, a system of 10 equations with 10 unknown ag;,i = 0, 1,...,

9 in matrix

&)

where the @ and 8 are continuous coefficients (which are large expressions and are not included here, but can be easily obtained

with the help of Maple software). Evaluating w(x) in (5) at the points x = x,,,

we obtain the following methods:

461

%,X,H

xn+

7 and x,4+3 and after some simplifications,
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S88473f 5 240025f 3  361883f 5 _

—_ _3m + 15yn+1 + 5)n+2 -3 16453 f, 311963 f+1 L S ma "t 38035fus0 _ 45137443
Yned = ) 16 27095040 T 4128768 3515840 1548288 7515840 2064384~ 433520040

5 , 2999fF s 40Lf 3 373 4

— _In + Vn+1 + 3yn2 _h3 1097 fn 32509fu41 _ E 2 _ + 79392 _ 941fus3

Va3 8 1 8 1354752 + 322560 17640 1890 3538 322560 6773760
16343f s 1805177 3 9869 7

—_ 3 o Ty + 21Vn+2 Iy 37607 fn L1151 fuyy LA S n ) + 54527 fuen _ 403f43

Ynel = 2 T6 61931520 T 1474560 129024 1105920 129024 2049120~ 3870720
T T T

— _ 3 n el _ n+ n+

Yn+3 = Yo = 3¥nrt + 3Vs2 + 17| 3555 + 315 205+ 45 205+ 315 T 13230

If w(x) of (4) is evaluated at x = Xi, i =0,4(1)8, 12, the following formulae for approximating the first derivatives are obtained:

135488 fn+ 2

2600fn+%

83648/

7
P P e S (LY A X/ . 3 1, 10f. _ 269373
Yn = 2h “h 198450 7560 33075 567 33075 189 793800
23872f s 332f 5 14272f 4 )
’ _ Yy Ynd _hZ 2573 fn + 377 fus1 _ nty ) g + 149fns0 _ 221fn43
Y1 = 2h 2h 793800 945 33075 405 33075 1512 396900
399871f 5 493205 5  1789537f
S _m w2 26064, | 62575334 ni, n3 md o, AT 128971,
yn+% - 4h 2h 4h 3251404800 30965760 1209600 1161216 8467200 6193152 464486400
23,5 By 26
Y = Yml oy Vw2 g2 Jn 4+ Bl + + g + 23 fn42 + Jni3
n+% - h h 25401600 241920 33075 1 134 33075 241920 25401600
2879903f 5 2461463f 3 18703431 4
I T TN SyM b2 [ 52650375, 62426517 _ s nt3 ntd | 1508483fun  902123fy.3
yn+% - 4h 2h 3251404800 30965760 8467200 5806080 8467200 30965760 3251404800
) i 2208f 5 2488f 3 12608 7 i
o _ Yn _ nel + 3yns2 +h2 643 fu 3047 fus1 iy + ) g I fnr2 _ 443/fns3
Yns2 = 2h h 2h 198450 7560 33075 2835 33075 945 793800
27584F 5 27436f 5 244928f

st Swe (30970, 19720 T g T md o, WG | 21830
Yn+3 = 2h h “2h 793800 945 4725 2835 33075 7560 56700 |°

)

Similarly, evaluating w”’(x) of (4), at the points x = x i i =0,4(1)8, 12, we obtain the formulae which approximates the second

derivatives:
35008f 5 488f 3 22336f

’”o_ Yn _ 2nel 4 Yne2 278fn 16091 fyv1 A S "y o L S 1481 fuea _ 739fns3
Yn = 2 2 02 2520 2205 27 2205 630 52920

1216/ s SI12f 3 1984f -
v Yn_ 2ntl + 02 4 g 13fn+l _ ma ) "y 169fns2 _ Jfus3
Y1 =2 72 2 735 315 2205 340 882

5633f s 9313f 3 4357f
i Y Dmel Y +h 2503fn , 523829fus1 _ i S nma nt AT fpyp _ 14941 fii3
ym% = ® 2 2 387072 645120 3920 6048 5040 215040 13547520
580f 5 1604f 3 1964f 5 X

P R T I YR N () VA - VY SO IONs RO i SN |V TE R o)
>,,+% = ® 2 2 846720 20320 a1 945 7205 8064 846720

) 3155f 5 2671f 3 27127 4 )
o= I el Yned g (3843 | 521837k A S "y ntg o 4l3f,0 4967443
Y,H% = ® 2 2 903168 T ~ 645120 2352 1440 35280 215040 4515840

64f s 1672f 3 1216f 7
g Yn _ 2ne1 + Yn+2 +h A3 fn + 2021 fyey i "y iy + S9fnsa _ 61fus3
Yn+2 2 2 2 6615 2520 9 945 2205 210 52920
5440 20288 5696

" Yo _ el Yus2 1T sl fed + S 18619hu _ 2851fus
Yn+3 2 2 2 741 945 315 2520 13230

2.3. Specification 3

Finally, obtaining the method in the interval x, < X,41 < Xp42 < Xpir < Xprgr < Xprwr < Xp43, We Interpolate (2) at x = x4,

i =0, 1,2 and collocating (3) at the points x = Xy is i =0,4,8(1)12, a system of 10 equations with 10 unknown a;, i = 0, 1,

in matrix form is given as

I x x2 x xt

L X x2+l x;ﬂ XZH

L X2 Xnv2 Mua2 )
0 0 0 6 24 x,
0 0 0 6 24x,41
0 0 0 6 24x,42
0 0 0 6 24xn +3
0 0 0 6 24xn 43
0 0 0 6 24x,. 1
0 0 0 6 24x443

fi )Gfﬁ
x;gﬂ x2+ 1
X X

n+% n+23
60x;, 120x;

2 3
60)% ") 120xq ol
60x, ., 1 20)%[ "
60x* ,  120x°

n+gz n+g
60x> o 120x°

nts nts
60x> |, 120x°
n+g n’: T

2 3

60x;, 120x; 4

ap
aj
a
a;
as
as
ag
as
ag
ag

Yn
Yn+1
Yn+2
1 o

7 fo
3 fos

I fo

W0
h3fn+;
Pfu

.9

1
2

7

3

Thus, solving the above system and obtaining the coefficients a;’s, then substituted into the polynomial (2), the following

formula is obtained:

2 3 11
WO = Y @l@yuei + 1| D B fasi + ) B fos
i=0 i=0 i=9

462

(6)
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where the @ and 8 are continuous coefficients (which are large expressions and are not included here, but can be easily obtained

with the help of Maple software). Evaluating w(x) in (24) at the points x = x

9,X
: . n+3° n+
we obtain the following methods:

s Xy 1t and x,,3 and after some simplifications,

60029f o  9T4TIf s 247559f |
o S Oy 4w g3 99637T9% | 8264997, | 974S3fup g g wll 333731
Yed = R 16 32 581246720 T 12042240 1376256 1935360 360160 3311616 2064384
169,95  53,5  6007] X
_ 3y _ S5yn+l + 15042 + 13 111341 f, + 374389 fns1 + 14657 fy+2 + a2 ey 6721 fy43
ned = 8 ! 8 31933440 T 2257920 64512 75650 2520 35505 193536
i 0439f o  21131f 5 154817f 1
i = 2 3w | Tl g3 (10073, | 60184194, L 6918014 ) "3 well 4903491,
O ) 16 K 1658880 T 20643840 1474560 165883 73728 645120 8847360
s (1155 983funt . 251 e '04fn+% 812001 1a9f s
— _ 3 n n+ n+2 _ i+
Yn+3 = ¥n = 3Ynet +3¥ns2 + B\ 1a7s + 05 + 305 2835 315 T 2955 1890

If w(x) of (4) is evaluated at x = Xi, i =0,4(1)8, 12, following methods for approximating the first derivatives are obtained:

454208f o  50056f 5  357824f
- By D vy g (883 | 10803 A087f g it I i 200077,
Yn = 2h h 935550 264600 945 42525 4725 72765 22680
71872 8084 5312
S (290 1SS 49395, e Teg Pl esig
yn+l 2h 2h 48600 66150 7560 42525 4725 6615 11340
2 3 o[ 4423f, | 8219f, 20f,, (06889 3285 30087 0 .
’ RL Yn+1 Vn+2 9, +1 4 2 4 3
Yn+2 % TRt th (93555?) TR0 + 18-t~ g5+ TToms -~ 280
60743f o  A098743f 5 5766623f 1 _
’ _ 3yn _ Syust + Tynt2 ]’l2 106886797 f 359414603 f,,+1 14053789 f,,42 n+z nty + g 6451643f443
yn+% - 4h 2h 4h 15328051200 1083801600 30965760 10886400 9676800 18627840 92897280
i i 8017f, 9 1681f 5  23999f 1 i
’ _ I 3wty e o2 | 1103999fn | 3774721 uey | 192743 fnin g L 2 tq _ 57289fu43
yn+% - h h h 119750400 8467200 241920 42525 4725 72765 725760
X 4098337f o  2296823f 5 6636359f
go= I a0 | 09108y | TSy g G well 89376037,
}’”147] - 4h 2h 2189721600 1083801600 6193152 10886400 9676800 18627840 92897280
23872f o 556f 5 4544f 11
o 3 _ Aynet g Swe g 2 S1307S0 | 6371fuer 11197 fuen nty LA A ntg_ 1063f.3
}n+3 - 2h h 2h 3742200 9450 7560 42525 4725 10395 11340
Similarly, evaluating w”’(x) of (4), at the points x = Xi, i =0,4(1)8, 12, we obtain the formulae which approximates the second
derivatives:
X 112576f o  2488f s 12736f X
"o Yo Wnrl 4 Yns2 7999]3: 4 3859us1 _ 10109nsn g a2 Mg 252290n43
Yn = 2 72 2 2520 630 2835 63 693 7560
832 1856, 21568
,,, Y Bty w1003 | Ty 2y s W o T
)n+l h2 h2 h2 4410 840 135 315 8085 630
3008 881 192,
po= o d Dy (S, 09 2600 Ty By Pl ssp
Vo2 = 72 72 > 39 7640 210 2835 315 2695 512
39223f o 319f 5 3149f '
"o Yoo Wnel 4 Yud o op( 32069y | 2002307fyy | 888467/ i S a2 g 75403fn43
yn+% - h2 h2 2 5806080 4515840 645120 45360 1440 35280 1935360
. 692f o 23f s 1ef 1
b v Dy e g (195U 1289070 18367f _ — ed TPl el uasip g
yn+7 - h2 h2 2 ]3"5()560 282240 13440 945 63 1617 40320
4997f o 1087/, -3 7899f
” = n_ el | Yns2 o | 573899y | 2062267fuer | 39125/142 g n i 80579fu.3
Yot T 2t 63866880 T 4515840 13008 -t W6t mm 1935360
1984f o 128 5 10432 | i
7 Yn _ 2041 + In+2 2239fn + 403 fn+1 + 3419 fns2 _ ma + my + 'y + 1 fns3
yn+3 h2 2 h2 249480 882 2520 2835 315 24255 270
3. Analysis of the Method
3.1. Local truncation error and order
The linear difference operators associated with the formula in (4) is of the form
2 3 3
. — 3 "
L[z(x); h] = w(x) - E @jZnsj+h E Bi(X)z,,; + E Bz, @)
j=0 j=0 Jj=1 ¢
Same can be formulated for (5) and (24). The Taylor series expansion of (7) around x yields
. ’ 2_n +1
L[z(x); h] = Coz(x) + C1hZ' (x) + Coh*Z" (x) + - - - + C,hP 2P (x) + O(hP*D). ®)
where the C; are constants. Suppose the first p + 3 terms vanishes, that is
Co=C1=Cy=---= p+2=0 and Cp+3¢0, then
-E “hl=C hp+3 (p+3) 19) hp+4 9
[2(x); Al = Cpezh?"y P77 (x) + ORT™) )]

463
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Here (9) is the local Truncation Error (LTE) for (7) and
equivalently for (4) and p is the order. The LTE is the amount
by which the exact solution of the ODE fails to satisfy the corre-
sponding difference operator. The method in (4) (and similarly
for (5) and (24)) is said to be consistent if p > 1 (see [14]).
The LTEs of (2.1) are

2351

Cos = 33938515307 G+ OG- (10)
Cyrap = mwmmm‘%om“) (11)
Chs = %wmm)h‘%om“) (12)
Cos = oy P + O (13)

The method that approximates the first and second derivative in
(2.1) and (2.1) respectively can be computed in a similar fash-
ion.

The LTEs of (2.2) are
Crsn = %Wm(mwhom“) (14)
Coe = gy VR OG  (15)
Crn = ;;;%y“m(xn)hl%om“) (16)
Crun = %ymuﬂ)hmw(k“) (17)

The method that approximates the first and second derivative in
(2.2) and (2.2) respectively can be computed in a similar fash-
ion.

Finally, The LTEs of (2.3) are

Crruon =%W<xﬂ)h‘° +Oo@h (8)
Crvor = J e O+ 00 (19)
Corns =Ty sy () + 06 (20)
Cyoa =% + Ol P Cah™® + O™ (21)
(22)

The method that approximates the first and second derivative in
(2.3) and (7) respectively can be computed in a similar fashion.
The methods have order p = 7.

3.2. Zero-stability and convergence

A numerical method is zero-stable if the solutions remain
bounded as 7 — 0. Following the procedure in [6, 15], to
show the zero-stability the block method (2.1)-(2.1) (similarly
for (2.2)-(2.2) and (2.3)-(7) respectively) may be rewritten in a
form such that y(k: ;» are on the left hand side. so that the method

nty

in matrix form becomes

AJYD = AlYY + BBIFY, + BFY), j=0,1,2 (23)
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as h — 0, (8) becomes
Aéygr)l = A{Yg)l’ J=0,1,2 24)
where
1= 05?0 o)

J (D) ) ) o0 D O
Y., = (y_3/4,y_1/2,y_1/4,y1 Y2 Y 14

).

Aé is an 18 x 18 identity matrix given by

(A0 0
A=l 0 A2 0
0 0 A
with A} = A} = A2 = Ioxe;
(Al 0 0
Al=| 0 A 0
0 0 A
1 00000
1 00000
1 00000
sh Al — A2 — A3
withA] =AT=A7=| | 0 0 0 0 o
1 00000
1 00000

The characteristic polynomial of each of the matrix A} (simi-
larly for A7 and A7) is given as 2°(1 — 1) = 0. The roots of
the characteristic polynomial are A; = 0, for j = 1,...,5 and
A¢ = 1. Since the roots of the characteristic polynomial are all
zero but one, whose modulus is 1 (see [14]), then the method
((2.1)-(2.1)) is zero stable. The method is thus convergent by
the following theorem.

Theorem 3.1. Henrici [16]. A linear multistep method is said
to be convergent if it is consistent (with order p > 1) and it is
zero-stable.

3.3. Computational procedure

The methods in (2.1)-(2.1) (equivalently for the methods
in (2.2)-(2.2) and (2.3)-(7) respectively) are executed in single
block on the interval [x,, x,.3], where n = 0,3,...,N — 3, N,
the number of subintervals must be divisible by 3 in order to
obtain the last points on the integration interval b = xy. Thus,
the methods in (2.1)-(2.1) are put in the form Z(y) = 0 such that
the system is solved by the Newtons method of the form

Y/t = yi = (Jj)—lzj
where

Y — ’ ’ ’ ’ 7’ ’’ ’ 7’ ’
= (J’o,)’O’y1/4,}’1/4,}’1/4,yl/z,)’1/2’y1/25y3/4’Y3/4’Y3/4’y1’ P /9]

J is the Jacobian matrix of Z. The starting values used in the
Newtons method are the approximations given by the Taylor
series

. N2, A3
Vaed = vat i+ 5 () v+ £ (%) S
b 2
= i+ (8) A (26)
¢ ’ :h
Vi = Yt ik

for j = 0(1)4,8,12
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Figure 1. Efficiency plot for S3HI1, S3HI2 and S3HI3 showing the maximum
error against the CPU time.

4. Numerical test Problems and results

Numerical problems are presented to show the accuracy of
the three specification of methods proposed. This comparison
is done based on the maximum error against the machine cost
(CPU time). This is to ascertain which of the proposed methods
performed favourably and in comparison to other methods in
literature.

The methods used are denoted as follows:

e S3HI1: Proposed method described in specification 1;
e S3HI2: Proposed method described in specification 2;
e S3HI3: Proposed method described in specification 3.
e MAE: Maximum Absolute Error obtained in [10];

S3HBM: 3-Step Hybrid Block Method described in [6];
e OSTBM: Step Block Method described in [3];
e TS: Total nummber of sub intervals TS on [a,b];

e N: Number of steps.

Problem 1.. Consider the third-order singularly perturbed bound-
ary value problem discussed in [10]

—€y"” +vy = 81€* cos(3x) + 3esin(3r), x € [0,1]

y(0) =0, y(1) =3esin(3), y'(0) =9e (27)

whose exact solution is y(x) = 3e sin(3x).

Figure 1 shows the efficiency curve of Maximum error against
the CPU time for the methods S3HI1, S3HI2 and S3HI3. The
maximum error are determined for N = 6, 12,24 and 48 and
the CPU time for each N, for S3HI1, S3HI2 and S3HI3 re-
spectively. The curve reveals that S3HI2 performed better in
terms of error than S3HI1 and S3HI3 but slightly costly in terms
of its CPU time. Table 1 confirms the output of the efficiency
curve for this problem. The S3HI2 performed better compared
to other methods.
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Figure 2. Efficiency plot for S3HI1, S3HI2 and S3HI3 showing the maximum
error against the CPU time.

Problem 2.. Consider the IVP discussed in [12]

¥ =3sin(x), x € [0, 3]

y0)=1, y(0)=0, y'(0)=2 (28)

whose exact solution is y(x) = 3 cos(x) + %2

The Figure 2 shows the efficiency curve of S3HI1, S3HI2 and
S3HI3 where the maximum error obtained in each care is plot-
ted against the CPU time. The maximum error are determined
for N=6,12,24 and 48 and the CPU time for each N, for S3HI1,
S3HI2 and S3HI3 respectively.

The efficiency curve shows that S3HI3 performed better in terms
of error than S3HI1 and S3HI3 which have slightly better CPU
time than S3HI2.

Table 2 shows errors obtain for Problem 2 with 4 = 0.1 us-
ing the methods S3HI1, S3HI2, S3HI3 and a method of order
8 in [12]. The table agrees with the efficiency curve which in-
dicate that S3HI1 and S3HI3 have the same performance while
S3HI2 performed better when compared to its counterparts and
the method of order 7 in [12].

Problem 3.. Consider the IVP discussed in [5]

v +4y =x, x€l0,1]

whose exact solution is y(x) = 1%(1 cos(2x)) + %

Table 3 shows the Maximum Error obtained for different
values of N at the point xy = b. The results shows the superior-
ity of the proposed methods when the number of steps (subin-
terval) considered are less than those used in [5]. Figure 3 is
the efficiency curve showing the different methods and their in-
dividual performance in the absolute errors obtained against the
CPU time in each case. The methods are relatively the same in
terms of errors but S3HI2 exhibits more CPU time for N = 48.

Problem 4.. Consider the nonlinear BVP discussed in [3].

V' + 27 = 4(1 +x)73, xe€[0,1]

y0)=0, y(0)=1, y(1)=0.5 (30)
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Table 1. Comparison of maximum Errors (ME) for Problem 1

Methods N=10 N =20 N =40
S3HI1 /16 149x10° 1.53x10710 187x10712
132 7.78x107%  8.02x107'"  1.01x10712

1/64  422x107° 441x107'1  576x10713

S3HI2 /16  3.65x107° 135x107'1  6.47x10714
132 2.08x107° 7.59x107'2 3.73x107M4

1/64  131x107° 470x107'2 244 x10714

S3HI3 /16  470x 1078  274x10710 246x 10712
132 2.60x107%  1.48x10710 1.34x10712

1/64 157x107% 862x10°'"  793x10°13

MAEin[?] /16 232x10™% 6.12x107° 1.52x 1073
132 977x1075  259%x107°  6.45x10°°

1/64 3.78x107°  1.00x10°  2.50x10°°

Table 2. Comparison of errors for Problem 2

X Error in S3HI1 Error in S3HI2  Error in S3HI3  Error in [12]
0.1 12458x 1071 21548 x 10777 5.1274x1071®  4.1078x 1077
02 22580x10715  1.7852x 10717 44770x 107 1.6875x 10714
0.3 12358x10715  42878x107'7 12258 x 10715  5.0848 x 1074
04 52145%x10755  32154x 1077 155511075 1.1779%x 10713
0.5 3.0125x10755  1.3358x 1071  1.6712x 10715 24081 x 10713
0.6 2.1258x10715  1.2015x10°1  7.1255x 10715 43709 x 10713
07 1.1125x107%  1.3287x10°°  1.0021x 107'% 7.3708 x 10~13
0.8 7.1258x 10714 82148 x10°1%  42014x107'* 1.1662 x 10712
0.9 22158x 107  32358x10°1%  2.1584x1071%  1.7587 x 10712
1.0 1.0012x 107 1.9985x 10715  1.8877x1071*  2.5466 x 10712
Table 3. Comparison of maximum errors for Problem 3
S3HI1 S3HI2 S3HI3 Method of order 7 in [5]
b TS ME ME ME TS ME
5 30 125x 1077 558x10°°  554x10°1 46 1.20 x 10710
45 521x10713  1.12x 10713 5.02x10713 56 3.69 x 1071
60 235%x 10713 387x10713  1.11x 1072 88 2.44 x 10712
10 60 425x 10713 1.57x 10713 8.41x10712 61 5.54 x 1079
75 122%x107%  1.01x1073  6.63x 10712 91 5.04 x 10710
90 8.14x 10713 1.87x10713  6.74x 10712 136 4.53 x 10711
15 75 1.66x 10712 981 x 10713 342x10712 76 2.67 x 10798
90 225x10712  1.77x 10713 1.08x 10712 110 2.91 x 1079
105 1.11x 10712 231x107%  952x10™1 180 1.52x 10710
20 90 258x 10711 327x10°13  257x 1071 91 5.29 x 10708
105 278x 10710 1.14x 10713 121x10710 129 6.54 x 10797
120 236x 10711 248x10°13  1.18x 10710 204 4.19 x 10710
Table 4. Comparison of maximum Errors (ME) for Example 5
h ME in S3HI1 ME in S3HI2 ME in S3HI3 ME in [12]
L 511541 x 107 223457 x 107 1.00124x 1071 1.03179 x 10711
# 6.55230x 10715 1.20048 x 10715 5.47895x 10715 3.24907 x 10~13
a1 375411x 10716 478951 x 10717 3.47785x 10716 1.02789 x 10714
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Figure 3. Efficiency plot for S3HI1, S3HI2 and S3HI3 showing the maximum
error against the CPU time for Problem 3 for N = 6, 12,24, 48.
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Figure 4. Efficiency plot for S3HI1, S3HI2, S3HI3, S3BHM and OS-
TBM showing the maximum error against the CPU time for Problem 4 for
N=6,12,24,48.

whose exact solution is y(x) = In(1 + x).

Figure 4 is the efficiency curve showing the different methods
and their individual performance in the absolute errors obtained
against the CPU time in each case. From Figure 4, one ob-
serves that, S3SBHM shows good error performance relative to
OSTEM (where OSTEM is an order 8 method). The proposed
S3HI1, S3HI2, S3HI3 performed well in terms of error and time
as such, they out performed S3BHM and OSTEM in terms of
accuracy and time cost.

Example 5.. Consider the BVP discussed in [12].

¥y +y = (x—4)sin(x) + (1 — x)cos(x), x € [0,1] 11
Y0) =0, y(©0) =1, y(1)=-sinl @D

whose exact solution is y(x) = (x — 1) sin(x).

Table 4 shows the maximum error obtained using different
step-sizes and compared with the an order 7 method in [12]. It
clearly shows that S3HI1, S3HI2 and S3HI3 are almost equiva-
lent in performance but more superior to the method cited.
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5. Conclusion

Block of 3 points hybrid method are proposed and applied
to solve third-order linear and non linear IVPs and BVPs in
ordinary differential equations. The method are such that the
off-step points are shifted between two step points in order to
investigate which position is more efficient. All three methods
possess the same characteristics, viz-a-viz, order of accuracy
and number of functions evaluations. They are found to be
consistent, zero stable and convergent as well. They are less
ambiguous to derive. It should also be noted that this paper
proposes computational comparison of 3 classes of a family
of 3 steps linear multistep method. However, less emphases
are placed on these methods outperforming existing methods in
literature. Albeit, they performed favourably well when com-
pared to other methods in literature.

References
[1] J. Henderson & and K. R. Prasad, “Existence and uniqueness of solutions
of three-point boundary value problems on time scales”, Journal Nonlin-

ear Science 8 (2001) 1.

[2

—

C. P. Gupta & V. Lakshmikantham, “Existence and uniqueness theorems
for a third-order three point boundary value problem”, Journal of
Nonlinear Analysis: Theory and Methods in Application 15 (1991) 949.
[3] R. K. Sahi, S. N. Jator & N. A. Khan, ”Continuous Fourth Derivative
Method For Third-order Boundary Value Problems”, International
Journal of Pure and Applied Mathematics 85 (2013) 907.

[4] S.N. Jator, ”Novel Finite Difference Schemes For Third Order Boundary
Value Problems” International Journal of Pure and Applied Mathematics
53 (2009) 37.

[5S] O. Adeyeye & Z. Omar, “Solving Third Order Ordinary Differen-
tial Equations Using One-Step Block Method with Four Equidistant
Generalized Hybrid Points”, IAENG International Journal of Applied
Mathematics (IJAM) 49 (2019) 1.

[6] M. L. Modebei, O. O. Olaiya & A. C. Onyekonwu, "A 3-step fourth
derivatives method for numerical integrationof third order ordinary
differential equations”, Int. J. Math. Ana Opt.; Theory and Applications
7 (2021) 32.

[7]1 S. Islam, M. A. Khan, I. A. Tirmizi & E. H. Twizell, "Non-polynomial
splines approach to the solution of a system of third-order boundary-value
problems”, Applied Mathematics and Computations 168 (2005) 152.

[8] P. K. Pandey, “Solving third-order Boundary Value Problems with
Quartic Splines”, SpringerPlus, 5 (2016) 1.

[9] Y. Q. Hasan & S. A. Alagel, ”Application of Adomian Decomposition
Method to Solving Higher Order Singular Value Problems for Ordinary
Differential Equations”, Asian Journal of Probability and Statistics 9
(2020) 28.

[10] A. Khan & P. Khandelwal, "Numerical Solution of Third Order Singu-
larly Perturbed Boundary Value Problems Using Exponential Quartic
Spline”, Thai Journal of Mathematics 17 (2019) 663.

[11] H.K.Mishra & S. Saini, ”Quartic B-Spline Method for Solving a Singular
Singularly Perturbed Third-Order Boundary Value Problems”, American
Journal of Numerical Analysis 3 (2015) 18.



Modebei et al. / J. Nig. Soc. Phys. Sci. 3 (2021) 459468 468

[12] Ra’ft Abdelrahim, ”Numerical solution of third order boundary value tions”, John Wiley, New York (1973).
problems using one-step hybrid block method”, Ain Shams Engineering [15] M.I. Modebei, R. B. Adeniyi, S. N. Jator & H. C. Ramos, A block hybrid
Journal 10 (2019) 179. integrator for numerically solving fourth-order Initial Value Problems”,
[13] B.S. H. Kashkari & S. Algarni, ”Optimization of two-step block method Applied Mathematics and Computation 346 (2019) 680.
with three hybrid points for solving third order initial value problems”, [16] P. Henrici, "Discrete Variable Methods in Ordinary Differential Equa-
Journal of Nonlinear Science and Application 12 (2019) 450. tions”, John Wiley & Sons, New York, USA, (1962).

[14] J. D. Lambert, "Computational Methods in Ordinary Differential Equa-

468



