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Abstract
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1. Introduction

Perturbation Collocation Method is a technique of numeri-
cal approximation. It has been described as a very useful tool
for solving differential and integro-differential equations of dif-
ferent kinds [1, 2, 3]. Fractional order differential equation
is a special kind of differential equations with fractional order
derivative say α, which is a non-integer. Many phenomena in
science and engineering resulting in fractional order differen-
tial equations have been successfully represented using math-
ematical models in the field of mechanics, elasticity, science,
education to mention but a few. Most often, the equations aris-
ing from the mathematical modelling of fractional order dif-
ferential equations are difficult to solve analytically. This is
because many of them do not have solutions in closed form
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and hence seeking an approximate solution by numerical treat-
ment becomes helpful. To achieve this, a lot of numerical meth-
ods have been advanced. [4, 5] proposed Variational Iteration
Method (VIM) and used the method to solve multi-order frac-
tional integro-differential equations and singular IVPs of Lane-
Emden type respectively. Their results showed that the method
is an accurate one that yields the exact solution within a few
iterations. Their study, however, noted that in some cases, the
method may require more calculations which will add some dif-
ficulties. [6] solved nonlinear multi-order fractional differential
equations using Legendre Pseudo-Spectral Method (LPSM). The
results reveal that the method is effective as a small number of
shifted Legendre polynomials were needed to obtain a satis-
factory result. [7] presented a numerical solution method for
solving fractional differential equations using Bernstein poly-
nomials. Other methods used by many researchers are Cheby-
shev Wavelet method [8], Chebyshev Polynomial Method [9,
10] Collocation Method [11], Pade Approximate Method [12],
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etc. [12] described the Lane-Emden differential equation as a
singular initial value problem relating to second-order differen-
tial equations which have been used to model several phenom-
ena in mathematical physics and astrophysics.
According to [13], Lane-Emden type of differential equation is
used to describe a variety of phenomena in physics and astro-
physics, including isothermal gas spheres and thermionic cur-
rents and determining their numerical solutions is very chal-
lenging because of the singularity behaviours at the point of
origin. The study also solved some fractional order differential
equations of Lane-Emden type using the collocation method
and admitted that a collocation method is a suitable tool for
solving a class of Lane-Emden type of differential equations.
[14] worked on the numerical solution of Lane-Emden type
equation using multilayer perceptron neural network method.
The study aimed at producing an optimal solution of Lane-
Emden equation with less computation using multilayer percep-
tron artificial neural network technique. The results obtained
show that the technique can develop into an effective approach
for solving Lane-Emden type problems with less computational
time and memory space.
In this study, we are concerned with multi-order fractional dif-
ferential equations of Lane-Emden type and their solutions by
perturbation collocation method. To transform the problems to
a system of linear algebraic equations, the collocation method
algorithms as given by [13] was implemented.
Other researchers that have solved different problems of Lane-
Emden type using different methods include [15, 16, 17 ].
The general form of the singular multi-order fractional differ-
ential equation is given as

n∑
i=0

Piy(i)(x) + Dα (y(x)) +
k

xα−β
Dβ (y(x))

+
k

xα−2 (y(x)) = f (x) (1)

subject to conditions

y(0) = A, y′(0) = B (2)

where A, B are constants, Pi, (i = 0, 1, 2, ..n) are arbitrary
constants to be determined, n is the highest integer order deriva-
tive, α and β are fractional order derivatives, and α > β.

2. Definition of Relevant Terms

2.1. Assumed Approximate Solution

An Assumed Approximate Solution also called Trial Solu-
tion refers to a predetermined polynomial taken to represent the
solution of the problem been solved.

2.2. Maple 18

Is a mathematical software that is capable of Performing
mathematical computation, for example, solving an equation
symbolically or numerically, or construct Maple objects etc de-
pending on the command.

2.3. Fractional Differential Equation
A differential equation is called a fractional differential equa-

tion if it contains at least one fractional order derivatives, Dα of
the unknown function y(x). The general form of a fractional
differential equation is given as

Dαy(x) = f (x, y(x)) (3)

subject to the conditions: Dαy(0) = ωk, k = 0, 1, ..., n
where Dα is the fractional order derivative in the Caputo sense
and α is a non-integer value, n = dαe, called the ceiling α, α > 0
is the highest order of the equation.
The operator Dα is defined as

Dα
∗ f (x) =

1
Γ(m − α)

∫ x

0
(x − t)m−α−1 dm

dtm f (t)dt (4)

in the Caputo sense for function f (x) with (m−1) absolute con-
tinuous derivatives and Riemann-liouville defined it as

cDβ
x f (x) =

1
Γ(n − β)

dn

dxn

∫ x

c
(x − t)β−1 f (t)dt (5)

The advantage of the Caputo’s fractional derivative is that one
can specify the initial conditions of the fractional differential
equation in classical form. i.e.

D(k)y(k) = bk, k = 0, 1, 2, · · · ,m − 1 (6)

The generalized factorial form of non-integer order derivatives
in Euler’s Gamma function f (x) = xm is given as

dα

dxα
xm =

Γ(m + 1)
Γ(m − n + 1)

xn−m (7)

Equation (7) is a property of fractional derivatives given in
Euler gamma functions which makes the definition more suit-
able and compatible for application.

2.4. Multi-order Fractional differential Equations of Lane-Emden
type

A fractional multi-order differential equation of Lane-Emden
type is of the form equation (1). However, when the highest or-
der derivative of the equation is fractional, then equation (1)
becomes:

Dα (y(t)) +
k

tα−β
Dβ (y(t)) +

k
tα−2 (y(t)) = f (t) (8)

subject to conditions

y(0) = A, y′(0) = B (9)

where A, B, α and β are as described earlier.
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3. Methodology

Consider a general class of multi-order fractional differen-
tial equation of Lane-Emden type given in equation (1) together
with the conditions in equation (2).
In order to solve equations (1) and (2), an assumed approximate
solution of the form:

yN(t) =

N∑
j=0

a jL j(t) (10)

is taken. Where L j(t) is Legendre polynomial and N is the de-
gree of the assumed approximant.
Thus equation(10) is substituted into a slightly perturbed equa-
tion (1) to give

n∑
i=0

Pi


N∑

j=0

a jL
( j)
j (t)

 + Dα

 N∑
j=0

a jL j(t)


+

k
tα−β

Dβ

 N∑
j=0

a jL j(t)

 +
k

tα−2

 N∑
j=0

a jL j(t)

 = f (t) + Hn(t)

(11)

where

Hn(t) =

n∑
(r=1)

τrT(N−r−1)(t) (12)

is called the perturbation term, n is as stated earlier and T (t) is
Chebyshev polynomial.
Putting equation (12) into (11), gives

n∑
i=0

Pi


N∑

j=0

a jL
( j)
j (t)

 + Dα

 N∑
j=0

a jL j(t)


+

k
tα−β

Dβ

 N∑
j=0

a jL j(t)

 +
k

tα−2

 N∑
j=0

a jL j(t)


= f (t) +

n∑
(r=1)

τrT(N−r−1)(t) (13)

subject to conditions

n∑
k=1

y(k)
N (0) = φk; k = 1, 2, ...n (14)

Where τr(r = 1(1)n) are the free tau parameters to be de-
termined, T(N−r−1)(t) are the Chebyshev polynomials and a j are
the unknown constants also to be determined.
Applying equations (7) on (13) accordingly gives

n∑
i=0

Pi


N∑

j=0

a jL
( j)
j (t)

 +
k

tα−β

N∑
j=0

a j
Γ( j + 1)

Γ( j − α + 1)
t j−α

+
k

tα−2

N∑
j=0

Γ( j + 1)
Γ( j − α + 1)

t j−α +

N∑
j=0

a j
Γ( j + 1)

Γ( j − β + 1)
t j−β

= f (t) +

n∑
(r=1)

τrT(N−r−1)(t) (15)

Equation (15) is further simplified and then collocated at equally
spaced interior points, t = te on [a,b]; te = a +

(b−a)i
(N) ; i =

1,2,...,N to obtain a system of linear algebraic equations, in-
cluding those obtained from the use of initial conditions. The
system of linear algebraic equations are solved using Gaussian
elimination method (using a computer package; Maple 18) to
obtain the unknown constants. The constants obtained are then
substituted back into the assumed approximate solution to give
the required approximate solution.

4. Numerical Examples

Example 1
Consider the multi-order fractional differential equation

Dα (y(x)) +
k

x(α−β) Dβ (y(x)) +
k

x(α−2) (y(x)) = f (x) (16)

where

=

[
6x

(
Γ(4 − β) + kΓ(4 − α)

Γ(4 − α)Γ(4 − β)
+

x2

6

)
−2

(
Γ(3 − β) + kΓ(3 − α)

Γ(3 − α)Γ(3 − β)
+

x2

2

)]
x2−α (17)

for k = 1, α = 3
2 and β = 1

2
Subject to the conditions y(0) = y′(0) = 0 0 ≤ x ≤ 1
The exact solution is y(x) = x3 − x2

Equation (16) is perturbed as

D
3
2 (y(x)) +

1

x( 3
2−

1
2 )

D
1
2 (y(x)) +

1

x( 3
2−2)

(y(x))

= f (x) +

n∑
r=1

τrT(N−r−1)(x) (18)

Taking an approximate solution for N = 4

y4 =

4∑
j=0

y(x) =

4∑
j=0

a jL j(x) = a0 + a1 (2 x − 1)

+ a2

(
6 x2 − 6 x + 1

)
+ a3

(
20 x3 − 30 x2 + 12 x − 1

)
+ a4

(
70 x4 − 140 x3 + 90 x2 − 20 x2 + 1

)
(19)

Substituting equations (17) and (19) into (18), we have

Dα

 4∑
j=0

y(x)

 +
1

x(α−β) Dβ

 4∑
j=0

y(x)

 +
1

x(α−2)

 4∑
j=0

y(x)

 =
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6x(

Γ(4 − β) + Γ(4 − α)
Γ(4 − α)Γ(4 − β)

+
x2

6
− 2(

Γ(3 − β) + Γ(3 − α)
Γ(3 − α)Γ(3 − β)

+
x2

2
)
]

x2−α +

n∑
r=1

τrT(N−r−1)(x) (20)

Further simplifications with α = 3
2 and β = 1

2 gives

Dα(a0 +a1(2x−1)+a2(6x2−6x+1)+a3(20x3−30x2 +12x−1)

+ a4(70x4 − 140x3 + 90x2 − 20x + 1)) +
1
x

Dα(a0 + a1(2x − 1)

+a2(6x2−6x+1)+a3(20x3−30x2 +12x−1)+a4(70x4−140x3

+ 90x2 − 20x + 1)) +
1

x
−1
2

(a0 + a1(2x − 1) + a2(6x2 − 6x + 1)

+a3(20x3−30x2 +12x−1)+a4(70x4−140x3 +90x2−20x+1))

−

(
6 x

(
28

15
√
π

+ 1/6 x2
)
−

20
3
√
π
− x2

)
√

x

− τ1

(
8 x2 − 8 x + 1

)
− τ2 (2 x − 1) = 0 (21)

Applying the operator Dα on equation (21) and after some
simplifications gives

−1.7724538509 x9/2 +1.7724538509 x7/2−
56 x5/2

5
+

20 x3/2

3
+124.0717696 x11/2a4+35.44907702 x9/2a3+10.63472311 x7/2a2

+3.544907702 x5/2a1+1.7724538509 x3/2a0−3.544907702 τ2x2

−14.17963081 x3τ1−248.1435391 x9/2a4−53.17361553 x7/2a3

+1311.520847 x7/2a4−10.63472311 x5/2a2+245.2694462 x5/2a3

−1603.449077 x5/2a4−1.7724538509 x3/2a1+41.77245385 x3/2a2

−201.7724539 x3/2a3 +601.7724539 x3/2a4 +6
√

xa1−18
√

xa2

+ 36
√

xa3 − 60
√

xa4 + 1.7724538509 τ2x + 14.17963081 x2τ1

− 1.7724538509 xτ1 = 0 (22)

Equation (22) is collocated at N − 2 equal spaced points in the
interval [0, 1] and the remaining two equations are obtained
from the use of the conditions attached. This gives 7 system of
linear equations. Solving the system of equations, we get

y4(x) = −1.48141262×10−10 + 3.2×10−9x−1.000000039x2

+ 1.00000004x3 − 5.469888349 × 10−9x4 (23)

When the same example was solved α = 5
2 , β = 3

2 following the
same methodology,the approximate solution obtained is

y4(x) = 5.00 × 10−11 − 3 × 10−10 x − 1.397902893 x2

+ 1.664907851 x3 − 0.1566880882 x4 (24)

Example 2
Consider the multi-order fractional differential equation

Dα (y(x)) +
k

x(α−β) Dβ (y(x)) +
k

x(α−2) (y(x)) =

[
2
(
Γ(3 − β) + kΓ(3 − α)

Γ(3 − α)Γ(3 − β)
+

x2

2

)
− 6x

(
Γ(4 − β) + kΓ(4 − α)

Γ(4 − α)Γ(4 − β)

+
x2

6

)]
x2−α (25)

for k = 1, α = 3
2 and β = 1

2
subject to conditions y(0) = y′(0) = 0 0 < x ≤ 1
with exact solution y(x) = −x3 + x2

Taking an assumed approximate solution for N = 4, and com-
puting the α = 3

2 and β = 1
2 -derivatives of equation (25) and

other necessary simplifications and substitution, gives

35.44907702 x9/2a3+10.63472311 x7/2a2+3.544907702 x5/2a1

+1.7724538509 x3/2a0−3.544907702 τ2x2−14.17963081 x3τ1

−248.1435391 x9/2a4−53.17361553 x7/2a3+1311.520847 x7/2a4

−10.63472311 x5/2a2+245.2694462 x5/2a3−1603.449077 x5/2a4

−1.7724538509 x3/2a1+41.77245385 x3/2a2−201.7721531 x3/2a3

+1.7724538509 x9/2+124.0717696 x11/2a4+601.7724539 x3/2a4

+ 6
√

xa1 −18
√

xa2 + 36
√

xa3 −60
√

xa4 + 1.7724538509 τ2x

+ 14.17963081 x2τ1 − 1.7724538509 xτ1 − 1.7724538509 x7/2

− 20 x3/2 + 51 x2/3 = 0 (26)

Equation (26) is collocated at N − 2 equal spaced points in the
interval [0, 1] and the remaining two equations are obtained
from the use of the conditions attached. This gives 7 system of
linear equations. Solving the system of equations, we get

y4(x) = 3.77824 × 10−12 − 1. × 10−10x + 1.000000109x2

− 0.9999984717x3 − 0.1415135523e − 5x4 (27)

When the same example was solved α = 5
2 , β = 3

2 following the
same method,the approximate solution obtained is

y4(x) = 6.2 × 10−9 − 1.449037318 x2 − 8.450067824 x3

+ 5.265645764 x4 (28)

Example 3
Consider the multi-order fractional differential equation

Dα (y(x)) +
2
x

Dβ (y(x)) + xy(x) = x2 + x3 + x4

+
96
√

x
√
π

+
3
√
π
√

x

(
6 +

1
√

x

)
(29)

subject to conditions y(0) = y′(0) = 0 0 < x ≤ 1
with exact solution y(x) = x + x2 + x3

Taking an assumed approximate solution for N = 4, and com-
puting the α = 5

2 and β = 3
2 -derivatives of equation (29) and

other necessary simplifications and substitution, gives

70 x5a4 + 20 x4a3 − 140 x4a4 + 6 x3a2 − 30 x3a3 + 1490 x3a4

+ 2 x2a1 − 6 x2a2 + 252 x2a3 − 1700 x2a4 + xa0 − xa1 + 37 xa2
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−181 xa3+541 xa4+4 a1−12 a2+24 a3−40 a4 = x4+8 x3τ1+x3

− 8 x2τ1 + 2 x2τ2 + 12 x2 + xτ1 − xτ2 + xτ3 + x (30)

Equation (30) is collocated at N − 2 equal spaced points in the
interval [0, 1] and the remaining two equations are obtained
from the use of the conditions attached. This gives 8 system of
linear equations. Solving the system of equations, we get

y4(x) = 3.2749743× 10(−10) + 1.6× 10(−8)x + 1.109848402x2

+ 1.000005386x3 − 0.2049775180e − 5x4 (31)

When the same example was solved α = 3
2 , β = 1

2 following the
same method,the approximate solution obtained is

y4(x) = −4.9638971× 10(−10) + 2.6× 10(−8)x + 1.48521236x2

+ 1.000023102x3 − 0.346404728e − 5x4 (32)

Example 4
Consider the multi-order fractional differential equation

Dα (y(x)) +
8
x

Dβ (y(x)) + xy(x) = x5− x4 + 44x2−30x(33)

subject to conditions y(0) = y′(0) = 0 0 < x ≤ 1
with exact solution y(x) = x4 − x3

Taking an assumed approximate solution for N = 4, and com-
puting the α = 5

2 and β = 3
2 -derivatives of equation (33) and

other necessary simplifications and substitution, gives

− 140 x5a4 + 6 x4a2 − 30 x4a3 + 370 x4a4 + 2 x3a1 − 6 x3a2

+ 72 x3a3 + 1800 x3a4 + x2a0 − x2a1 + 13 x2a2 + 419 x2a3

− 3179 x2a4 + 2 xa1 + 9 xa2 + 70 x6a4 + 20 x5a3 − 468 xa3

+ 142 xa4 + 16 a1 − 48 a2 + 96 a3 − 160 a4

= x6− x5 +8 x3τ1 +44 x3−8 x2τ1 +2 x2τ2−30 x2 + xτ1− xτ2

(34)

Equation (34) is collocated at N − 2 equal spaced points in the
interval [0, 1] and the remaining two equations are obtained
from the use of the conditions attached. This gives 8 system of
linear equations. Solving the system of equations, we obtained

y4(x) = −8. × 10(−11) + 1. × 10(−9)x − 2.857225303x2

+ 4.713873487x3 − .9046244956x4 (35)

When the same example was solved α = 3
2 , β = 1

2 following the
same method,the approximate solution obtained is

y4(x) = −1.×10(−10)x−1.000000001x3+1.000000000x4(36)

5. Conclusion

In this study, the proposed method was used to solve multi-
order fractional differential equations successfully. Four exam-
ples were solved and the results of the numerical solutions pre-
sented in Tables 1, 2, 3 and 4. When α = 3

2 and β = 1
2 the pro-

posed method produced accurate approximate solution curve

Figure 1. Graphical Representation of Error in Table 1

Figure 2. Graphical Representation of Error in Table 2

Figure 3. Graphical Representation of Error in Table 3

which is exactly over the curve of the exact solution for exam-
ples 1, and 2. But, the results are not as satisfactory at α = 5

2
and β = 3

2 as seen in Figures 1 and 2. However, for examples 3
and 4, there is a change of results. Here, the results are better at
α = 5

2 and β = 3
2 than at α = 3

2 and β = 1
2 as shown in Figure 3

and 4. This is likely because k in these examples is higher than
1 which is 2 and 8 in examples 3 and 4 respectively. The value
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Table 1. Error of Results for Example 1

x α = 5
2 α = 3

2
β = 3

2 β = 1
2

Exact Appx Error Appx Error
0.0 0.00000 0.00000 5.0000e-11 -0.000000 5.9232e-13
0.1 0.00900 -0.01232 3.3298e-03 0.008999 2.6668e-10
0.2 0.03200 -0.04284 1.0848e-02 0.031999 9.6994e-10
0.3 0.06300 -0.08213 1.9128e-02 0.062999 1.9604e-09
0.4 0.09600 -0.12112 2.5122e-02 0.095999 3.0781e-09
0.5 0.12500 -0.15115 2.6155e-02 0.124999 4.1532e-09
0.6 0.14400 -0.16393 1.9932e-02 0.144000 5.0056e-09
0.7 0.14700 -0.15153 4.5298e-03 0.146999 5.4456e-09
0.8 0.12800 -0.10640 2.1596e-02 0.127999 5.2733e-09
0.9 0.08100 -0.02139 5.9613e-02 0.080999 4.2787e-09
1.0 0.00000 0.11032 1.1032e-01 0.000000 2.2421e-09

Table 2. Error of Results for Example 2

x α = 5
2 α = 3

2
β = 3

2 β = 1
2

Exact Appx Error Appx Error
0.0 0.000000 0.000000 6.2000e-10 0.000000 3.7782e-12
0.1 0.009000 -0.022414 3.1414e-02 0.0090000 2.4706e-09
0.2 0.032000 -0.117137 1.4914e-01 0.0320000 1.4306e-08
0.3 0.063000 -0.315914 3.7891e-01 0.0630000 3.9585e-08
0.4 0.096000 -0.637850 7.3385e-01 0.0960000 7.8988e-08
0.5 0.125000 -1.089415 1.2144e+00 0.125000 1.2980e-07
0.6 0.144000 -1.664440 1.8084e+00 0.1440001 1.8590e-07
0.7 0.147000 -2.344120 2.4911e+00 0.1470002 2.3778e-07
0.8 0.128000 -3.097010 3.2250e+00 0.1280002 2.7253e-07
0.9 0.081000 -3.879029 3.9600e+00 0.0810002 2.7386e-07
1.0 0.000000 -4.633459 4.6335e+00 0.0000002 2.2207e-07

Table 3. Error of Results for Example 3

x α = 3
2 α = 5

2
β = 1

2 β = 3
2

Exact Appx Error Appx Error
0.0 0.0000000000 -0.0000000005 4.9639e-10 0.0000000000 3.4707e-11
0.1 0.0110000000 0.0158521485 4.8521e-03 0.0110000001 8.6920e-11
0.2 0.0480000000 0.0674086784 1.9409e-02 0.0480000002 2.1491e-10
0.3 0.1170000000 0.1606697155 4.3670e-02 0.1170000004 3.8136e-10
0.4 0.2240000000 0.3016353775 7.7635e-02 0.2240000006 5.5642e-10
0.5 0.3750000000 0.4963057740 1.2131e-01 0.3750000007 7.1780e-10
0.6 0.5760000000 0.7506810062 1.7468e-01 0.5760000009 8.5069e-10
0.7 0.8330000000 1.0707611670 2.3776e-01 0.8330000009 9.4779e-10
0.8 1.1520000000 1.4625463410 3.1055e-01 1.1520000010 1.0093e-09
0.9 1.5390000000 1.9320366030 3.9304e-01 1.5390000010 1.0431e-09
1.0 2.0000000000 2.4852320250 4.8523e-01 2.0000000010 1.0642e-09
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Table 4. Error of Results for Example 4

x α = 3
2 α = 5

2
β = 1

2 β = 3
2

Exact Appx Error Appx Error
0.0 0.0000000000 -0.0000000001 8.0000e-11 0.0000000000 0.0000e+00
0.1 -0.0009000000 -0.0239488420 2.3049e-02 -0.0009000000 1.1000e-11
0.2 -0.0064000000 -0.0780254233 7.1625e-02 -0.0064000000 2.8000e-11
0.3 -0.0189000000 -0.1372031514 1.1830e-01 -0.0189000001 5.7000e-11
0.4 -0.0384000000 -0.1786265321 1.4023e-01 -0.0384000001 1.0400e-10
0.5 -0.0625000000 -0.1816111705 1.1911e-01 -0.0625000002 1.7500e-10
0.6 -0.0864000000 -0.1276437696 4.1244e-02 -0.0864000003 2.7600e-10
0.7 -0.1029000000 -0.0003821324 1.0252e-01 -0.1029000004 4.1300e-10
0.8 -0.1024000000 0.2143448386 3.1674e-01 -0.1024000006 5.9200e-10
0.9 -0.0729000000 0.5285371464 6.0144e-01 -0.0729000008 8.1900e-10
1.0 0.0000000000 0.9520236894 9.5202e-01 -0.0000000010 1.1000e-09

Figure 4. Graphical Representation of Error in Table 4

of the exact solution and the source functions count. From nu-
merical results, it can be seen that the proposed method is an
accurate estimate for the class of differential equations consid-
ered.
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