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Abstract

In recent times, numerical approximation of 3rd-order boundary value problems (BVPs) has attracted great attention due to its wide applications
in solving problems arising from sciences and engineering. Hence, A higher-order block method is constructed for the direct solution of 3rd-order
linear and non-linear BVPs. The approach of interpolation and collocation is adopted in the derivation. Power series approximate solution is
interpolated at the points required to suitably handle both linear and non-linear third-order BVPs while the collocation was done at all the multi-
derivative points. The three sets of discrete schemes together with their first, and second derivatives formed the required higher-order block method
(HBM) which is applied to standard third-order BVPs. The HBM is self-starting since it doesn’t need any separate predictor or starting values.
The investigation of the convergence analysis of the HBM is completely examined and discussed. The improving tactics are fully considered and
discussed which resulted in better performance of the HBM. Three numerical examples were presented to show the performance and the strength
of the HBM over other numerical methods. The comparison of the HBM errors and other existing work in the literature was also shown in curves.
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1. Introduction

Numerous common happenings in connection with phys-
ical sciences, and engineering are modeled in form of linear
and nonlinear BVPs. Although, some modeled problems do not
have theoretical solution or closed form. Consequently, numer-
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Email address: eoomole@jabu.edu.ng, omolez247@gmail.com

(Ezekiel Olaoluwa Omole)

ical method is employed to solve such class of modeled prob-
lems. In this article, the numerical solution of third-order BVPs
of the type

y′′′(x) = v(x, y, y′, y′′), (1)

with the initial conditions, boundary conditions or any other
form as follow,

y(a) = αa, y′(a) = βa, y′(xb) = νb, (2)

y(xa) = α0, y′(a) = βa, y(b) = νb, (3)
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y(xa) = αa, y′(b) = βb, y(b) = νb, (4)

The constants parameters in equations (2) - (4) are taken to be continuous functions and v fulfils the condition for the existence and
uniqueness of the problem. It follows that (1) is a third-order ordinary differential equations with initial, and boundary conditions (3)
- (4). Modeled equation (1) is of great importance to scientists and engineers due to its numerous usage in sciences and engineering.
Scholars have developed numerous techniques for solving (1). The conventional methods of solving (1) could be; by reducing it
to the system of first-order ordinary differential equations and a suitable numerical methods for first-order ODEs would be applied
to solve the system of equations. The shooting method, and finite different method. The limitations of these methods have been
discussed by numerous scholars [1–4]. For instance, The reduction approach have been reported by various literatures to have alot
of limitations such computational burden, lots of human efforts, requires lots of time for the computation, and complexity in the
computer computation which affects the accuracy and efficiency of the method in terms of error and time of execution. On the other
hand, the shooting method suffers inaccuracy and instability while the finite different method is very demanding and does not give
a satisfactory results. Other numerical methods for solving ordinary differential equations also exist in literature [5–15].

In other to improve the limitations and the weakness associated with the conventional methods, we present a higher-order block
method capable of solving (1) directly, accurately and reduces computational time. The new method namely HBM is expected to
improve the accuracies of the existing methods in the literature.

2. Methodology

In this section, a new method capable of handing (1) is constructed. We considered an approximate equation as the power series
of the form,

y(x) =

3k+1∑
z=0

mzxz (5)

where the step-number (k = 3) is taken into consideration, 3k+1 is equivalent to r + 2s − 1, where r is the interpolation points
and s is the collocation points. The third and fourth derivative of (5) yields

y′′′(x) =

3k+1∑
z=3

z(z − 1)(z − 2)mzxz−3

y(iv)(x) =

3k+1∑
z=4

z(z − 1)(z − 2)(z − 3)mzxz−4

(6)

Now, interpolating (5) at xn+r, r = 0(1)k − 1 and collocating both the third and fourth derivatives in (6) at xn+s, s = 0(1)k to
generate the system of ten by ten equations written in matrix form as

X1A1 = B1 (7)

X1 =



1 xn x2
n x3

n x4
n x5

n · · · x9
n x10

n
0 1 2xn 3x2

n 4x3
n 5x4

n · · · 9x8
n 10x9

n
0 0 2 6xn 12x2

n 20x3
n · · · 72x7

n 90x8
n

0 0 0 6 24xn 60x2
n · · · 504x6

n 720x7
n

0 0 0 6 24xn+1 60x2
n+1 · · · 504x6

n+1 720x7
n+1

0 0 0 6 24xn+2 60x2
n+2 · · · 504x6

n+2 720x7
n+2

0 0 0 6 24xn+3 60x2
n+3 · · · 504x6

n+3 720x7
n+3

0 0 0 0 24 120xn · · · 3024x5
n 5040x6

n
0 0 0 0 24 120xn+1 · · · 3024x5

n+1 5040x6
n+1

0 0 0 0 24 120xn+2 · · · 3024x5
n+2 5040x6

n+2
0 0 0 0 24 120xn+3 · · · 3024x5

n+3 5040x6
n+3


B1 = (yn, yn+1, yn+2, vn, vn+1, vn+2, vn+3,wn,wn+1,wn+2,wn+3)T

A1 = (m0,m1,m2,m3,m4,m5,m6,m7,m8,m9,m10)T

Solving the system of equations above, we obtained the values of the coefficients mn, n = 0, ..., 10 as follows.
After obtaining the values of these coefficients and changing the variable, x = xn + lh using the appropriate transformation, the

polynomial in (5) may be written as,

y (l) = a0yn + a1yn+1 + a2yn+2 + h3 (b0vn + b1vn+1 + b2vn+2 + b3vn+3)

+h4(c0wn + c1wn+1 + c2wn+2 + c3wn+3) (8)
2
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where

a0 =
de
2
, a1 = −el, a2 =

dl
2
, d = (l − 1), e = (l − 2)

b0 =
h2

544320
de(77 l7 − 1059 l6 + 5699 l5 − 14625 l4 + 15749 l3 + 3165 l2 − 22003 l + 18381)

b1 =
lh3

20160
de(7 l7 − 79 l6 + 304 l5 − 370 l4 − 206 l3 + 122 l2 + 778 l + 2090)

b2 = −
lh3

20160
de(7 l7 − 89 l6 + 409 l5 − 755 l4 + 319 l3 + 199 l2 − 41 l − 521)

b3 = −
lh3

544320
de(77 l7 − 789 l6 + 2864 l5 − 4230 l4 + 1574 l3 + 1086 l2 + 110 l − 1842)

c0 =
lh4

181440
de(7 l7 − 99 l6 + 559 l5 − 1581 l4 + 2245 l3 − 1191 l2 − 503 l + 873)

c1 =
lh4

20160
de(7 l7 − 89 l6 + 424 l5 − 878 l4 + 550 l3 + 382 l2 + 46 l − 626)

c2 =
lh4

20160
de(7 l7 − 79 l6 + 319 l5 − 517 l4 + 205 l3 + 137 l2 + l − 271)

c3 =
lh4

181440
de(7 l7 − 69 l6 + 244 l5 − 354 l4 + 130 l3 + 90 l2 + 10 l − 150)

(9)

Remark 1. The variable coefficients functions in (8) are continuous and differentiable within the interval of solution of [a, b] with
a step size given by the function h = b−a

N . It follows that N is the number of sub-interval of the solution. The continuous function (8)
and its first y′(x) and second derivatives y′′(x) were used to generate the main and auxiliary methods which produces a sum of nine
equations jointed together to supply the entire approximations on the interval for the direct solution of third-order BVPs of the type
(1). Furthermore, by evaluating (8), its first and second derivatives at xn+l, l = 0(1)k, The following nine equations or otherwise
called HBM were acquired.

yn+1 = yn + y′nh +
1
2

y′′n h2 +
62387

544320
h3vn +

89
3360

h3vn+1 +
439

20160
h3vn+2 +

1031
272160

h3vn+3 +
1879

181440
h4wn −

359
10080

h4wn+1 −
13

960
h4wn+2 −

17
18144

h4wn+3

yn+2 = yn + 2y′nh + 2 y′′n h2 +
5048
8505

h3vn +
164
315

h3vn+1 +
4

21
h3vn+2 +

244
8505

h3vn+3

+
172
2835

h4wn −
4
15

h4wn+1 −
34
315

h4wn+2 −
4

567
h4wn+3 (10)

yn+3 = yn + 3y′nh +
9
2

y′′n h2 +
657
448

h3vn +
2187
1120

h3vn+1 +
2187
2240

h3vn+2 +
117

1120
h3vn+3

+
351
2240

h4wn −
729
1120

h4wn+1 −
729

2240
h4wn+2 −

27
1120

h4wn+3

y′n+1 = y′n + h y′′n +
19519
68040

h2vn +
1301
10080

h2vn+1 +
181
2520

h2vn+2 +

3329
272160

h2vn+3 +
371

12960
h3wn −

313
2520

h3wn+1 −
89

2016
h3wn+2 −

137
45360

h3wn+3

y′n+2 = y′n + 2h y′′n +
5731
8505

h2vn +
296
315

h2vn+1 +
109
315

h2vn+2 +
344
8505

h2vn+3

+
206
2835

h3wn −
20
63

h3wn+1 −
52
315

h3wn+2 −
4

405
h3wn+3 (11)

3
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y′n+3 = y′n + 3h y′′n +
603
560

h2vn +
2187
1120

h2vn+1 +
729
560

h2vn+2 +
27
160

h2vn+3

+
27
224

h3wn −
243
560

h3wn+1 −
243
1120

h3wn+2 −
9

280
h3wn+3

y′′n+1 = y′′n +
6893

18144
hvn +

313
672

hvn+1 +
89

672
hvn+2 +

397
18144

hvn+3

+
1283
30240

h2wn −
851

3360
h2wn+1 −

269
3360

h2wn+2 −
163

30240
h2wn+3

y′′n+2 = y′′n +
223
567

hvn +
20
21

hvn+1 +
13
21

hvn+2 +
20

567
hvn+3

+
43
945

h2wn −
16

105
h2wn+1 −

19
105

h2wn+2 −
8

945
h2wn+3 (12)

y′′n+3 = y′′n +
93

224
hvn +

243
224

hvn+1 +
243
224

hvn+2 +
93

224
hvn+3

57
1120

h2wn −
81

1120
h2wn+1 +

81
1120

h2wn+2 −
57

1120
h2wn+3

3. The Properties of the HBM

In this section, It is important to examine and discuss the convergence analysis of the HBM such as the order & the error constants,
convergence, zero stability, and convergence.

3.1. Order & Error Constant of the HBM
According to [16–18], the linear difference operator L in respect to equation (10) is defined by

L
[
y (x) ; h

]
=

∑k
j=0

{
a jy (xn + jh) − h3v jy′′′ (xn + jh) − h4w jy′′′′ (xn + jh)

}
(13)

y (x) is assumed to be continuously differentiable function. Therefore function (13) can be maximize in taylor series about x to
obtain

L (y (x) ; h) = D0y (x) + D1hy′ (x) + D2h2y′′ (x) + ... + Dqhqy(q) (x) (14)

where Dq, q = 1, 2, ... are constants in such that,

D0 = D1 = ... = Dq = 0,Dp+3 , 0 (15)

The method (10) is of uniform order 11 with the following error constants
Dq+3 = (−5.143239 × 10−10,−1.312531 × 10−09,−2.394622 × 10−09)T .

3.2. Consistency
As stated by [18–20], a LMM of the form (10) is said to be consistent if it has order greater than or equals to one. The HBM

satisfies the condition for consistency since its order, is 11 which is greater than one.

3.3. Zero-stability of the HBM
Taking into consideration method (10) could be written in matrix difference form as ,

A(0)Ym = A(1)Ym−1 + h3
[
C(0)Gm + C(3)Gm−3

]
+

h4
[
D(0)Hm + D(4)Hm−3

]
(16)

The matrix parameter A(0), A(1),C(0),C(3),D(0),D(4),H(0),H(1) are the square matrices whose arrays are the coefficients (10) and
are defined as below.

4
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A(0) =


1 0 0

0 1 0

0 0 1

 , A(1) =


0 0 1

0 0 1

0 0 1

 ,

C(0) =


89

3360
439

20160
1031

272160

164
315

4
21

244
8505

2187
1120

2187
2240

117
1120



C(3) =


0 0 62387

544320

0 0 5048
8505

0 0 657
448

 ,

D(0) =


− 359

10080 − 13
960 − 17

18144

− 4
15 − 34

315 − 4
567

− 729
1120 − 729

2240 − 27
1120



D(4) =


0 0 1879

181440

0 0 172
2835

0 0 351
2240

,
The limit of (16) is taken as h → 0, to obtain the difference

system

A(0)Ym − A(1)Ym−1 = 0 (17)

The first characteristics of (17) is given by

ρ (F) = det
(
FA(0) − A(1)

)
= F2 (F − 1) = 0 (18)

Hence, F = 0, 0, 1
The block method of the form (10) is said to be zero stable if
as ρ (F) = 0, then

∣∣∣F j

∣∣∣ ≤ 1, j = 0, 1, ... for those roots with∣∣∣F j

∣∣∣ = 1, the multiplicity does not exceed 1 [21–26]. Also
the block method (10) is consistent since p>1. Since (10) is
consistent and zero stable, it is also convergence [27].

3.4. Convergence
In respect to the claim of Lambert [18] which also cor-

roborates with proof of Adogbe & Omole, and Adogbe et al.
[28, 29] that any numerical method belonging to a class of
LMM must satisfies the fundamental and adequate conditions.
It follows that for such class of method to be convergent it must
be consistent and zero-stable. consequently, the HBM satisfies
the conditions for consistency and zero-stability, So it is con-
vergent.

4. Implementation Tactics

In this part, we present the comprehensive procedure for
the implementation of the new proposed method tagged Higher-
order Block Method (HBM). The HBM is implemented in block
method together with the aid of Newton-Raphson approach via
a Mathematica 11.0 code which uses f-solve for linear and find-
root for non-linear to simultaneously generate the solution at

the initial point to the terminal point while adjusting for bound-
ary conditions.
Meanwhile, each block integrators in (10), (11) and (12) forms
a system of equations which is applied along with the Newton’s
method. The starting values in the application of the Newton’s
Raphson method which are considered as the approximations
provided by the Taylor series expansion formulas

yn+i = yn + ihy′n +

(
(ih)2

2

)
y′′n +

(
(ih)3

6

)
vn +

(
(ih)4

24

)
wn,

i = 0 (1) ..., k

y′n+i = y′n + ihy′′n +

(
(ih)2

2

)
vn +

(
(ih)3

6

)
wn,

i = 0 (1) ..., k

y′′n+i = y′′n + ihvn +

(
(ih)2

2

)
wn,

i = 0 (1) ..., k.

(19)

The wn+i, i = 0 (1) ..., k appearing in (19) connotes the fourth
derivative at xn+i, i = 0 (1) ..., k. In other to get a closed form
solution of (20) which is expanded in (19), it is important to
calculate the values of wn+i, i = 0 (1) ..., k. For more clarifica-
tion,

y(iv)(x) =

(
dv(x, y, y′, y′′, y′′′)

dx

)
, i = 0 (1) ..., k. (20)

y(iv)(x) =
dv
dx

+
dv
dy

y′ +
dv
dy′

y′′ +
dv

dy′′
y′′′ + v

dv
dy′′′

v, i = 0 (1) ..., k.

(21)

Consequently, the solution of (1) is simultaneously generate on
the entire interval of integration by using the main method (10)
for n = 0, 1, ...,N2 to obtain 3N −2 equations and the additional
method (11) and (12) which are employed to complete the set
of equations needed to simultaneously solve 3N by 3N system
of equations for solving (1) directly.

5. The Numerical Experiments

It is very important to test the accuracy and usefulness of
the HBM by applying the HBM to solve modeled problems.
Three standard third-order BVPs varying from linear to non-
linear was computed and the results were presented and dis-
cussed extensively. All computations and programming were
carried out using Maple 18.0 and Mathematica 11.0.

5.1. Test problem 1
First test problem, third-order linear boundary value prob-

lem solved by Ahmed [30].

y′′′−xy+(x2−2x2−5x−3)ex, y(0) = 0, y′(0) = 1, y′(1) = −e(22)

with theoretical solution as

y(x) = x(1 − x)ex (23)
5
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Table 1. Numerical results of HBM, AE in HBM and AE in [30] for Problem 1 using N = 10 or h = 0.1

x y-Exact solution y-Computed solution AE in HBM AE in [30]
0.1 0.09946538262680829 0.09946538262680911 8.18789 × 10−16 1.36200 × 10−10

0.2 0.19542444130562720 0.19542444130563258 5.38458 × 10−15 1.90000 × 10−12

0.3 0.28347034959096070 0.28347034959097905 1.83742 × 10−14 1.10000 × 10−12

0.4 0.35803792743390490 0.35803792743392630 2.14273 × 10−14 7.00000 × 10−12

0.5 0.41218031767503205 0.41218031767503670 4.66294 × 10−15 1.00000 × 10−11

0.6 0.43730851209372210 0.43730851209368804 3.40838 × 10−14 1.70000 × 10−12

0.7 0.42288806856880007 0.42288806856871670 8.33777 × 10−14 8.80000 × 10−11

0.8 0.35608654855879485 0.35608654855866470 1.30174 × 10−13 9.42000 × 10−11

0.9 0.22136428000412547 0.22136428000395672 1.68754 × 10−13 1.36800 × 10−10

1.0 0.00000000000000000 1.83070 × 10−13 1.83070 × 10−13 0.00000 × 10−00

Table 2. Comparison of Maximum absolute error in HBM with other existing methods for Problem 1
References Maximum Absolute Error

Current method-HBM 1.8307 × 10−13

[30] 1.3700 × 10−10

[31] 5.3000 × 10−07

[32] 1.8400 × 10−06

[33] 2.3700 × 10−07

[34] 8.1200 × 10−04

[35] 1.6400 × 10−02

[36] 2.6400 × 10−07

[37] 8.2900 × 10−09

Table 3. Numerical results of HBM and Absolute error for Problem 2 taking N = 100 or h = 0.01
x y-Exact solution y-Computed solution AE in HBM

0.01 −0.009998833350833248 −0.009998833350833078 1.70003 × 10−16

0.02 −0.019990667226655746 −0.019990667226655066 6.80012 × 10−16

0.03 −0.029968504252313413 −0.029968504252311883 1.53003 × 10−15

0.04 −0.039925351251935550 −0.039925351251932820 2.72699 × 10−15

0.05 −0.049854221347501636 −0.049854221347497375 4.26048 × 10−15

0.06 −0.059748136056118590 −0.059748136056112450 6.14092 × 10−15

0.07 −0.069600127385578860 −0.069600127385570460 8.39606 × 10−15

0.08 −0.079403239927770000 −0.079403239927759020 1.09773 × 10−14

0.09 −0.089150532949507160 −0.089150532949493310 1.38500 × 10−14

0.10 −0.098835082480359870 −0.098835082480342770 1.70974 × 10−14

Table 4. Numerical results of HBM and Absolute error for Problem 2 taking N = 10 or h = 0.1
x y-Exact solution y-Computed solution AE in HBM

0.1 −0.098835082480359870 −0.09883508248034277 1.70974 × 10−14

0.2 −0.190722557563258760 −0.19072255756318998 6.87783 × 10−14

0.3 −0.268923388061819000 −0.26892338806166494 1.54043 × 10−13

0.4 −0.327111407539266430 −0.32711140753900390 2.62512 × 10−13

0.5 −0.359569153953152255 −0.35956915395277234 3.79918 × 10−13

0.6 −0.361371182972822670 −0.36137118297233617 4.86500 × 10−13

0.7 −0.328551020491222400 −0.32855102049065060 5.71820 × 10−13

0.8 −0.258248192723828200 −0.25824819272318880 6.39433 × 10−13

0.9 −0.148832112829221850 −0.14883211282853925 6.82593 × 10−13

1.0 0.0000000000000000000 6.98759 × 10−13 6.98759 × 10−13

In Table 1, The theoretical solution, approximate solution,
absolute error in HBM and the absolute error in other existing

method were presented. On the other hand, Table 2 shows the
comparison of Maximum absolute error in HBM against nu-
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Table 5. Comparison of Maximum absolute error in HBM with other existing methods for Problem 2
References Maximum Absolute Error

Current method-HBM 6.98759 × 10−13

[34] 8.55940 × 10−05

[35] 8.88390 × 10−03

[36] 2.15720 × 10−08

Table 6. Numerical results of HBM and Absolute error Problem 3 with using (N = 10) or (h = 0.1)
x y-Exact solution y-Computed solution AE in HBM

0.1 0.09531017980432493 0.09531017980433536 1.04222 × 10−14

0.2 0.18232155679395460 0.18232155679398550 3.09197 × 10−14

0.3 0.26236426446749106 0.26236426446754463 5.35683 × 10−14

0.4 0.33647223662121290 0.33647223662128860 7.57172 × 10−14

0.5 0.40546510810816440 0.40546510810826103 9.66449 × 10−14

0.6 0.47000362924573563 0.47000362924585110 1.15463 × 10−13

0.7 0.53062825106217040 0.53062825106230150 1.31117 × 10−13

0.8 0.58778666490211910 0.58778666490226180 1.42775 × 10−13

0.9 0.64185388617239470 0.64185388617254560 1.50879 × 10−13

1.0 0.69314718055994530 0.69314718056009890 1.53655 × 10−13

Table 7. Comparison of the numerical errors in HBM and other existing methods for Problem 3 with N = 10
x AE in HBM AE in [37] AE in [38]

0.1 1.04222 × 10−14 2.22000 × 10−06 2.947641 × 10−10

0.2 3.09197 × 10−14 4.67000 × 10−06 2.084566 × 10−11

0.3 5.35683 × 10−14 1.890000 × 10−06 4.147355 × 10−11

0.4 7.57172 × 10−14 3.560000 × 10−06 2.208859 × 10−12

0.5 9.66449 × 10−14 7.430000 × 10−07 2.777215 × 10−11

0.6 1.15463 × 10−13 1.220000 × 10−06 2.647594 × 10−11

0.7 1.31117 × 10−13 2.780000 × 10−06 1.190750 × 10−11

0.8 1.42775 × 10−13 3.74000 × 10−06 1.816331 × 10−12

0.9 1.50879 × 10−13 4.11000 × 10−06 7.666364 × 10−10

1.0 1.53655 × 10−13 0.00000 × 10−00 0.00000 × 10−00

merous methods proposed by various authors in the literatures.
It is very clear that the efficiency and accuracy of HBM is es-
tablished comprehensively.

5.2. Test problem 2

Consider the third-order boundary value problem solved by
Abdullah et al. [34].

y′′′ − y + (7 − x2)cosx + (x2 − 6x − 1)sinx,

y(0) = 0, y′(0) = −1, y′(1) = 2sin1 (24)

with the analytical solution given as

y(x) = (x2 − 1)sin(x) (25)

Here, the interpretation of Tables 3, 4 and 5 are made. The
computational results of problem 2 using the proposed method
named HBM with h = 0.01 is shown, while in Table 2, we
presents the computational results of problem 2 using HBM
with h = 0.1. It could be observed that as the value of h

decreases, the accuracies also increases whereas as the h in-
creases, the accuracies of the method decreases as demonstrated
in Tables 3 and 4. furthermore, we computed the maximum ab-
solute error of the HBM for problem 2 and compared with other
numerical methods in the cited literature. This is illustrated in
the Table 5. The HBM gives a minimal error when compared
with other existing method.

5.3. Test problem 3
Lastly, a non-linear third-order problem studied by Akram

et al. [37] and, Hossain et al. [38] is taking into consideration.

y′′′ + 2e3y = −4(1 + x)−3,

y(0) = 0, y′(0) = 1, y′(1) = In(2) (26)

with the exact solution.

y(x) = In(1 + x) (27)

Finally, we considered a non-linear third-order bvp in other to
determine the strength and advantage of the HBM. In Table 6,

7
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Figure 1. Comparison of Absolute error in HBM with Absolute error in Akram
et al. [37]

Figure 2. Comparison of Absolute error in HBM with Absolute error in Hossain
et al. [38]

The computational results and absolute error on HBM is pre-
sented while Table 7 presented the comparison of absolute er-
ror of the non-linear problem using HBM and compared with
other similar methods in the cited work. In addition, the com-
parison of errors in curves for the non-linear problem were also
presented in Figure 1 and 2. without any iota of doubt, we have
been able to demonstrate the convergence, efficiency and accu-
racy of the new method namely HBM over other techniques.

6. Conclusion

This study has successfully presented a construction of new
numerical method (HBM), analyse and implemented for solv-
ing numerous type of third-order BVPs directly without utiliz-
ing the conventional method such as shooting method, reduc-
tion to first-order system of equations, finite difference method.
In the derivation, the method make use of power series basic
function due to its great stability and convergence attributes.
The multi-collocation points was introduced for the purpose of
improving the order of the work, which also enhances good ac-
curacy, the points of interpolation and collocation were also
chosen strategically in order to obtain a desired results. The
method was applied to solve linear and non-linear boundary

value problems in other to test its efficiency and accuracy. The
results was also compared with numerous methods in the lit-
eratures as shown in Tables 1, 3, 4 and 6. The results shows
that the HBM is more efficient and accurate than other methods
in the literature. The method is of order 11 with a smaller er-
ror terms. The discussion of HBM were discussed in details in
chapter three. both the absolute error and maximum absolute
error were also tested in other to ascertain the uniqueness and
reliability of the HBM. Hence we conclude that HBM is a best
candidate in solving a class of such problems.
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