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Abstract

This study presents a computational technique developed for solving linearly constraint optimal control problems using the Gradient Flow Method.
This proposed method, called the Modified Gradient Flow Method (MGFM), is based on the continuous gradient flow reformulation of constrained
optimization problem with three-level implicit time discretization scheme. The three-level splitting parameters for the discretization of the gradient
flow equations are such that the sum of the parameters equal to one (θ1 + θ2 + θ3 = 1). The Linear and quadratic convergence of the scheme
were analyzed and were shown to have first order scheme when each parameter exist in the domain [0, 1] and second order when the third
parameter equal to one. Numerical experiments were carried out and the results showed that the approach is very effective for handling this class
of constrained optimal control problems. It also compared favorably with the analytical solutions and performed better than the existing schemes
in terms of convergence and accuracy.
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1. Introduction

Many authors, in literature, have attempted the class of lin-
early constrained optimal control problems using the classical
analytical techniques of the Hamilton-Jacobi-Bellman (HJB) or
"Pontryagin Maximum Principle" by Pontryagin et al. in [14];
though this approach may proof difficult in some cases when
inclusive of non-differentiable delay terms. The numerical ap-
proach has also been fully handled by several authors like Betts

∗Corresponding author tel. no: +2348032541380
Email address: dawodukazeem@futa.edu.ng (Kazeem Adebowale

Dawodu)

in [4], Olotu and Dawodu in [11, 12], Adekunle [1] and Ak-
eremale [2], using the direct numerical methods. This method
deploys the "first discretized - then - optimize" technique which
is known for its amenability to well-structured discretization
schemes and optimization solvers after the unconstrained for-
mulation of the control problem using any of the penalty func-
tion methods or method of multipliers. The direct method of
nonlinear programming formulation tends to eradicate the prob-
lem of ill-conditioning associated with control problems with
delay dynamical systems.
However, this research paper seeks for a better approach in the

146



Olotu et al. / J. Nig. Soc. Phys. Sci. 4 (2022) 146–156 147

formulation of the control operators in the optimization of the
discretized optimal control problem. The gradient flow method
was first applied to nonlinear programming problems by Ev-
tushenko [5] and later improved by Evtushenko and Zhadan
[6]; while the application to unconstrained problems was by
Behrman [3] and the unified approach to nonlinear optimiza-
tion problem was by Wang et al. [15]. The unified gradi-
ent flow algorithm exhibits linear convergence for θ ∈ [0, 1)
and quadratic convergence at θ = 1. As an improvement over
[15], a modified gradient flow method MGFM was proposed
using the gradient formula for Lagrange multiplier formulation.
The development of this method requires a continuous gradient
flow approach based on a three level implicit time discretiza-
tion scheme with splitting parameter θ1, θ2 and θ3. The conver-
gence of the solution of the modified discretized gradient flow
equation to a local minimum of the original problem, either lin-
early or quadratically depending on the choice of θ, will as well
be demonstrated. However, the technique can also be adapted
to handle inequality constraint problems by introducing slack
variables. Three test problems were solved and their numerical
results presented in comparison with existing methods. This is
to demonstrate the effectiveness of the method in solving con-
strained nonlinear programming problems with either continu-
ous variables or a mixture of continuous and discrete variables.

The structure of this paper is as follows: Section 3 is ded-
icated to the idea of gradient flow approach for unconstrained
optimization while Section 4 presents the modified gradient flow
algorithm for constrained optimization in Section 2 using the 3-
level splitting parameters and as well as the convergence analy-
sis. The Algorithm was experimented on two numerical exam-
ples and comparison made with the Conjugate Gradient Method
(CGM) in Section 4.

2. Statement of problem

The general form of the One-Dimensional Optimal Control
Problem is given as

Minimize J(x, u) =

∫ T

t0
F(t, x(t), u(t))dt, (1)

Subject to ẋ(t) = f (t, x(t), u(t)), t ∈ [t0,T ], (2)

x(t0) = x0, (3)

where x(t) ∈ C1[t0, T ] ∈ R, u(t) ∈ L2[t0, T ] ∈ R, F : [t0, T ] ×
R × R→ R and f : [t0, T ] × R × R→ R.
Thus, x(t) is the state variable which describes the state of the
system at any point in time and u(t) is the control variable in the
optimization problem. However, for linear-quadratic problem,
the objective functional is written as F(t, x(t), u(t)) = (px2(t) +

qu2(t)) while the linear differential constraint is written as f (t, x(t), u(t)) =

ax(t) + bu(t), where p, q , a , b ∈ R and p, q > 0.

3. Research Methodology

This paper considered both the theoretical and numerical
analyses of the problem in the development of the algorithm for
solving eqns. (1) to (3). The discrete form of the quadratic ob-
jective functional and the linear differential constraint are con-
structed using the Trapezoidal and Euler method respectively.
The recurrence relation for both the objective functional and
constraint were developed to help construct their respective ma-
trix operators. Furthermore, the symmetry and positive definite
properties of the matrix operators were analyzed to guarantee
their consistency and invertibilty in the developed MGFM.

3.1. Preamble

Let f : X → R be a functional such that the solution x(t)
is a minimizer of f . The gradient flow method, with an initial
point x(0) ∈ X, seeks to find a minimizer of f by the curve x(t)
defined by the differential equation

dx(t)
dt

= −∇ f (x(t)), x(0) = x0, (4)

where ∇ f is called the gradient of f and the solution is the
called the integral curve such that at each instance proceeds in
the direction of the steepest descent of f . In an unconstrained
optimization problem, the equilibrium points of the gradient
flow are the zeros of ∇ f , which are exactly the minimizers of f .
The gradient flow solves the problem min f (x), x(0) = x0 such
that in every trajectory x(t) of the gradient flow, then f (x(t))→
p∗ for p∗ is the minimizer of f .
For clarity, the derivative x′(t) is descretized using the forward
Euler step which yields

xk+1 := xk − h∇ f (xk) (5)

or the backward discretization scheme which yields

xk+1 := xk − h∇ f (xk+1). (6)

The backward Euler method can be applied for the numerical
integration of gradient flow differential equation, also known as
the Proximal minimization method expressed thus:

xk+1 := Proxh, f (xk).

However, the proximal gradient flow algorithm can be inter-
preted as gradient flows,

dx(t)
dt

= −∇ f (x(t)) − ∇g(x(t)). (7)

where g is differentiable. Using the forward-backward integra-
tion of the gradient flow, eqn. (7) can be expressed as

xk+1 = xk − h∇ f (xk) − h∇g(xk+1),

xk+1 := (I + h∇g)−1(I − h∇ f )xk,
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where the forward-backward splitting method above numeri-
cally integrates the gradient flow differential equations.
The time-stepping discretization of eqns. (5) and (6) is ex-
pressed as follows:

xk+1 := xk − h
[
(1 − θ)∇ f (xk) + θ∇ f (xk+1)

]
, (8)

where θ ∈ [0, 1] is a parameter. When θ = 0, the above dis-
cretization is the explicit Euler’s scheme and on the other hand,
the implicit backward Euler when θ = 1.

3.2. Discretization of the Objective function

The discretization of the objective function in eqn. (1) above,
the Trapezoidal rule will be used given as;∫ T

t0
f (x)dx =

h
2

N−1∑
i=0

[ f (xi) + f (xi+1)], (9)

Expanding eqn. (9) above, yields;

J(x, u) ≈
h
2

p
N−1∑
i=0

(x2
i + x2

i+1) +
h
2

q
N−1∑
i=0

(u2
i + u2

i+1), (10)

where for ti = t0 + ih then x(ti) ≈ x(t0 + ih) = xi, u(ti) ≈
u(t0 + ih) = ui for i = 1, 2, ...,N and N = (T − t0)/h. Re-
arranging eqn. (10) into matrix form yields;

Minimize J(Z) =
1
2

ZT MZ + C, (11)

where Z = (x1, x2, ...xN , u0, u1, ..., uN)T ∈ R2N+1, C = 1
2 x2

0hp ∈
R and M ∈ R(2N+1)×(2N+1) is a (2N+1)×(2N+1) matrix operator
with diagonal entries mi j as expressed below:

[mi j] =



2hp, 1 ≤ i ≤ N − 1, j = i,
hp, i = N, j = i,
hq, i = N + 1, 2N + 1, j = i,
2hq, N + 2 ≤ i ≤ 2N, j = i,
0, elsewhere

. (12)

3.3. Discretization of the Constraint function

The differential constraint ẋ(t) = f (t, x(t), u(t)) = ax(t) +

bu(t) was discretized by slotting it into the Euler’s scheme xi+1 =

xi + ẋh with ti = t0 + ih, to arrive at

xi+1 = cxi + dui, (13)

where c = 1 + ha, d = hb and i = 0, 1, 2, ...,N − 1. And upon
expansion and re-arrangement of eqn. (13) into matrix form
yields GZ = k express as

g(Z) = GZ − k = 0, (14)

where Z is of dimension (2N + 1) × 1 and G is of dimension
N × (2N + 1) as shown below;

G =



1 0 · · · 0 −d 0 · · · · · · 0

−c 1
. . .

... 0 −d 0
. . .

...

0
. . .

. . . 0
...

. . .
. . .

. . . 0
...

. . . −c 1 0 · · · 0 −d 0


and

k =


cx0

0
...

0

 ,
with the entries defined as follows: gi j = 1 for 1 ≤ i ≤ N and
j = i; gi j = −d for 1 ≤ i ≤ N and j = N + i; gi j = −c for
2 ≤ i ≤ N and j = i − 1 while gi j = 0 otherwise. Hence,
eqns. (11) and (14) give the quadratic representation for the
constrained minimization problem as

Minimize J(Z) =
1
2

ZT MZ + C,

subject to GZ − k = 0.
(15)

3.4. Lagrangian formulation of the Constraint problem

The unconstrained form of the optimal control problem can
be obtained using the Lagrangian function on eqn. (15) as stated
below:

L(Z, λ) =
1
2

ZT MZ + C + λT (GZ − k), (16)

L(Z, λ) = J(Z) + λT g(Z), (17)

where λ = (λ1, λ2, ..., λN)T ∈ RN is the Lagrangian multiplier.
The pair of points (Z∗, λ∗) is said to be a stationary pair points
of eqn. (17) if the following first order necessary optimality
conditions hold:

LZ(Z∗, λ∗) = JZ(Z∗) + gT
Z (Z∗)λ∗ = 0, (18)

Lλ(Z∗, λ∗) = g(Z∗) = 0, (19)

where

LZ(Z, λ) =

(
∂L(Z, λ)
∂x1

, · · · ,
∂L(Z, λ)
∂uN

)T

,

Lλ(Z, λ) =

(
∂L(Z, λ)
∂λ1

, · · · ,
∂L(Z, λ)
∂λN

)T

,

JZ(Z) =

(
∂J(Z)
∂x1

, · · · ,
∂J(Z)
∂uN

)T

,

denote the gradient vectors of L and J with the dimensions
(2N + 1)× 1, N × 1 and (2N + 1)× 1 respectively. Similarly, we
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have the Jacobian of g with dimension N× (2N +1) represented
below:

gZ(Z) =


∂g1(Z)
∂x1

∂g1(Z)
∂x2

. . . ∂g1(Z)
∂uN

∂g2(Z)
∂x1

∂g2(Z)
∂x2

. . . ∂g2(Z)
∂uN

...
...

...
...

∂gN (Z)
∂x1

∂gN (Z)
∂x2

. . . ∂gN (Z)
∂uN

 . (20)

In order to fulfill the above optimality conditions, the continu-
ous gradient flow reformulation with the given initial condition
Z0 is derived as follows;

dZ
dt

= −LZ(Z(t), λ(Z(t))), Z(0) = Z0, (21)

dZ
dt

= ϕ(Z). (22)

Substituting eqn. (18) into (21) yields,
dZ
dt

= −[JZ(Z(t)) + gT
Z (Z(t))λ0(Z(t))], Z(0) = Z0 (23)

such that the choice of λ0(Z) is to satisfy

LZ(Z, λ0(Z)) = τgT
Z (Z)g(Z), (24)

in the least square sense, where τ > 0 is a parameter.
Substituting eqn. (18) into (24) yields,

JZ(Z) + λ0(Z)gT
Z (Z) = τgT

Z (Z)g(Z). (25)

Obtaining the least squares solution of λ0(Z) in en. (25) yields,

λ0(Z)gT
Z (Z) = τgT

Z (Z)g(Z) − JZ(Z), (26)

λ0(Z) = [gT
Z (Z)]†{τgT

Z (Z)g(Z) − JZ(Z)}, (27)

where the superscript ‘†’ refers to the pseudo inverse of gT
Z (Z)

in Layton [9].

Theorem 3.1. The constraint equations for the discretized op-
timal control problem g(Z) satisfies the linearly independent
constraint qualification (LICQ) for any feasible point Z∗. The
LICQ states that the gradient of the active inequality constraints
and the gradient of the equality constraints are linearly inde-
pendent at Z∗. eyiu

LICQ holds if g1Z(Z), g2Z(Z), ..., gNZ(Z) are linearly indepen-
dent for any feasible point Z∗. Thus

α1g1Z(Z) + α2g2Z(Z) + ... + αNgNZ(Z) = 0 (28)

implies that αi = 0. Hence, the dimension of the row space of
G must be N.
Applying the row-reduction process to G in eqn. (3.3), we have
Ḡ∗ = [I|V] written as
Ḡ∗ = 

1 0 · · · 0 −d 0 · · · · · · 0

0 1
. . .

... −cd −d
. . .

. . .
...

...
. . .

. . . 0
...

. . .
. . .

. . .
...

0 · · · 0 1 −cN−1d · · · −cd −d 0


,(29)

where I ∈ RN×N and V ∈ RN×(N+1). The entries g∗i j of Ḡ∗ can be
defined as follows:

[g∗i j] =


1, 1 ≤ i ≤ N, j = i;
−ckd, k + 1 ≤ i ≤ N, j = N + i − 2;

for k = 1, 2, ...,N − 1,
0, elsewhere.

(30)

Thus, rank of Ḡ∗ equals rank of G and αi = 0 are the param-
eters that make g1Z(Z), g2Z(Z), ..., gNZ(Z) linearly independent
for any feasible point Z∗ and G(Z) satisfies LICQ. From theo-
rem (3.1), we have for any feasible point Z∗ that Ḡ∗ ∈ RN×(2N+1)

is re-structured into a N×N non-singular (invertible) Gram ma-
trix G∗ given as

G∗ = gZ(Z)gT
Z (Z). (31)

Multiplying both sides of eqn. (25) by gZ(Z) arrives at

gZ(Z)(JZ(Z) + λ0(Z)gT
Z (Z)) = τgZ(Z)gT

Z (Z)g(Z). (32)

Therefore, with G∗(Z) = gZ(Z)gT
Z (Z), eqn. (32) becomes

gZ(Z)JZ(Z) + gZ(Z)λ0(Z)gT
Z (Z) = τG∗g(Z)

and simplified to get

G∗λ0(Z) = τG∗g(Z) − gZ(Z)JZ(Z). (33)

Pre-multiplying eqn. (33) by G−1
∗ yields

G−1
∗ G∗λ0(Z) = G−1

∗ τG∗g(Z) −G−1
∗ gZ(Z)JZ(Z), (34)

and solving for λ0(Z) to obtain

λ0(Z) = τg(Z) −G−1
∗ gZ(Z)JZ(Z), (35)

where eqns. (27) and (35) are equivalent. Consequently, eqn.
(27) can be express as

λ0(Z) = (gT
Z (Z))†[τgT

Z (Z)gZ(Z) − JZ(Z)],

= τgZ(Z) −G−1
∗ JZ(Z)gZ(Z),

where G−1
∗ = [gT

Z (Z)gZ(Z)]−1, hence the pseudo-inverse of [gT
Z (Z)]

is [gT
Z (Z)]† = G−1

∗ gZ(Z).
However, eqn. (35) is true when Z is sufficiently close to an
equilibrium point Z∗. The choice of λ0(Z) has the advantage of
reducing the complexity in the evaluation of the gradient of λ0

with respect to Z. Thus substituting λ0(Z) in eqn. (35) above
into eqn. (23) yields;

Ż = ϕ(Z) = −(JZ(Z) + gT
Z (Z)[τg(Z)

− G−1(Z)gZ(Z)JZ(Z)]). (36)

In testing the convergence of the gradient flow formulation ex-
pressed in eqns. (23) and (24), we then considered the LICQ
theorem below.

149



Olotu et al. / J. Nig. Soc. Phys. Sci. 4 (2022) 146–156 150

Theorem 3.2. Suppose that (Z∗, λ∗) is a stationary point, then

1. LICQ holds at Z∗.
2. For any Z̄ satisfying gZ(Z∗)Z̄ = 0, then,

Z̄T LZZ(Z∗, λ∗)Z̄ > 0 where Z̄ = Z − Z∗.

It indicates that the pair (Z(t), λ0(Z(t))) tends to (Z∗, λ∗) as t →
∞ provided the starting point Z0 is sufficiently close to point Z∗.

Proof :
We start by deploying the Poincare-Lyapunov stability theo-
rem stated in Haddad et al. [8] and Morris [10] thus:

Theorem 3.3 (Liapunov Stability). Let X∗ be an equilibrium
point for X

′

= J(X). Let L : Ω→ R be a differentiable function
defined on an open set Ω containing X∗. Suppose further that

1. L(X∗) = Ω and L(X) > 0 if X , X∗;
2. L̇ ≤ 0 in Ω−X∗; then X∗ is stable. Furthermore, if L also

satisfies
3. L̇ < 0 in Ω − X∗, then X∗ is asymptotically stable,

It then requires we show that Z∗ is an asymptotically stable
point for Ż = ϕ(Z) if ϕ(Z) is continuously differentiable and
the original of the linearized system

ẏ = ϕZ(Z∗)y, (37)

where y := Z − Z∗, is exponentially stable (i.e. all eigenvalues
of ϕZ(Z∗) are strictly negative). It was however noted that at
Z∗, (Z∗, λ0(Z∗)) satisfies eqns. (18) and (19) because the right
hand side of eqn. (24) is identically zero; implying that λ∗ =

λ0(Z∗).
Applying Taylor’s expansion to the RHS of eqn. (36), about the
point Z∗, gives the following linearized equation

dZ
dt

= ϕ(Z) + ϕZ(Z)y. (38)

Comparing eqn. (38) with the RHS of eqn. (23) yields

dZ
dt

= ϕ(Z∗) + ϕZ(Z∗)(Z − Z∗). (39)

Recall that

L(Z, λ) = J(Z) + λT g(Z), (40)

LZ(Z, λ) = JZ(Z) + λT gZ(Z), (41)

LZZ(Z, λ) = JZZ(Z) + gT
ZZ(Z)λ, (42)

then from eqn. (38),

dZ
dt

= ϕ(Z∗) + ϕZ(Z∗)y, [where y = Z − Z∗]. (43)

Suppose ϕ̇(Z∗) = LZ(Z, λ) which is equal to eqn. (41); then
differentiating eqn. (41) arrives at

ϕZ(Z∗) = [JZZ(Z∗) + λT gZZ(Z∗) + gZ(Z∗)λZ]y,

= [LZZ(Z∗, λ∗)) + gZ(Z∗)λZ]y. (44)

Therefore, eqn. (39) becomes

dZ
dt

= −[LZ(Z∗, λ∗) + [LZZ(Z∗, λ∗)

+ gT
Z (Z∗)λ0

Z(Z∗)](Z − Z∗)], (45)

where ϕ(Z∗) = LZ(Z∗, λ∗) and ϕZ(Z∗) =

LZZ(Z∗, λ∗) + gT
Z (Z∗)λ0

Z(Z∗).
Considering the unknown coefficient λ0

Z(Z∗) and setting LZ(Z∗, λ∗) =

0 yields,

dZ
dt

= −[LZZ(Z∗, λ∗) + gT
Z (Z∗)λ0

Z(Z∗)](Z − Z∗)]. (46)

We seek to differentiate both sides of eqn. (32) with respect to
Z and evaluating at Z∗. Firstly, we differentiate the LHS of eqn.
(32) as follows:

gZ(Z∗)
d

dZ
[JZ(Z) + λ0(Z)gT

Z (Z)]

+ [JZ(Z) + λ0(Z)gT
Z (Z)]

d
dZ

gZ(Z)

= gZ(Z∗)[JZZ(Z∗) + λ0(Z∗)
d

dZ
gT

Z (Z∗)

+ gT
Z (Z)

d
dZ

λ0(Z)]

+ [JZ(Z∗)gZZ(Z∗)λ0(Z)gT
Z (Z∗)gZZ(Z∗)

(47)

and arrives at

[JZZ(Z∗)gZ(Z∗) + λ0gT
ZZ(Z∗)]gZ(Z∗)

+[JZ(Z∗)

+ λ0
Z(Z∗)gT

Z (Z∗)]gZZ(Z∗)

+ λ0
Z(Z∗)gT

Z (Z∗)gZ(Z∗). (48)

Secondly, we differentiate the RHS of eqn. (32) as follows;

τ
d

dZ

[
gT

Z (Z)gZ(Z)g(Z)
]

= τ

[
gT

Z (Z)
d

dZ
gZ(Z)g(Z)

+gZ(Z)g(Z)
d

dZ
gT

Z (Z)
]
,

= τ[gT
Z (Z∗)gZ(Z∗)]gZ(Z∗)

+τ[gT
Z (Z∗)gZZ(Z∗)]g(Z∗)

+ τ[gT
ZZ(Z∗)]gZ(Z∗)g(Z∗). (49)

Equating eqns. (48) and (49), we have

[JZZ(Z∗)gZ(Z∗) + λ0gT
ZZ(Z∗)]gZ(Z∗) + [JZ(Z∗)

+ λ0
Z(Z∗)gT

Z (Z∗)]gZZ(Z∗) + λ0
Z(Z∗)gT

Z (Z∗)gZ(Z∗) (50)

= τ[gT
Z (Z∗)gZ(Z∗)]gZ(Z∗)

+ τ[gT
Z (Z∗)gZZ(Z∗)]g(Z∗)

+ τ[gT
ZZ(Z∗)]gZ(Z∗)g(Z∗). (51)
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Applying eqns. (18) and (19) on eqn. (51), we have

gZ(Z∗)[LZZ(Z∗, λ∗) + gT
Z (Z∗)λ0

Z(Z∗)]

= τgZ(Z∗)gT
Z (Z∗)gZ(Z∗), (52)

where LZZ(Z∗, λ∗) = JZZ(Z∗)gZ(Z∗)+λ0gT
ZZ(Z∗) and LZ(Z∗, λ) =

JZ(Z∗) + λ0
Z(Z∗)gT

Z (Z∗)).
Eqn. (52) becomes

gZ(Z∗)LZZ(Z∗, λ∗) + G(Z∗)λ0
Z(Z∗)

= τG(Z∗)gZ(Z∗), (53)

where G(Z∗) = gT
Z (Z∗)gZ(Z∗).

Making λ0
Z(Z∗) the subject of eqn. (53) yields

λ0
Z(Z∗) = −G−1(Z∗)gZ(Z∗)LZZ(Z∗, λ∗) + τgZ(Z∗). (54)

Recall that

y = Z − Z∗, (55)

⇒
dy
dt

=
dZ
dt
−

dZ∗

dt
, (56)

and
dy
dt

=
dZ
dt
. (57)

Substituting eqn. (54) into eqn. (46) and considering eqn. (57)
yields

dy
dt

= −[LZZ(Z∗, λ∗) +

gT
Z (Z∗)(−G−1(Z∗)gZ(Z∗)LZZ(Z∗, λ∗)

+τgZ(Z∗))]y, (58)

dy
dt

= −[LZZ(Z∗, λ∗) +

+gT
Z (Z∗)gz(Z∗)LZZ(Z∗, λ∗)G−1(Z∗)

−τgZ(Z∗)gT
Z (Z∗)]y, (59)

dy
dt

= [−LZZ(Z∗, λ∗)[I − gT
Z (Z)G−1(Z)gZ(Z)]

−τgT
Z (Z)gZ(Z)]y. (60)

Since Z∗ is zero at equilibrium point, then

dy
dt

= −[(I − gT
Z (Z)G−1(Z)gZ(Z))LZZ(Z∗, λ∗)

+ τgT
Z (Z)gZ(Z)]y. (61)

Let

S (Z) = I − gT
Z (Z)G−1(Z)gZ(Z), (62)

V(Z) = gZ(Z)gT
Z (Z), (63)

where I is the N × N identity matrix. Therefore, eqn. (61)
becomes

dy
dt

= −[S (Z∗)LZZ(Z∗, λ∗) + τV(Z∗)]y. (64)

From above, eqns. (62) and (63) are orthogonal where eqn. (62)
is an operator which projects a vector to the null space of gZ(Z),
because gZ(Z)S (Z) = 0.
Multiplying eqn. (64) from the left by gZ(Z∗) yields

gZ(Z∗)
dy
dt

= −[τgZ(Z∗)V(Z∗)]y. (65)

Eqn. (65) is equivalent to

dy
dt

= −[τV(Z∗)]y. (66)

Hence, since τ > 0, it remains to show that V(Z∗) is positive
definite. Recall that V(Z∗) = gT

Z (Z∗)gZ(Z∗) and gZ(Z∗) = G;
where G whose dimension is N × (2N + 1) is given by eqn.
(3.3). Therefore, Q = GGT with dimension N × N is given by

Q =



1 + d2 −c 0 · · · 0

−c α −c 0
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . −c

0 · · · 0 −c α


, (67)

where α = 1 + c2 + d2.

Theorem 3.4 (Sylvester’s Criterion). A real,
symmetric matrix is positive definite if and only if all the prin-
cipal minors are positive definite. Gilbert [7].

Considering the implementation of Theorem 3.4 on the ma-
trix Q, we seek to establish that the matrix is positive definite.
Firstly, Q is real since for every qi, j ∈ Q, qi, j ∈ R (i.e. all the
diagonal entries in eqn. (67) are real).
Secondly, Q = gT

Z (Z∗)gZ(Z∗) is symmetric since (Q)T = [gT
Z (Z∗)gZ(Z∗)]T =

gT
Z (Z∗)gZ(Z∗) = Q.

However, we also seek to establish that the principal minors Qi,
∀i = 1, 2, 3, ...N, of Q are all positive definite. When i = 1, 2, 3,
and 4, Q1, Q2, Q3 and Q4 are 1, 1 + c2, 1 + c2 + c4 and 1 re-
spectively; and are all positive ∀c, d > 0. We then assumed,
by mathematical induction, that it is true for Qk when i = k
and Qk+1 when i = k + 1. And by Cholesky, it was shown that
Qk+1 is positive definite and that all the principal minors of Q
are positive definite [See Appendix]. We, therefore, concluded
that the matrix Q = GGT is positive definite.

3.5. Construction of the Modified
Gradient Flow Method (MGFM)

We now considered the discretization of the formulation of
eqns. (23) and (24) using three level implicit time discretization
scheme with splitting parameters θ1 and θ2 where θ3 = (1− θ1−

θ2).
Let 0 = t0 < t1 < t2 < t3 < ... < tk = t be a sequence time
points for the time t ≥ t0, hk = tk+1 − tk and δZk+1 = Zk+2 − Zk

being the sequence of solution distance between two successive
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equilibrium points. We discretize eqn. (23) by the following
implicit time stepping algorithm;

Zk+2 − Zk+1

hk+1
= −[θ3LZ(Zk+2, λ

0
k+2)+

θ2LZ(Zk+1, λ
0
k+1) + θ1LZ(Zk, λ

0
k)]. (68)

Simplified to

Zk+2 − Zk+1 = −hk+1[θ3LZ(Zk+2, λ
0
k+2)+

θ2LZ(Zk+1, λ
0
k+1) + θ1LZ(Zk, λ

0
k)]. (69)

Employing Taylor’s expansion about (Zk+2, λ
0
k+2) arrives at

Zk+1 = Zk + hkZk + O||hk ||
2, (70)

LZ(Zk+2, λ
0
k+2) = LZ(Zk, λ

0
k) + H(Zk, λ

0
k)δZk+1

+ O||δZk+1 ||
3, (71)

LZ(Zk+1, λ
0
k+1) = LZ(Zk, λ

0
k) + H(Zk, λ

0
k)δZk

+ O||δZk ||
3, (72)

where, δZk = Zk+1 − Zk and
H(Zk, λk) = LZZ(Zk, λ

0
k) + LZλ0

k
((Zk, λk))λZ(Zk)

is the Hessian of L(Z, λ). Substituting eqns. (70), (71) and (72)
into eqn. (69) yields

Zk+2 = Zk + hkZ′k + O||hk ||
2

−hk+1[θ3(LZ(Zk, λ
0
k)

+H(Zk, λ
0
k)δZk+1 + O||δZk+1 ||

3)

+ θ2(LZ(Zk, λ
0
k) + H(Zk, λ

0
k)δZk

+O||δZk ||
2) + θ1LZ(Zk, λ

0
k)]. (73)

Neglecting the higher order terms in eqn. (73) and solving the
resultant equation for Zk+2 yields

Zk+2 = Zk + hkZk − hk+1θ3LZk

−hk+1θ3HZkZk+2 + hk+1θ3HZkZk

−hk+1θ2LZk + +hk+1hkθ2HZkLZk

−hk+1θ1LZk . (74)

For equal step size, hk+1 = hk with θ1 = 0 we obtain Zk+2 ex-
pressed below

Zk+2 = Zk + hkZk − hkθ3LZk − hkθ3HZkZk+2

+hkθ3HZkZk − hkθ2LZk

+h2
kθ2HZkLZk . (75)

In collecting like terms and factorizing eqn. (75), it becomes

(I + hkθ3HZk)Zk+2

= (I + hkθ3HZk )Zk − (θ2 + θ3)hkLZk

+ h2
kθ2HZkLZk,

= (I + hkθ3HZk )Zk + (−hkI

+ h2
kθ2HZk)LZk. (76)

Making Zk+2 the subject of formula in eqn. (76) yields

Zk+2 = (I + hkθ3HZk)−1[(I + hkθ3HZk)Zk

+(−hkI + h2
kθ2HZk)LZk],

= Zk − hk(I + hkθ3HZk)−1

×[I − hkθ2HZk]LZk ,

for any θ2, θ3 ∈ [0, 1] and θ2 + θ3 = 1 by the time-stepping
algorithm for convex functions.
Also, from eqn. (76), we obtained

(I + hkθ3HZk )(Zk+2 − Zk)

= −hk(I + hkθ2HZk)LZk. (77)

Given that δk+1 = Zk+2 − Zk and θ2 = 0, eqn. (77) becomes

(I + hkθ3HZk )δZk+1 = −hkLZk. (78)

Thus, for any initial guess Z0, eqn. (77) defines a series con-
verging to the solution of the optimal control problem stated in
eqns. (1) to (3). Hence, the Modified Gradient Flow (MGF)
Algorithm for the Discretized Optimal Control Problem (OCP)
is stated as follows:

MGF Algorithm for Discretized OCP
Step 1: Input the operator G ∈ RN×(2N+1),
Z0 ∈ R2N+1, parameters θ2, θ3 ∈ [0, 1],
sequence of time step-size {hk} and tolerance
(σ > 0) sufficiently small. Set k = 0.
Step 2: Compute λ0

Zk
using eqn. (54).

Step 3: Solve for δZk+1 in the system using
the CGM (I + hkθ3HZk )δZk+1 = −hkLZk

(where δZk+1 = Zk+2 − Zk)
Step 4: Update: Zk+2 = Zk + δZk+1 .
Step 5: Stop the process if ||HZk || ≤ σ,
otherwise, set k = k + 1 and repeat step 3.

3.6. Error and Convergence Analysis
The convergence analyses of the MGFM requires us to shown

the rate and type of convergence of the algorithm for varying
values of parameters θ1, θ2 and θ3. We shall show that the
algorithm is super-linearly convergent for some θ2 and θ3 and
quadratically convergent if θ1 = θ2 = 0 and θ3 = 1.

Theorem 3.5. Let {Zk} be the sequence defined in eqn. (77)
and (Zå, λå) be the solution of eqns. (1) and (2). If the initial
guess Z0 is sufficiently close to Z, then we have

1. Zk converges linearly to Zå if θ1, θ2, θ3 ∈ [0, 1] and hk > 0
is sufficiently small;

2. Zk converges to Zå quadratically if θ2 = 0, θ3 = 1 and
hk → ∞.

We shall prove the two cases separately.
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• Case 1. θ1, θ2, θ3 ∈ [0, 1].
From eqn. (77) we have: (I + hkθ3HZk )(Zk+2 − Zk) =
−hk(I − hkθ2HZk )LZk .
Hence,

Zk+2 = Zk − hk[(I − hkθ2HZk )LZk +

θ3HZk (Zk+2 − Zk)].

Let (Z∗, λ∗) be the minimum points of eqns. (16) and (17)
and ek+1 = Zk+1 − Z∗.
Subtracting Z∗ from both sides of the above equation and
noting that we have

ek+1 = ek − hk[(I − hkθ2HZk )(LZk − LZ∗k )
+θ3HZk (ek+1 − ek)]. (79)

Thus, by the Mean Value Theorem,

ek+1 = ek − hk[(I − hkθ2HZk )H
ζk
Zk

ek

+θ3HZk (ek+1 − ek)], (80)

where ζk denotes a point in the line segment connecting
Zk and Z∗. Taking the norm of both sides, we have

||ek+1|| ≤ γ(Zk, λ
0
k , ζk, θ1, θ2, θ3, hk)||ek ||, (81)

where

γ(Zk, λ
0
k , ζk, θ1, θ2, θ3, hk) =

||{I − hk(I + θ3HZk )
−1(I − θ2HZk )H

ζk
Zk
}||. (82)

From eqn. (81), we see that if
γ(Zk, λ

0
k , ζk, θ1, θ2, θ3, hk) < 1, then ek converges to zero

linearly. To show this, we need to prove that HZk is pos-
itive definite. But by theorems and , HZk is positive defi-
nite. With these, when Zk is sufficiently close to Z∗, from
eqn. (82), it is seen that if θ1, θ2, θ3 ∈ [0, 1] and hk suffi-
ciently small, we have

γ(Zk, λ
0
k , ζk, θ1, θ2, θ3, hk)

≤

1 − hk(1 − hkθ2λ
k
min)λk

min

1 + hkθ3λ
k
max

 < 1, (83)

where λk
min and λk

max denote the minimum and maximum
eigenvalues of HZk , respectively. Therefore, eqn. (81)
implies that limk→∞ ek = 0 is linear. This proves that Zk
converges linearly to Zå if θ1, θ2, θ3 ∈ [0, 1] and hk > 0 is
sufficiently small.

• Case 2. θ3 = 1.
From eqn. (77), when θ3 = 1 and hk = h, we have

Zk+2 − Zk

h
= −(LZk + HZkδZk+1 ).

When h→ ∞, the above equation becomes

HZkδZk+1 + LZk = 0. (84)

Eqn. (84) coincides with the equation resulting from the
application of the Newton’s method to LZ = 0. Hence, Zk
converges quadratically to Z∗ if Z0 is sufficiently close to
Z∗.

Figure 1. State Behaviors in various Algorithms

Figure 2. Control Behaviors in various Algorithms

4. Examples and Numerical
Results

The numerical examples and respective results are presented
below based on the construction of modified gradient flow method
(MGFM) for discretized optimal control problems. The results
show the robustness and efficiency of the scheme (MGFM) as
compared with existing schemes.

Example 1
Considering the optimal control problem presented by [1]

Minimize I(x, u) =

∫ 1

0
(x2(t) + u2(t))dt, (85)

subject to ẋ = 2x(t) + 5u(t), x(0) = 1. (86)

The analytical solution is given as(
x
λ

)
=

(
1.0000
−0.5908

)
e−5.3852t, (87)

and the control variable is given as u(t) =
− 1.4770e−5.3852t. The solution of eqns. (85) and (86) were
obtained, using h = 0.1 and hk = 20, by the modified gradi-
ent algorithm for discretized optimal control problems and the
results were compared with the existing algorithms as shown
in table 1 below. However, the step-size h = 0.1 was chosen
for the purpose of illustration. Meanwhile smaller choices of
step-size could be used for better refinement.
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Algorithm objective functional value

Analytical Method 0.2953894
Adekunle [1] 0.3033885
Akeremale [2] 0.2955932

MGFM 0.2955879

Table 1: Comparison of Objective Functional Values of Exist-
ing Methods for Example 1
Results: From table 1 above, it was observed that the objective
functional value (0.2955879) for the developed MGFM agreed
favourably with the value (0.2953894) obtained from the ana-
lytical method and better than the values obtained by Adekunle
[1] and Akeremale [2] from Conjugate Gradient Method (CGM)
and Extended Conjugate Gradient Method (ECGM) respectively.

Table 2a: Errors in the State variables for Example 1

|x(t) − x̂(t)| (×10−3)
t Adekunle [1] Akeremale [2] MGFM

0.0 0 0 0
0.1 3.2204 0.5528 0.5525
0.2 3.8300 0.3680 0.3677
0.3 3.4841 0.3414 0.3410
0.4 2.9424 0.4447 0.4442
0.5 2.5506 0.6968 0.6962
0.6 2.4892 1.1667 1.1650
0.7 2.9118 1.9867 1.9858
0.8 4.0417 3.4014 3.4005
0.9 6.2660 5.8292 5.8279
1.0 10.266 9.9981 9.9789

|u(t) − û(t)| (×10−4)
t Adekunle [1] Akeremale [2] MGFM

0.0 38.796 38.419 38.4202
0.1 18.131 0.6668 0.6555
0.2 7.9765 0.2654 0.2562
0.3 3.1973 0.0149 0.0755
0.4 1.1303 0.1891 0.1949
0.5 4.3839 0.4248 0.4294
0.6 4.8076 0.7726 0.7761
0.7 1.0193 1.3417 1.3442
0.8 2.0619 2.3045 2.3062
0.9 3.8245 3.9497 3.9505
1.0 6.7705 6.4026 6.4027

Table 2 above shows the errors in the state and control variables
for example 1 while the errors generated with the MGFM were
minimal compared with the errors generated from Adekunle [1]
and Akeremale [2]. Figures 1 and 2 below clearly show the

Algorithm Objective Functional Value

Analytical Method 0.5647
Adekunle [1] 0.5746
Akeremale [2] 0.5649

MGFM 0.5648

comparisons of the behaviors of the state and control trajecto-
ries to the various algorithms respectively. It was observed that
the trajectories for both the state and control variables overlap
due to closeness in results.

Example 2
Considering the optimal control problem presented by [1]

MinimizeJ(x, u) =

∫ 1

0
(x2(t) + u2(t))dt, (88)

subject to ẋ = 1.705x(t) + 3.021u(t), (89)

x(0) = 1. (90)

Table 3: Comparison of Objective Functional Values of Exist-
ing Methods for Example 2
Table 4a: Errors in the State variables for Example 1

|x(t) − x̂(t)| (×10−4)
t Adekunle [1] Akeremale [2] MGFM

0.0 10.000 10.0000 1.0000E
0.1 3.2204 5.528 5.5253
0.2 2.0509 4.347 3.9394
0.3 3.3242 2.604 2.3946
0.4 3.2376 2.435 2.2688
0.5 2.9852 2.646 2.4997
0.6 2.6832 3.2433 3.0992
0.7 2.3921 4.2860 4.1303
0.8 2.1365 5.8933 5.7138
0.9 1.9144 8.2567 8.0424
1.0 1.7012 10.716 11.403

Table 4b: Errors in the Control variables for Example 1
Results: From table 3 above, it was observed that the objective
functional value, 0.5648, for MGFM agreed favourably with the
value (0.5647) obtained from the analytical method; and better
than the values obtained by Adekunle [1] and Akeremale [2]
from Conjugate Gradient Method (CGM) and Extended Con-
jugate Gradient Method (ECGM) respectively as expressed in
table 3 above.
Results: Table 4 above shows the errors in the state and control
variables for example 2 where the errors generated from the use
of MGFM were minimal compared to the errors generated from
same examples in Adekunle [1] and Akeremale [2]. Figures
3 and 4 below clearly show the comparisons of the behaviors
of the state and control trajectories to the various algorithms

154



Olotu et al. / J. Nig. Soc. Phys. Sci. 4 (2022) 146–156 155

|u(t) − û(t)|(×10−4)
t Adekunle [1] Akeremale [2] MGFM

0.0 0.2928 0.3404 0.2893
0.1 1.8337 0.5220 0.3179
0.2 1.0622 1.8094 2.4019
0.3 5.9872 1.1203 2.3334
0.4 3.3442 0.4000 0.4941
0.5 1.9971 0.7234 0.7965
0.6 1.5137 1.1255 1.1823
0.7 1.6411 1.6579 1.7019
0.8 2.2516 2.3872 2.4210
0.9 3.3101 3.4037 3.4311
1.0 2.9285 3.4045 2.8932

Figure 3. State Behaviors in various Algorithms

Figure 4. Control Behaviors in various Algorithms

respectively. It was observed that the trajectories for both the
state and control variables overlap due to closeness in results.

5. Conclusion

This paper developed a new scheme for the solution of a
quadratic optimal control problem with linear equality constraint.
The method is a gradient flow formulation that requires dis-

cretization techniques and a splitting parameter approach for
the gradient of the equation whose solution converges to a local
minimum of the original problem; either linearly or quadrati-
cally. Two linear equality constrained optimal control problems
were considered and their results compared with the analytical
and two known existing schemes. Thus, it was observed that
the new scheme compared favorably with the analytic solutions
and performed better than the Conjugate Gradient Method used
in [2] in terms of convergence and accuracy. It is therefore ob-
vious that this developed algorithm, due to its robustness and
efficiency, would provide a new platform for solving optimal
control problems with or without box constraints, equality or in-
equality constraints or with delay or non-delay dynamical sys-
tems.
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APPENDIX

Let Qi represent the leading principal minor of Q, ∀i = 1, 2, 3, ...,N
of the matrix Q = GGT ; we then considered the determinants
of the principal minors Q1,Q2,Q3, ... as follows:
For i = 1, Q1 = 1 + d2 > 0, ∀d.
For i = 2,

Q2 =

[
1 + d2 −c
−c 1 + c2 + d2

]
, (91)

such that det (Q2) = 1 + 2d2 + c2d2 + d4 > 0 for all c, d.
For i = 3,

Q3 =


1 + d2 −c 0
−c 1 + c2 + d2 −c
0 −c 1 + c2 + d2

 , (92)

such that det (Q3) = 1 > 0 ∀c.
Therefore, |Q3| is positive.
For i = 4,

Q4 =


1 + c2 −c 0 −d
−c 1 + c2 −c 0
0 −c 1 0
−d 0 0 2d2

 , (93)

such that det. (Q4) = d2 > 0. ∀c, d.
Therefore, det (Q4) = d2 > 0, ∀d, i.e. |Q4| is positive. Hence,
by mathematical induction, since it is true for values of Qi, i =
1, 2, 3, 4, then we assume that it is true for i = k, i.e. Qk, while
we shall prove that it is true for i = k + 1, i.e. Qk+1. Set σ2 =
1 + c2 > 0, c2 > 0, 1 > 0, 2d2 > 0 and d2 > 0 where 1 + c2, c2,
1, 2d2 and d2 are principal diagonals of Q.
Thus,

Qk+1 =

[
Qk βk+1

βT
k+1 σ2

]
, (94)

where

βk+1 =
[

Q1,k+1 Q2,k+1 . . . Qk,k+1

]T
. (95)

By Cholesky, Qk+1 is said to be positive definite if there exists
a lower triangular matrix Li, j such that Qk+1 = LLT . That is,[

Qk βk+1

βT
k+1 c2

]

=

[
Hk 0

LT
k+1,1 Lk+1,k+1

] [
HT

k LT
k+1,1

0 Lk+1,k+1

]
,

where Hk is a lower triangular matrix with positive diagonal
entries. However, eqn. (5) becomes[

Qk βk+1

βT
k+1 c2

]
=

[
HkHT

k HkLk+1,1

LT
k+1,1HT

k LT
k+1,1Lk+1,1 + L2

k+1,k+1

]
, (96)

such that Qk = HkHT
k , βT

k+1 = LT
k+1,1HT

k , βk+1 = HkLk+1,1 and
σ2 = LT

k+1,1Lk+1,1 + L2
k+1Lk+1.

Thus, since the diagonal entries of Hk are greater than zero, it
is non-singular and therefore the linear system of the equation
has a unique solution given by Lk+1,1 = H−1

k βk+1 and a positive
value for Lk+1,k+1 can be obtained if σ2 − LT

k+1Lk+1 > 0. Hence,

0 < |Qk | = det
[

Qk βk+1

βT
k+1 σ2

]
,

= Qk[σ2I − βT
k+1(Qk)−1βk+1].

Substituting the values of βk+1 and Qk, we have

Q = Qk[σ2I − (HkLk+1,1)T (HkHT
k )−1HkLk+1,1],

= Qkσ
2 − LT

k+1,1Lk+1,1,

where

(HkHT
k )−1 = Q−1

k ,

Qk = [σ2 − LT
k+1,1Lk+1,1].

Since detQk > 0, it follows that σ2 − LT
k+1,1Lk+1,1 > 0. Hence,

Lk+1,k+1 =

√
σ2 − LT

k+1,1Lk+1,1. (97)

Thus Li > 0 arises from the fact that G is positive definite
(LICQ). Hence, the pair (Z(t), λ0(Z(t))) tends to (Z∗, λ∗) as t →
∞ provided the starting point Z0 is sufficiently close to point Z∗.
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