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Abstract

The classical Lane-Emden differential equation, a nonlinear second-order differential equation, models the structure of an isothermal gas sphere
in equilibrium under its own gravitation. In this paper, the Mittag-Lefller function expansion method is used to solve a class of fractional Lane-
Emden differential equation. In the proposed differential equation, the polytropic term f(y(x)) = y"(x) (where m = 0,1,2,... is the polytropic
index; 0 < x < 1) is replaced with a linear combination f(y(x)) = ay + a;y(x) + ay*(x) + -+ + @,y"(x) + --- + ayyV(x),0 < m < N,N € N,.
Explicit solutions of the fractional equation, when f(y) are elementary functions are presented. In particular, we consider the special cases of
the trigonometric, hyperbolic and exponential functions. Several examples are given to illustrate the method. Comparison of the Mittag-Leffler
function method with other methods indicates that the method gives accurate and reliable approximate solutions of the fractional Lane-Emden
differential equation.
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1. Introduction Riemann-Liouville derivatives ([5], [8], [10]). The Griinwald-
) ) o ) Letnikov derivative is mostly limited to numerical algorithms.
Fractional calculus is a generalization and extension of clas- The Riemann-Liouville fractional derivative has certain limi-

sical calculus to non-integer orders. In recent times, fractional tations and so becomes unsuitable in modeling some real-life
calcplus hff‘s attracted th? attentiop of r.esearchers in.several ar- phenomena since it requires the definition of fractional order
cas 1.nc1ud1ng mz}thematlcs, physics, biology, chemistry, engi-  jpitial conditions which have no physical meaningful explana-
neering, economics and psychology ([11, [2], [3], [4], [S]. [6].  tion yet ([8]). The main advantage of the Caputo derivative
[7], [8], [9D). Several definitions of fractional calculus have g that it takes on the same form of initial conditions for the
been formulated by researchers. The most common and widely integer-order differential equations.

used definitions are the Caputo, Griinwald-Letnikov and Recently, the Lane-Emden equation has been investigated
by several researchers due to its significant applications in math-
ematical physics and astrophysics ([11]). The classical Lane-

*C di thor tel. no: . . . .
OreSpONEINg autor fe . 1o Emden equation, first introduced in 1870 by Lane and studied
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in 1907 by Emden is of the form:

2
V' (x) + ;Y'(X) +fOo(x) =0 (D
with initial conditions
y(0)=A, y(0)=B. 2

Equation (1) with various forms of f(y(x)) has been used to
model several phenomena such as the theory of stellar struc-
ture, thermal explosions, the thermal behavior of a spherical
cloud of gas, isothermal gas spheres and thermionic currents
([12], [13]). Various methods have been presented by several
authors to obtain the solution of the initial value problem (1)
— (2). The Adomian decomposition method was employed in
[11] to investigate the initial value problem (1) — (2). Solutions
of the Lane-Emden equation have also been obtained via the
series method (see e.g., [14], [15]). The series solutions ob-
tained in [15] were compared with the results obtained using
the homotopy perturbation method. A numerical algorithm was
developed by Vanani and Aminataei [16] for solving the Lane-
Emden equation. Ogunniran et al. in [17] investigated the linear
stabilities of some explicit members of Runge-Kutta methods in
integrating the Lane-Emden equation.

However, the standard Lane-Emden differential equation is
the one given precisely by the initial value problem ([14])

2
Y (%) + ;y’(X) +y"(x)=0, m>0;x>0
y(0) =1,

3)
y'(0) =0,

where m is the polytropic index and y = y(x) is the polytrope.
Clearly, the equation (3) is linear when m = 0, 1 and as a result
the analytical solutions of the corresponding equations are real-
isable in closed forms. By extension it is mentioned in [14] that
a closed form solution is also possible for m = 5. For numer-
ical solutions of second order ordinary differential equations,
see [18] and [19].

As aresult of the significant importance of fractional calcu-
lus in modeling real-life phenomena accurately, the fractional
Lane-Emden equation has been formulated and studied by re-
searchers in very recent times. By using the collocation method,
a numerical solution of (3) was obtained in [20]. Some other
researchers have also sought numerical solutions to the frac-
tional Lane-Emden equation (see, e.g., [21], [22]). Approxi-
mate solutions based on orthonormal Bernoulli’s polynomials
method, Homotopy-Adomian decomposition method and the
series expansion method were treated in [23], [24] and [25] re-
spectively. Other treatise on the fractional Lane-Emden equa-
tion can be found in [26], [27], [28], [29] and [30]. In [28, Sub-
section 5.2.2], the authors considered the power series solutions
of the fractional Lane-Emden equation with the polytropic term
" with the fractional derivative described in the Caputo sense,
while Malik and Mohammed [25] presented approximate so-
lutions of fractional Lane-Emden equation using conformable
Homotopy—Adomian decomposition method and conformable
residual power series method.
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Arafa et al. in [31] used the Mittag-Leffler function method
to solve a simple fractional differential equation of the form
D”y:Ay2, O<a<l,

“

with the fractional derivative described in the Caputo sense. In
this paper, the Mittag-Leffler function expansion method is em-
ployed to solve a class of fractional Lane-Emden initial value
problem whose polytropic term f(y(x)) = y™(x) (where m
0,1,2,... is the polytropic index; 0 < x < 1) is replaced
with a finite series f(y(x)) = ag + a1y(x) + axy*(x) + --- +
amY™(x) + -+ + ayy¥(x),0 < m < N,N € Ny, with the frac-
tional derivative described in the Caputo sense. The analytical
solutions of the corresponding fractional equations, when f(y)
are elementary functions, are presented, from which several ex-
amples of fractional Lane-Emden equations are given. In par-
ticular, we consider the special cases where f(y) are trigono-
metric, hyperbolic and exponential functions. Comparison of
the Mittag-Lefller function method with other methods shows
that the method is reliably capable of solving analytically, non-
linear fractional Lane-Emden differential equations, and by ex-
tension, one can apply the method to solve several nonlinear
fractional Lane-Emden equations when the functions f(y) are
given by other special functions. The motivation for the forms
of the nonlinear function f(y) considered in this paper arises
from the need to address those situations where the expansion
coefficients ag,ay, .. .,ay-; are not identically zero.

2. Caputo Fractional Derivative and Its Basic Properties

This section presents the definition and basic properties of
Caputo derivative needed. For further discussions on fractional
calculus and fractional differential equations, see, e.g., [5], [28],
[32], [33], [34], [35], [36], [37], [38], [39], [40].

Definition 2.1. For a > 0, the Caputo fractional derivative of
order « is defined as follows (m > 1) :

‘DY f(x) =" *D" f(x)

o o =& @ dE, m-1<a<m,
i ) @=m,
Q)
where
1 X
T = =~ f (x =& f(&) dé¢ 6)
I'a) Jo

is the Riemann-Liouville fractional integral of order @. Here

(m) _ d"f(x)
) = £02.

Remark 2.1. The Caputo derivative of the constant function C
is zero, i.e ‘D*C = 0.
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Corollary 2.1. Form —1 < a < m, we have

O’ ﬁE{O,l,"’,m_l},

L'Daxﬁ — I'(v+1) Lo+D)  p-a

arD) B>m—1 @)

non existing  otherwise.

The following properties of the Caputo derivative hold ( [8],
[10D).
Lemma 2.1. Supposem —1 <a <m; n,meN;a e R;A,0 €
C. Let f(x) and g(x) be such that “D® f(x) and D" g(x) exist.
We have that

(a) lim °D?f(x) = f(”)(x)

(D) linll DY f(x) = FrD(x) — F=D(0)

(c) “D*(Af(x) + og(x)) = 1D f(x) + 0 “D¢(x)
(d) <DD" f(x) = <D™ f(x) # D" D" f(x).

3. Mittag-Leffler Function

In this section we examine the definition and properties of
the Mittag-LefHer function as eigenfunctions of fractional deriva-
tives ([1]). The Mittag-Leffler function plays an important role
in the theory of fractional calculus. Just as the exponential func-
tion naturally comes out of the solutions of classical differential
equations, the Mittag-Leffler function plays an analogous role
in the solution of fractional differential equations. It is thus a
generalization of the exponential function.

Definition 3.1. The Mittag-Leffler function is defined by:

% k

z
Ey(2) = E _—, 0,0 eR,zeC. 8
+(2) 24 Tak+ 1) a>0,0eR,z¢ (8)

Definition 3.2. The Mittag-Leffler function can also be repre-
sented in two arguments « and [ as

o k
z
Eop(z) = kE:O m, a,f>0,a,6eR,z€C; (9)

with Eyy = E,

In particular, the significance of the Mittag-Leffler function
is in the fact that it serves as the eigenfunction of the Caputo
and Riemann-Liouville derivatives in fractional calculus ([1]).
It is easy to see that ([8], [41])

Eyi(2) =

. et —1
Ei@) =€, En@=——, E>1(z%) = coshz, z € C.

sinz

sinh z
, Exa(-7) = — zeC.

Ei(=7%) = cosz, Exp(Z?) =

Corollary 3.1. For a,f € R, z € C and m € N, the following
recurrence relations hold for the Mittag-Leffler function ([41]) :

(@) Eop(2) = 2Eaa+p(2) + 15
(b) Eap(2) = BEape1(2) + @2 Eqp(z) = BEqp (2)

© (4)" [ Eap@)] = 27 Eqprn(@).

267

4. Fractional Lane-Emden Equations and Their Approxi-
mate Solutions

In this section, we apply the Mittag-Leffler function dis-
cussed in Section 3 to obtain approximate solutions to the frac-
tional Lane-Emden initial value problem

=75 DY@ + ) = 0
Y0 =4, Y(0)=0, Ac[0.1]

with) < x < 1,0 < B < 1,1 <a <2, we R Here
¢D* denotes the Caputo fractional differential operator of order
u, u > 0. The resulting solution is given as the Mittag-Leffler
function. The function f(y(x)) will be chosen in such a way that
it can be expanded in a power series, in particular, the Maclaurin
series.

Towards this end, let the function f(y(x)) be given by the
power series

L‘Da/

(10)

FOM) =) any" (),
m=0
where a,, m = 0,1,2,3,..., are the expansion coefficients
(constants). For computation reasons, one is interested in the
approximation

)

N

o) = Z ay"(x), ay #0.

m=0

12)

We proceed by giving the following result that will be needed
in the sequel.

Proposition 4.1. For 1 < a < 2, 0 < x < 1, the function
In((x)) admits the power series expansion

o

Fr(o = fupx) = D Coya, N e, (13)
=0
where the constants C‘é v are given by
N
Coy = Zamazﬁ. (14)
m=0
Here the numbers BZ’,;V, m = 3,4,5,... are given by the finite
series
Pm-1
N _
BU‘ Z Z Z =P INAPm 1=Pm-2.N PlN’ (15)

Pm-1=0 ppu-2=0 p1=0

with the Mittag-Leffler expansion coefficients given by
¢
Aa/ — bN
N T Tl + 1)
In particular, the special cases B“’ﬁ, m = 0,1,2, are given re-
spectively by

bi, are constants.

(16)

1, £=0,
a,N _
B[,O -
0, £=1,2,---,
b[’lbf D1
BaN =AY , BaN N 17
oN Zr(ap1+1)r(a£’ ap; +1) a7
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Proof. By definition, we use the Mittag-Leffler function

(o]

Z bk ak
Eo(byx") = ) ——
pa I'ak +1)
in (12) to see that
N 00 bk xak m
FR(o) = fn((x) = am( N—)
mz:;) e I'(ak + 1)

N
= anSpa),
m=0

where we have written (m > 1)

y(x) =

S(x 1 Sa . m - bf\/xak "
ov = L Sy = )y") = 2, Tak+ D)
Let A}, be given by
. b
KN T(ak + 1)
Then clearly,

o

SHNEES Z AZ X Z e

=0 =0

Furthermore, the classical Cauchy product tells us that

S7 () = (Z A X" ] Z AL X Z AZ X"
2B

=0

ozN (y(’
2 X

where

a,N _
B& Z API N é’ pi.N*
P1=0

Also, in a similar way, we see that

o0 3
SHEGE [Z A;Nxak]
k=0
_ [ 5

k=0

2 o
@ ak @
A nx ] Z AL nX
n=0
That is, one has

SSy () = S5 y(0)S] (%)

(Z BaN a/m) [i B(: {Vx(m] i B?3wa€
m=0 =0

m=0

(18)

(19)

(20)

21

(22)

(23)

(24)

(25)

(26)
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where

¢

a,N _
B =D,

p2=0

p— o a
Z Z A N N N

p2=0 p1=0

a,N pa,N
BPz ZBf P2l
27
Similarly, by taking more products, we see that

) 4
e =[Z A]
k=0

=S1,(98] () = [Z B “’"] (Z B ]

m=0 n=0

(3D

o € )
_ a,N arN arN a/t’
_ZZBFﬂ t-ps1 ¥ Z 4t (28)
=0 p3=0 =0
where
[ A
a,N _ @ a a
B“ N Z Z Z API NApz -1 NAP3 pzNAf —p3.N* (29)
p3=0 p2=0 p=0
Continuing in this way, we obtain
Syv() =S y(0)ST (%)
ak a,N _an
[ZBkml ](ZBnl‘x ]
n=0
o 14 0
_ a,N a,N al _ a,N (y(’
- Z Z Pm-1,m—1 [*pm-l,lx - Z Bf m (30)
=0 ppm-1= =0
where (m = 3,4,5,...)
Pm-1
aN a a a
B Z Z Z Ag_Pm lN Pm—1"Pm- ZN : API,N'
Pm-1=0 pp—2=0  p;=0
Upon inserting (30) — (31) into (19), one gets
Fu(x) = Z a Z By = ) Ciyal, (32)
m=0 =0 =0
where
N
Ciy =) anBin (33)
m=0
and we obtain the result as required. O

With the Proposition 4.1 in place we now present the main
result of this paper.

Theorem 4.1. For0 < x <1, 0< B8 <, 1l <a <2 we
R, N € Ny, the fractional initial value problem

“D"y(x)

amy'"(X) =

(34)

m=0

y0)=A4,y'(0)=0, A€l0,1],
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admits a series solution given by the Mittag-Leffler function

o 4 .
s = 3 BB o

35)
£ T(al +1)
where
B (@, B;w) = b, = A, (36)
By (@.B; w) := by
[(al + DI (@€ + 1) -+ 1CY,,
=- = 0>0. (37)

IFa+1) -+ 1) +wl(af+1)

The coefficients C¢,,, € > 0, are as given in Proposition 4.1.

N>

Proof. The starting point is to substitute the Mittag-Leftler func-
tion (18) in the equation (34) to evaluate the Caputo fractional
derivatives *D%y(x) and x*~® DPy(x). Towards this end, using
Corollary 2.1, we have that

bk, S
LDQ’ c a/ a/k ak—a
() = Zr( k+ 1) le"(ak+l—a)x

© k+]
ak
Z F(ak e+ ©Y

and similarly one sees that

[ bk
P DBy(x) =P Zr(ak+ D DP xk
0 bl[cv+l

— N @ ak
";r(amau—ﬁ)x ' 39

Substituting the series (38), (39) in (34) and then applying Propo-
sition 4.1 gives

© b£+ 1

I T(at+1) 1)

{+1
wby

Z xaf
Ta(t+1)-p+1)

+ZC[Nx =0,

(40)

which implies that
b(’ +1

>t
Zi\Tal + 1)

Comparing the coefficients of x £=0,1,2,---
of (41) gives

wb€+1

T+ -B+1D

+ C;{N) ¥ =0. 4D

on both sides

+1 1 + w - Qe
N AT(@t+1) T+ -B+1) N
and as a result,
T(at + DIt + 1) - B+ 1CY,
Fla+1) =B+ 1)+wl(al+1)

where the coefficients Cf

by = - (42)

are as given in Proposition 4.1. [

269

Remark 4.1. For computation purposes, in addition to the first
two coeflicients B"’g ,m = 1,2, given in Propostion 4.1, we

present explicitly the coefficients B“ ,3<m<20:

[ bPleZ plbé’ P2

B(lN N
pz()pz I'lap; + DI'(@py —ap; + DIN(@f —apy + 1)
2

P3P

LI

p3=0 p2=0 p1=0
D1 1. P2=D1 3. p3—DP2 3. 0—p3
bY PP P

L(ap: + DE(apy —apy + DI(aps —apy + DIl —aps + 1)

t P
SHEDIDY

P9=0 pg=0
{=po 3 Po—ps 14l
bEPB L D)

F(af apy + Dl(apg —apg + 1)---T(ap; + 1)

{ P19

a,N
B = 2, 2
P19=0 p13=0
(=piogppio=—pis | 1Pl
el b

Z d T(al —apro + DI(apro —apig + 1)---Tapr + 1)’
43)

One sees that the fractional differential equation under con-
sideration now takes the interesting form

DY)+ —25 D) + o + () + a2y ()
+otapyN(x) =0, (44)

which clearly is a generalization of the fractional Lane-Emden
equation

CDEX

"(x) = (45)

in the sense that the new function f(y(x)) is a linear combination
of the classical polytropic term y™(x), 0 < m < N. Equation
(45) is the one considered in [28, Subsection 5.2.2] using the
power series method.

To make our calculations explicit and computationally in-
teresting we consider those elementary functions whose expan-
sion coefficients are explicitly known. Such elementary func-
tions to be examined with their explicit associated expansion
coefficients a,,, m = 0, 1,2,3,..., are the trigonometric, hyper-
bolic and exponential functions. These functions are enumer-
ated as follows.

(@) f(x) =siny(x), ayn =0, a1 = (=1)"/Cm + 1)!;
b) f(x) = cosy(x), ayps1 = 0, apy, = (=1)"/(2m)!;
(©) fy(x)) = sinhy(x), azm =0, azpme1 = 1/Cm + DY
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(d) f(y(x)) = coshy(x), aym+
(e) fO(x) =e®W, a, = (x1)"/m).

=0, ayn = 1/2m)!;

For extensive discussions of models involving these functions
as well as the physical interpretations of the solutions, see [12],
[13], [42].

We proceed with the computation of the approximate solu-
tion of the problem (10) according to whether the functions f(y)
are trigonometric, hyperbolic or exponential functions.

4.1. Lane-Emden Equation Involving Trigonometric Functions

In this subsection, we treat the equation (10) as well as
(34) for which the functions f(y(x)) are trigonometric func-
tions, namely, the sine function and cosine function. The Maclau-
rin series representations for these trigonometric functions are
employed.

4.1.1. The Special Case f(y(x)) = siny(x)
In this case the fractional initial value problem (10) reduces
to a special one

L‘D(l/
y(0) = I,y(0)=

(46)

In solving the initial value problem (46), we consider the series
expansion of sin y(x), namely,

N

. m (="
siny(x) = r;)abnﬂyz H(x), ayn = am+
0<m<N,NeNy 47
In this case the problem (34) becomes
2m+1
y"
‘D" ‘D5 X) + " =
Y@ Z()(2 rei TR
¥(0) =1,y(0) =

By Theorem 4.1, the analytical solution of the reduced frac-
tional problem (48) is then given by the Mittag-Leffler function
expansion

yx) = i

=0

Bl (.Bw) ,

Tal+1) "’ “49)

where the associated expansion coefficients are given explicitly
by

B (@, B;w) =D, =1, (50)
B (@, B w) = by
[(al + DIl + 1) - B+ 1)C?
_ (al+ Dl +1)-p+1) N rso 1)

T+ 1) -+ 1) +wl(al + 1)

270

The coefficients C¢,,,¢ > 0, appearing in (51) take the formu-

(N’
lation
N
a (_ 1 )m a,N
CZN = (2m + 1); Bé’,2m+1 : (52)
-0 :

In order to see explicitly the values of the coefficients C¢ LN
we consider the first values N € Ny and this is presented as
follows.

(@) N = 0. In this case, equation (48) reduces to the initial
value problem
cpe CDBy(x) + y(x) —

y(0) =1,y (0) =

(53)

It follows from Theorem 4.1 that the solution of the initial
value problem (53) is given by the Mittag-Leffler expansion

& Bl fiw)

YO =2 Tarrn

(54)
=0

where the expansion coefficients Bg admit the explicit for-
mulation (£ > 0)

B, frw) =1,
I'at+ DIt +1) -8+ 1)CZO

B (@, prw) = - ., (55
o @B = T D S g D el 1) O
with the numbers C‘;O, ¢ > 1, given by
b{’
Cly =B =AY = —"—. (56)
€0 £,1 ¢,0 r(a,[_'_ 1)

For further explicit calculations we proceed by assigning
special values to the parameters «, 8 and w and this is done
in the following way as examples.

Example 4.1. Setting a = 2,8 = 1,w = 2, we see in this
case that equation (53) reduces to the initial value problem

/7 2 ’ ’
Y+ 2y +y=0, y0)=1,y0)=0 (57)

It is seen from the series (54) that the solution of the initial
value problem (57) takes the formulation

© 9 .
Bi(2,1;2) ,,

Y = 2T+ (58)

where the expansion coefficients B[ B‘)(Z, 1;2) admit the

explicit formulation (€ = 0,1,2,. )

B2, 1;2) = 1,
T2¢+ DI2¢ +2)C7,

(+1
2,1;2) = —
B (2. 1:2) TQ¢+2)+2I Q26+ 1)

(39)
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and
bt’
c? szo_Az _ o
&0 rQe+1)
£=0,1,2,.... (60)
Clearly, the first Mittag-Leffler expansion coefficients
BS(Z, 1;2),¢ = 1,2,3,4 yield the following values.
1 1 1
B&(Z,l;Z)z—Cg,O-g=—b8-§=—§
6 B, 6 16 1
B22,1:2)=-C2 - = -2 — =~ — =
o ) 105 2056 55
51 B 5! 1 5! 1
300 19y =_C2. .o - _20 2 _ 1 2 __21
B2 1:2) == Cy 7 41 7 51 7 7
s 1 1
83(2,1;2)=—C§’0~560=__0-560:%-56O=5.
' 61)

Substituting these coefficients into (58) gives the solution of
the initial value problem (57):

sin x
X

(62)

5%

6
—x*+
7t

—x% 4+

1
yx)=1-—x*+ o

3!

Example 4.2. Indeed if we set a = 3/2,8 = 1/2,w = 2,
then one sees that equation (53) becomes the initial value
problem

3 2.
‘D2y(x) + p ‘Dry(x) +y(x) =0
¥(0) = 1,y'(0) =

(63)

One clearly sees from the series (54) that the solution of the
initial value problem (63) gives

(o] Bf % % 2
) = Z—i;—lw, (64)
=0 1"(7 + ])
where the expansion coefficients BS = BS (%, %;2) admit
the Gamma function representation
31
0
;21=1,
(337
31 [Ge+ DIGEE+2)C?2
BM(_ - 2)=_ : 2 r>0, (65
2’2 FGC+2)+2I(50+ 1)
and
3 0 3 0 b({;
C2 =B’ =B = ———, (=0,1,2,.... (66)
€0 01 01 F(%€+ 1)

271

(b)

271

The first Mittag-Leffler expansion coefficients

B} (3, 3 2) ¢=1,2,3,4,5,6, are computed as follows:
31 | 1 1
1_—'2 = - 2-—:—0 _—
o\272’ Lo F(g)+zr(§) rQ) 12 27
3 1 ; ITW-Te) B 10
32 . —_QC2 I A e At VO __w
%@42) Coo i rar@ ~ T @ = E
B4(§ 1.2):_02 ST T B 693vr
aoE TGy T rd) R
2
243
3 T(7)-T(8) B
s(2 1, TM-r® 5y
80(2’2’2) ~Cio r®yrarm = ey OO0
154
T 2187
17 19
36(2 l'2)=—c:3 IE) e
0 1l > 5,0 9 7
22 I(3)+20(5)
B 1640925y7 374 -
- 1) 256 6561

r(
Upon substituting these coefficients into (64) yields the so-
lution

4xr 583 64x°/2  11xS
y) =1~ += - +
9+nm 162 15309+ 87480
512x15/2 187x°
== a— (68)
57572775+/r 1190427840
N = 1. Indeed it is understood here that equation (48)

reduces to the initial value problem

y (x)

%W(@+———Ufﬂ@+yu) =0,
¥(0)=1,y'(0) =0

It is also seen here that the solution of the fractional prob-
lem (69) gives

(69)

= Bf(a,ﬁ;w)
=), Tal+1)

=0

X%, (70)

with the expansion coefficients B‘;
given by

= B{(@.B;w) ( 2 0)

B, Bw) = 1,
I'at+ DI+ 1) -8+ l)Cf;’1
Ta(t+1)—B+1)+wl(al+1)

B (a,fw) = - (71)

Here the coefficients C¢

o ¢ > 0, on the right of (71) are
given by

Ba 1

a a,l
C[,l = B[,l T 3103 (72)
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where the numbers B‘;’g, m = 1,3, are as illustrated in (16)
and (27) respectively.

Example 4.3. In this case, another special Lane-Emden
equation can be obtained by setting @ = 2,8 =1, w = 2;
and as a result, equation (69) reduces to
2 Y’ :
Y+ y tyo3 =0, y0)=1y@0 =0, (73)
whose solution admits the series representation

= B2, 152)

= 4
Y@ TQC+1) " 74)
=0
From equations (71) and (72), we respectively have
8Y2,1;2) = 1,
B 109 rQee+ nree+ 2)0%’1 o (15
1@ L2)= TQC+2)+2T20+1) =7 (75)
and
bt’
Cli= st
S TQRE+1)

bPleZ Plbl' P2

pzZ:OpZ T2py+ DI2py —2p1 + DIQRE-2p, + 1) |

(76)

It is straightforward to see that the first Mittag-Leffler ex-
pansion coefficients B‘;(Z, 1;2), € =1,2,3,4,5,6, are cal-
culated as follows.

1 56° 1 51 5
B82,1;2)=-C% . —=-L1._—-_~._-_—
il ) 013 6 3 6 3 18
6 Bl6 5 6 1
2 2 1
212 = - —_— e = — e — = —
512 1:2)==Ciy - 3 35 545 9
5! B2 BB 120
3 2 1 1<1
2,1:2)=-C%, .= =_| L _ e
B 12 =63 (36 4 ) 7
_ 1120 s
T 7776 7 2268
B42,1:2) = -C2, - 560 = BT 8.8 . 560
12, 1:2) = =G5, ~ 1080 " 144
_ 53 _ 265
244944 2187

362880
11
(B B8] B1B]) 362880 2875
__(60480_4320 3456)

B](2,1;2) = -Cj, -

11 16038
39916800
B2, 1;2) = -C3, - —
(8 BB BiB]) 39916800 _ 29050
~ 15443200 241920 51840 13 85293
(77)

272

Upon inserting the first coefficients (77) in (74) gives the
solution
5 1 1 1 5 1
e I Ly
e TR TR VTR T
265 1x8+ 2875 1 R 29050 1 L2
2187 8! 16038 10! 85293 12!

=1 — 0.138889x% + 0.00347222x* + 0.0000030619x°
—0.0000030052x% + 0.0000000494x'°
+0.0000000007x'% + - - - (78)

N = 2. Another approximate solution of the problem(46)
can be obtained in this case in view of the reduced problem
(48):

o . Y (x) LYW
Dy(x) + =5 D”y(x)+y<x> 5 =0 (79)
¥(0) =1,y <0> =

Example 4.4. Similarly, in this case of N = 2, we spe-
cialise to the values « = 2,8 = 1, w = 2; to see that
equation (79) becomes
2 3 5 ,
YA 4= 545 =00 3(0) = 1)(0) = 080)
Clearly, the solution of the problem (80) takes the series
Sformula

© 'l .
BL2,152) ,,

= , 81
Y TQl+1) 1)
=0
with the coefficients described as follows:
B2, 12 =1,
[(2¢ + DHI(2¢ +2)C?
B2, 152 = - =,
FQ¢+2)+2I2¢+ 1)
1
Ci, = @B} +asB}; +asB} = By - §B§:§ 5‘8552
(82)

Here, one clearly understands that

B22 — b[
bl F(2€ +1)
bPl bP“ Plb[—l?z
Bzz Z Z
I'Cp;+ DI'Qpy —2p1 + DI'QRE-2py + 1)

pz—O =0

P4 P3 P2

=335

Pa=0 p3=0 pr=0 p;=0
by by By TP b B2 = 2py + D]

I(2p1 + DI2ps = 2p1 + DT 2p3 = 2py + DT 2ps —2p3 + 1)

(83)
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As a result, the first Mittag-Leffler expansion coefficients
B§(2, 1;2), € =1,2,3,4, are computed as follows.

1 101 1 101
85(2,1;2):—03’2.5 =703 3%
6 41B) 6 4141

B2 12 =-Cly =135 5 = 36000

5! 4182 198!8!) 5!
3 N2 L 2 _ 272 |, 2=
521D =-0Cp 5 [1440 480 ) 7
49591
18144000
B5(2,1;2) = - C3, - (560)
_ 418, 198,83 s - 16891139
43200 2880 139968000
362880
B5(2,1;2)=-Cj, - T
~ 4185 19818 198282\ 362880
~ 12419200 86400 69120 11
93349921751
= 84
513216000000 (84

Upon substituting these coefficients into the series formula
(81) gives the solution

o =1 101 1 2+4141 1 ., 49591 1 4
P=17360 21 T 36000 21" T 18144000 617
16891139 ix8+ 93349921751 Lxlo
139968000 8! 513216000000 10!
=1 - 0.14027778x% + 0.00479282x*
+0.000003796x° + 0.000002993x*
+0.0000000501x'° + - - - (85)

4.1.2. The Special Case f(y(x)) = cos y(x)
It is seen here that the fractional Lane-Emden equation un-
der consideration is

‘D¥y(x) + x% “DPy(x) + cos y(x) = 0,
y(0) = 1,y'(0) = 0.

Finding the approximate solution of the initial value prob-
lem (86) amounts to solving the problem

(86)

N
w D",
cp® CDB m -
Y + 25 Dy + MZO G w@=0
¥(0) =1,)'(0) =0,
where we have used the truncated power series
N N
="
cosy() = ) amy™"(0) = ) =y (). N eNo. (88)
m=0 m=0 @m)!

Theorem 4.1 tells us that the analytical solution of the initial
value problem (87) admits the series solution

& BB,
=2, Tat+1)

=0

(89)

273

273
where we have
BY(@,B;w) =D, = 1, (90)
B,[;,J'l(oz,ﬂ; w) = b,{;rl
I'at+ DI+ 1) -8+ l)CgN
=- —, £>0. (91)
Ila(t+1)-B+1)+wl(al+1)
with
N
D" LN
Oy = @n 92)
&N £2m
m=0 (Zm)'

We now proceed to the explicit computation of the first ex-
pansion coefficients Bf;,(cz, f; w). This is carried out by first con-
sidering the first values of N € Nj.

(@) N = 0. In this case, equation (86) reduces to the initial
value problem

w
xe B
y(0) = 1,y’(0) = 0.

“D%(x) + ‘DPy(x)+1 =0,

93)

One sees from (89) that the solution of the initial value
problem (93) is given by

> B @Biw)

= - hcibanta 4
y(x) Tt 1) x*, (94)
£=0
where (¢ > 0)
B, frw) =1,
[al+ DI(a(¢+1)-B+ 1CS
B (@, fiw) = — L0 (95)
Ia(t+1)-B+1)+wl(al+1)
with the numbers C‘é 0 ¢ > 0, given by
a @0 _ a0 _
CZ,O = a()B[,O = Bt’,O = 5((). (96)

Example 4.5. With the special values « = 2,8 =1 and w =
2, we obtain a special case of the standard Lane-Emden
equation

2
Yy +1=0, y(0) = 1,y(0) =0, o7

whose solution is of the form

> B2, 152)

20
X
£ TQE+1)

y(x) = (98)

Here we have

B(2,1;2) = 1,
FQ2¢+ 1I2L +2)C

(+1 . — _
B 2. 1:2) = TQ¢+2)+2r2¢+1)

>0,

99)
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with C?O = 0y0. Interestingly one has the formula

_%5 f = Os
B)(2,1;2) = (100)
0, ¢=1,2,---,
and as a result we obtain the closed form solution
1,
yx)=1- gx . (101)

(b) N = 1. In this case, equation (87) reduces to the initial
value problem

2
Y o

C (4 (U c
D¥y(x) + g DPy(x) + 1 - 5 (102)

¥(0)=1,y'(0) = 0.

Example 4.6. Considering the the special values a = 2,8 =
1 and w = 2; equation (102) becomes the initial value prob-

lem
’’ 2 ’ y2 7
y Y +1—5 =0, y0)=1,y(0)=0, (103)
with the solution
< B2, 1;2)
1\ 5 4) op
= — X% 104
0= D T (104)
It follows that
8Y2,1;2) =1,
Qe+ DHree+ 2)0?1
B2, 1;2) = - — >0 (105)

TQ¢+2)+2IQC+1)
with

C7, =aoB, + wBy,
1 i b |
2 p1=0 IQCpy+ DI'QRC-2p; + 1)

=6¢0 —

Consequently, the first Mittag-Leffler expansion coefficients
B‘;(Z, 1;2),¢=1,2,3,4,5, are now computed as follows.

1 B 1 1
'2,1;2)=-C2, . = =-L. - ==
512 1:2)==Cy, -3 2 37 6
6 B 6 1
20 1y =_Q2 .22t 0 __ %
Bi(2,1;2) =-Cj, =5 3 o
51 (B2 B8 5 1
3 N2 L2 1 LS U e
Bi(2,1;2) =-C3, - (4+ 2 J > <
B2, 12 C2,-560 B B 560 >
X = - . =|— 4+ = —
12 12) 31 720 48 27
362880
B](2,1;2)=-Cj, - T

N

BiBT) 362880 29
40320 1440

1152 11 60
(106)

Upon using the coefficients (106), one obtains the solution

11, 1 1, 1 1, 5 14,

D T Y. S S 22
&) A TR R TR VI TR A Tht
+ 20 Ly,
60 101"

=1 —0.0833333x% — 0.00416667x* — 0.00001653x°
+0.00000459x% + 0.00000013x'" + - - - (107)

(c) N = 2. Here, equation (87) becomes the initial value prob-
lem
cra w ¢ oy
Dy(x)+xn—_ﬁD5y(x)+1—E+Z=0, (108)
¥(0) =1,y'(0) = 0.
Example 4.7. Consider the problem

2 2 4
y"+—y’+1—y—+y— =0,
X

04 ¥(0) = 1,y'(0) = 0.(109)

The solution of (109) takes the form

= B2, 152
o )xzf

= , 110
Y T2+ 1) (110)
=0
where the coefficients 85(2, 1;2) are given by
82,1;2) = 1,
B 10 ree+ nree+ 2)C§2 0
. = - . >
2 @12 rQe+2)+2rQ2t+1)° " ~ )
1 1
22 22 22 22 22 22
C7, = aoByy + azB}; + auBy; = Byj - TR
(111)
with
4 bgl bg_Pl

B22 = §,9, B2 =
r0 = 0w, ByS = I'Cpi + DIQRE-2p; + 1)

I )
2,2

HEDIDIDI
p3=0 p=0 p1=0

1 —P1 3~ £~ 3

b127 bgz 14 bg% pzb2 P3

TC(2p1 + DIQ2p2 = 2p1 + DTQ2ps = 2py + DEQL = 2ps + 1)
(112)

The first Mittag-Leffler expansion coefficients Bg*l 2,1;2),¢ =

0,1,2,... are computed as follows.
1 B) B 1 13
B2,1;2)=-C2, - =-|1-2+ 2| - =—=
22 1:2)= =Co, - 3 ( 2 ") 3T !
6 8 8l 6 143
2 2 2 2
2,1;2)=-C, - =—|-Z2+ 2| - =——=
B2 1:2)=~Crp 3 ( 2 +24J 57 1440
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B2.1:2) = C2 5_' B 118% . 118%3; Q (a) N = 0. Clearly, in this case a; = 1 and as a result the
N A LT 96 7 resulting initial value problem coincides with the problem
143 in (53).
145152 Hg 1188 (b) N = 1. Here, we have from (117) the problem
8‘2‘(2,1;2):—0572660:[ 42+ 2 2)-560 y()
8640 576 DY)+~ Dﬁyoc) 3+ =0,
26741 (118)
139968 ¥0) =1,y (0) =
362880
Bg(z, 1;2)=- szt,z TR Example 4.8. Consider the initial value problem
1185 1188 118282\ 362880 2 3
_ + + : L0, y0)=1,y0)=0 (119
483840 © 17280 1152 11 e T Y -y
6059911
=T SA00en (113) Clearly the expansion coefficients appearing in the series
14929920 D pp g
solution of (119) are given by
Upon substituting these coefficients in (110) yields the se-
ries solution 3(1)(2, 1;2)=1,
o3 L. 31, 43 1 B 1,2y LCLHDICLH 2, o)
i ! ™t ,1;2) = - —, £>0.
27627412 1 144060549911 % 152 6 ] T@E+2) +2lee+1)
8 — —— 10 DECERY
139968 gt " 14929920 ' 10! " with
=1 - 0.09027778x* — 0.00413773x* — 0.00000137x° 5 - )l
8 10 Cii = @By +asByy
+ 0.000004738x° + 0.000000112x™ + --- . (114) ' . ’ ’
_ 1
4.2. Lane-Emden Equation Involving Hyperbolic Functions l"(25 +1)
This subsection discusses the approximate solution of the S b ‘bf_p ?

initial value problems (10) and (34) for which the functions Z Z 4 TQ2p) + DT (2py — 2p1 + DL = 2py + 1) :
f(¥(x)) are the hyperbolic sine function and the hyperbolic co- P2=0p 121
sine function. We also make use of the Maclaurin series repre- az1)

sentations for these hyperbolic functions. The first Mittag-Leffler expansion coefficients B‘; 2,1;2),¢ =

4.2.1. The Special Case f(y(x)) = sinh y(x) 0,1,2,3,4,5, are presented as follows.

We consider the fractional Lane-Emden initial value prob- 780
g 1=-c2 Lo 2 LT
fem e R S B T
6 2Bl 6 14
B2,1;2)=-C, - =-"H. - =—
D"y 1 152) bs 3 545
(115) 51 B7 B8]\ 120 131
0)=1,y(0) =0. 32,1;2)=-C2, .= = | L L) o
P B.1:2)= G, 2 (13 %) 2o
In solving the initial value problem (115), we are interested in . 5 Bf Big% 1946
the series expansion of sinh y(x), namely (0 < m < N, N € Ny), B1(2,1;2) = -C3; - 560 = — 520 " a2 560 = 2187
362880
. S 2m+1 1 B2, 1;2) = -C, - ———
sinh y(x) = Zazmn)’ (x), Aom+1 = am+ Dl (116) ' 11

m=0

_ (3 +B}B§+B§B% 362880 248213
T 130240 4320 3456 11— 80190

so that finding the approximate solution of the problem (115)
(122)

amounts to solving the corresponding problem

21 () = Upon substituting the first coefficients (122) we obtain the

cp“ (x)+ DB)’(X)"‘]Z(Z +])1y 0 (117)

y(0) = 1,y'(0) =

We proceed to obtaining the solutions of the initial value
problem (117) for the first values of N € N.
275
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solution

B((2,1;2) Y
) = Z ree+1) "

7 1 ), 14 1 .
! 45 4
248213 1
— . _x
80190 10!
=1 —0.19444444%* + 0.01296296x* — 0.00056156x°

+0.000022069x% — 0.000000853x'% + - -- . (123)

1946 1
2187 81"

131 1 ¢ 1946
324 6!

(c) N = 2. Indeed it is easy to understand here that from (117)
one obtains the initial value problem

5
DY)+ =5 DB VOO + () + 2 (x) % =0,
y(0) =1,y (0) =
(124)
Example 4.9. Given the problem
2 3 5
y4.yﬂw%+§_a ¥(0) = 1,5(0) = 0.(125)

Clearly, the expansion coefficients of the series solution of
(125) are

B2, 12 =1,

ree+ nree+ 2)0?!2
IQ2¢+2)+2rQ2t+1)°

B2, 1;2) = -

Cl, = B} +asB}; +asB}: = B + Igo, I

31 3 51 5°
(126)
where
BZ,Z bg
61 r(25+1)’

P1yp2—p1t—p2
bZ bZ b2

BZZ
Z Z F(2p1 + 1)F(2p2 - 2[)1 + 1)1"(2{’— 2p2 + 1)

P2—0P1 =0
P4 P33 P2

B3 = ZZZZ

p4=0 p3=0 p>=0 p; =
@w“%w%W%medmﬂw‘

I2pi + DI2py = 2p1 + DI(2p3 = 2py + DT 2ps —2p3 + 1)

(127)

The first expansion coefficients B‘f(2, 1;2),¢ = 1,2,3,4,5

276
are computed as follows.
1 479 1 47
12,1:2)=-C%, o= 2. _ =
5,212 = =G, 3 40 3 120
6 278! 6 1269
2 2 2
2,1;2)=-C},- - =- o=
5,212 ==C, 5 3 5 4000
5! 982 788!\ 120
321.2:_2._:__2_ 272 ). 24V
521D =-Cy, 7 160 160 7
_ 282893
672000
383 718!82
4 2 2 272
2,1;2) = -C%,-560 = — - 560
5212 =G, (1600 960 )
4747
5000
362880
B3(2,1;2) = -C3, - T
(38 18)8] TBIB]) 362880 2379140611
~ 189600 28800 23040 11 704000000
(128)

Upon inserting the first coefficients into the series solution
one obtains

& BL2,152) ,

Y = ZiTl+ 1)
J AT 1, 1269 1, 282893 1 o 4747 1 4
120 21" T2000 41* T 672000 6! T5000 81"

_ 2379140611 Lxlo
704000000 10!
=1-0.19583333x% + 0.01321875x* — 0.00058468°

+0.000023547x® — 0.000000931x'" +--- . (129)
4.2.2. The Special Case f(y(x)) = coshy(x)
We consider the fractional Lane-Emden equation
Dy(x) + —2 " DPy(x) + cosh y(x)
X X X) =
y B y y (130)

¥(0)=1,y(0)=0

In order to solve the initial value problem (130), we consider
the series expansion of cosh y(x):

N N 2m(x)
cosh y(x) = r;)agmym(x) - y( Ty 0SS NN €N,
(131)
and as a result we have the associated problem
N om
- w ¢ y"®)
‘Dy(x) + — DPy(x) + =
YW+ ﬂ)%aw 132

¥(0)=1,y(0) =

For N = 0, we observe that the resulting initial value prob-

lem coincides with the problem in (93).
276
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Example 4.10. Given the initial value problem

2

2 y
Y+ y+1+5

It follows immediately that the solution to the problem (133) is
given by

0, y0)=1,y()=0 (133)

L1, 3 1., 3 147 14
YR == St Ta et T3
2877 1
220 10!
=1 - 0.25000000x% + 0.01250000x* — 0.00104167x°
+0.00005787x% — 0.00000360x'° + - - - (134)
Example 4.11. Consider the problem
2 2 4
N y+1+%+y_—o ¥0) = 1,Y(0) = 0. (135)

One easily sees that the solution to the problem (135) gives

37 1 481 1 126503 1
=1 - 2 . 4 6
) 7227 TTaa0 ot T 125152 6!t
L 40645 1 g 256054097 1
139968 ~ 8! 14929920 10!

=1 -0.25694444x% + 0.01391782x* — 0.00121045x°
+0.00007202x% — 0.00000473x + - .. . (136)

4.3. The Case of Exponential Functions f(y) = exp(+y)

In this subsection, we compute the approximate solution of
the fractional Lane-Emden problem (10) as well as the initial
problem (34) for which the functions f(y(x)) are exponential
functions. The Maclaurin series expansion for these exponen-
tial functions are applied.

4.3.1. Fractional Isothermal Gas Sphere Equation
The fractional isothermal gas sphere equation is given by

c N L c y(x) —
D%(x) + e DBy(x) +e =0,
¥(0) =

(137)
0,y'(0)=0

Also in this case, we look for the approximate solution of the
problem (137) by solving the complementary equation

ym(x)
“D(x) + —CDB + 0,
) Y (x) Z;) 138
y(0)=0,y(0)=0
The problem
Y+ zy’ +e =0, y0)=0,y(0) = (139)
X

models the isothermal gas spheres where the temperature re-
mains constant and the index m is infinite ([42]).

277

277

Example 4.12. Given the problem

2
Y'+-y +1=0, y0)=0,y(0)= (140)
x

It is straightforward to see by the initial conditions in (140)
that the expansion coefficients appearing in the series solution
of (140) are given by

B2,1;2)=0
T(2¢ + D2 +2)C

+1
2,1;2) = -
5212 TQ¢+2)+20Q0+1)

>0,

(141)

with C?O = 0¢9. Thus one has the Mittag-Leffler expansion co-
efficient

-1, =0,
By(2,1;2) = (142)
0, ¢=1,2,
Consequently we obtain the closed form solution
® B2, 1;2) 1
0\ 04 gp 2
= —— X" = ——x". 143
) ZITl+ 1) 6" (143)
Example 4.13. N = 1: It is seen here that
2
v+ ;y’ +1+y=0, ¥0)=0,y(0)= (144)

The coefficients of the series solution of (144) has the formula-
tion

8Y2,1;2)=0
[(2¢ + DHIQ2L +2)CF |

(+1 . — _
5@ L= rQe+2)+2rQ0+1)

t>0

(145)
with
(146)

Further simplification gives the following first expansion coef-
ficients Bf(2, 1;2),£=1,2,3,4,5.

B2 12)=-C 5 =-1+8) 1 =3
ey --ct 220 ]
B1(2,1;2) = C%, - 560 = — 7230 560—%

(147)
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Upon substituting we obtain the solution

< B2, 1;2
=3 B
£ TQ2L+1)
11, 1 1, 1 14
= — — + - — _— . —
3 TsTat T7
LI NS S
T 11 10!
_ 1 2 1 4 1 6 1 8 10
——ix +§x—ﬂx ax—mx + .- (148)

Example 4.14. N = 2 : Consider the initial value problem

2
y"+—y’+1+y+y—
X 2!

=0, ¥(0)=0,y(0)=0. (149)

The series solution of (149) has the following expansion coeffi-
cients.

8(2,1;2) =
T(2¢+ DI2¢ +2)C,

{+1
2,1;2) = — , £>0, 150
B ( ) TQ¢+2)+2Q2¢+1) (150)
where
bé’
2 2
=6 + —=——
Cla =00+ vor iy
¢ P1.0—p1
1 b2 b2
- . (151
"2 l;)r(Zp1+l)F(2€—2p1+l) (5D
=

Simplifying further gives the following first expansion coeffi-
cients 82(2, 1;2),¢=0,1,2,....

1 1
B;(Z,l;Z)z—CSYZ-gz—l 173
6 Bl 6 1
20 1.9y = 2. . 222 % _1
B3(2,1;2) = -C3, 5 > 53
5! B2 8I8l) 120 8
B32,1;2)=-C2,. = = — 22| Y%
22 1:2) 227 (24 8 7 21
B BB 29
B2,1;2) = -C2,-560 = — [ —2= + —22].560 = —
2212 =G5, (720 48 27
362880
B3(2,1;2) = -C3, - =
(B, BB BB 30880 4030 o
40320 ' 1440 = 576 11 8173 °
As a result we obtain the solution
& BY2.152)
0= T
L1, b1y 81 29 1 g 40320 1
32 5 Tt 2778 T 8173 101
1 8 29 40320
— 2 4_ 6 8_ 10
BT TR P TR B TR 7S E T
(153)
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4.3.2. Richardson’s Model of Thermionic Current
Here, we consider the initial value problem
‘D%y(x) =0,
Y (154)
y(0) =0,y (0) =

The problem (Richardson’s model of thermionic current)

Y+ %y' +e?=0, y0)=0,y(0)= (155)
models the density and electric force of an electron gas in the
neighbourhood of a hot body in thermal equilibrium ( [13],
[42).

Clearly, for N = O with @ = 2, = 1 and w = 2, (154)
coincides with (140).

Example 4.15. Consider the problem

2
v+ ;y' +1-y=0, y0)=0,y() = (156)

As in the preceding calculations we easily see that the initial
value problem (156) has the solution

L S U P O B U B T B
YO =3 s e om0t T
_ 1 2 1 4 _ 1 6 1 8 1 10
B TR Th N TR TR
Example 4.16. N = 2 : Given the initial value problem
2 ¥ ,
v+ y+1—y+5=0, ¥(0) =0,y"(0) = (158)
It is also easy to show that the solution to (158) yields
11, 1 1, 8 1, 29 1
e R TR TR I TR T I TR
40320 1
8173 101"
1, 1, 8 29 o 40320
T TR T TR B TR VeSS F T
(159)

5. Concluding Remarks

In this paper, we have used the Mittag-Leffler function ex-
pansion method to find approximate solutions of a class of frac-
tional Lane-Emden equation whose nonlinear forms of f(y) are
expressible as f(y(x)) = ag + a1y(x) + axy?(x) + - - - + @y (x) +

-+ ayyV(x),0 < m < N, N € Ny; the values of the expansion
coefficients a,,, 0 < m < N, were explicitly provided. We con-
sidered the cases for which the functions f(y(x)) are trigono-
metric, hyperbolic and exponential functions. In all these cases,
the Lane-Emden equations for the special values N = 0;a =
2,8 = 1,w = 2, coincide with the classical and standard ones
((57), (97), (140)) and consequently the corresponding solu-
tions are given in closed forms ((62), (101), (143)).

In the case where the functions f(y) are exponential func-
tions, our results can be compared with those of [11, equations
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(59) and (70)] (see also [25, equation (25)]). The other non-
linear forms of f(y) are the trigonometric and hyperbolic func-
tions. Our approximate solutions in the case of trigonometric
functions are comparable with the solutions [11, equations (81)
and (83) ]; and in the case of hyperbolic functions, see [11,
equations (89) and (91)] (see also [22]).

The method employed in this paper can be applied to other
similar cases in applied sciences where the models are given
as strongly nonlinear ordinary differential equations. By exten-
sion, the method, can therefore, be accurately and reliably used
to compute approximate solutions of nonlinear fractional differ-
ential equations of Lane-Emden type where the nonlinear forms
of f(y) involve several other special functions.
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