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Abstract

An important alternative distribution to the Weibull, generalized exponential and gamma distributions that is used in survival analysis is the
Nadarajah-Haghighi exponential distribution. Similar to the Weibull, generalized exponential and gamma distributions, the Nadarajah-Haghighi
exponential distribution is an extension of the well known exponential distribution. In this paper, a copula function commonly used to model
very weak linear dependence was used to introduced a bivariate Nadarajah-Haghighi distribution. The joint survival function, joint probability
density function and joint cumulative distribution were given in closed form. Bayesian method of estimation was used to estimate the model
parameters considering the presence of right censoring and covariates. Posterior summaries of interest were obtained via standard Markov Monte
Carlo (MCMC) technique. Two real data sets were used to illustrate the importance and flexibility of the bivariate model in comparison with some
competing models. It was observed that, the bivariate Nadarajah-Haghighi distribution provides a better flt than bivariate exponential, bivariate
Weibull, bivariate generalized exponential and bivariate modified Weibull distributions.
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1. Introduction

Exponential distribution is a well known distribution
due to the constant hazard rate and memory less property it
exhibits. However, in survival/ reliability studies, choosing
the exponential distribution may be inappropriate since its
hazard rate does not show monotone and/ or non-monotone
failure rate behaviours [1]. To solve this problem, many
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Email address: aliyuyakubu40@mail.com (Yakubu Aliyu )

generalizations of the exponential distribution have been
developed by researchers so as to add some flexibility to
the exponential distribution. These include the generalized
exponential distribution developed by [2], Beta-exponential
by [3], Nadarajah-Haghighi by [4]. These generalizations
are among the generalizations that have received the most
attention in the literature as compared with other extensions
of the exponential distribution. Other generalizations of the
exponential distribution include the Weibull-Burr III by [5],
the generalized modified Weibull by [6], log-beta Weibull by
[7], two parameter Burr X by [8] and Weibull Kumaraswamy
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distribution by [9] to mention but a few.

An extension of the exponential distribution which serves
as an alternative to the Weibull, generalized exponential and
gamma distributions called the Nadarajah-Haghighi exponen-
tial distribution was introduced by [4]. The probability den-
sity function (pdf ) and cumulative distribution function (cdf )
of the univariate Nadarajah-Haghighi exponential (NH) distri-
bution with parameters θ and φ are respectively given by:

f (t/θ, φ) = θφ (1 + θt)φ−1 exp
(
1 − (1 + θt)φ

)
(1)

and

F (t/θ, φ) = 1 − exp
(
1 − (1 + θt)φ

)
(2)

where θ, φ > 0 are scale and shape parameters respectively. The
pdf in (1) reduces to the exponential distribution when φ = 1.
The shape of the NH density can be decreasing and unimodal,
while that of the hazard rate function can be monotonically in-
creasing, monotonically decreasing or constant. The survival
and hazard rate functions of the NH distribution are respectively
given by:

S (t/θ, φ) = exp
(
1 − (1 + θt)φ

)
(3)

and

h (t/θ, φ) = θφ (1 + θt)φ−1 (4)

The distribution has been extended by different researchers in
different directions. For instance, [10] extended the distribution
to the unit NH distribution which could be used to model
effectively data related to rates and proportions with excess of
ones. [11] extended it to the Poisson NH distribution that can
be used to model reliability systems and [11] explored different
classical methods of estimation to estimate the parameters of
the Poisson NH distribution. [12] extended it to a three param-
eter discrete NH distribution that could serves as an alternative
to the Poisson, negative binomial and zero inflated Poisson
distribution. It was also extended to the Nadarajah-Haghighi
mixture cure rate model by [13], a model that could be used to
model effectively information from a population of a mixture
of two type of individuals: susceptible and cured individuals.

However, in a situation where we are studying two life-
times T1 and T2 associated to each unit (individual), these
extensions could not be used. To solve this problem, some
existing bivariate distributions in the literature such as bi-
variate Weibull by [14, 15, 16, 17, 18], bivariate modified
weibull by [19], bivariate exponentiated discrete Weibull
distribution by [20], bivariate generalized exponential by
[21, 22, 23, 24, 25, 26], bivariate generalized Rayleigh by [27],
bivariate inverse weibull distribution by [28, 29, 30, 31, 32, 33],
bivariate frechet by [34], bivariate inverted Topp-Leone distri-
bution by [35], bivariate discrete NH by [36] and bivariate NH
by [37] distributions could be used. The bivariate discrete NH
distribution by [36] could only be used in modelling bivariate
discrete lifetimes while the bivariate NH distribution by [37]
could be used to modeled bivariate lifetimes with positive and

negative dependence structure.

In this paper, we generalized the exponential distribution
to the bivariate exponential distribution considering the
Nadarajah-Haghighi exponential distribution using the Farlie -
Gumbel - Morgestern copula function. Hence, the paper aimed
to introduced a bivariate Nadarajah-Haghighi exponential
distribution that could be used for describing bivariate data
that have weak correlation between variables in lifetime data.
The distribution will extends the univariate exponential and
Nadarajah-Haghighi exponential distributions, and serves as
a good alternative to several bivariate distributions such as:
bivariate exponential, bivariate generalized exponential and
bivariate weibull distributions for modelling real-valued data.
An important motivation of the article is to develop a guideline
for estimating the parameters of the introduced distribution in
the presence of censoring and covariates, which may be of deep
interest to statisticians and practitioners. Some mathematical
and statistical properties of the distribution was discussed.
Bayesian method of estimation was employed in estimating
the parameters of the distribution and finally, we evaluate the
performance of the estimators by analyzing some real life data
sets. The rest of the paper is organized as follows: in section
2, we derive the survival function, the probability density
function and cumulative distribution function of the bivariate
Nadarajah-Haghighi distribution, also in this section, param-
eters of the distribution were estimated using the Bayesian
method of estimation procedure. Application of the introduced
methodology is given in section 3 and we finally conclude in
section 4.

2. Bivariate Nadarajah-Haghighi Distribution

In this section, the bivariate Nadarajah-Haghighi distribu-
tion was developed and study some of its statistical properties.

2.1. The Model
Copula functions are used in connecting the joint distribu-

tion function of two or more univariate distributions. The cop-
ula function is said to be bivariate when it connects the joint
distribution function of only two univariate distributions. Let
S (tk) be the univariate survival function for the random vari-
able Tk, k = 1, 2, the joint survival function S (t1, t2) is defined
as:

S (t1, t2) = Cλ (S (t1) S (t2)) (5)

for t1, t2 > 0 where λ is a measure of dependence between the
random variables T1 and T2, and C is a copula function. The
Farlie-Gumbel-Morgenstern copula (FGM) was first proposed
by [38] and later by [39] and [40]. The joint survival function
considering the FGM copula for random variables T1 and T2 is
given by:

S (t1, t2) = S (t1) S (t2) [1 + λ (1 − S (t1)) (1 − S (t2))] (6)

where the dependence parameter lies between ±1 inclusive.
The joint survival function in (6) reduces to the survival
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function of the product copula function that is S (t1, t2) =

S (t1) S (t2) when the dependence parameter takes the value of
zero. In this case, T1 and T2 are said to be independent. The
dependence parameter λ is related to the kendall and spearman
rank correlation coefficients by:

τ (λ) =
2λ
9

and
ρ (λ) =

λ

3
respectively. Hence, the FGM copula is only appropriate in
modelling weak dependences. The FGM copula is useful
especially when dependence between the two marginal is
modest in magnitude [41].

Assume T1 and T2 be two lifetimes associated to the
same individual/ device with a dependence structure given by
FGM copula function. The density functions of the marginal
distributions for the lifetimes T1 and T2 are given by:

f1 (t1) = θ1φ1 (1 + θ1t1)φ1−1 exp
(
1 − (1 + θ1t1)φ1

)
(7)

and

f2 (t2) = θ2φ2 (1 + θ2t2)φ2−1 exp
(
1 − (1 + θ2t2)φ2

)
(8)

respectively, while the survival functions are given by:

S 1 (t1) = exp
(
1 − (1 + θ1t1)φ1

)
(9)

and

S 2 (t2) = exp
(
1 − (1 + θ2t2)φ2

)
(10)

respectively. The joint survival function based on the FGM cop-
ula given by (6) using the marginal survival functions in (9)
and (10) is given by:

S (t1, t2) = exp
(
2 − (1 + θ1t1)φ1 − (1 + θ2t2)φ2

)[
1 + λ

(
1 − exp

(
1 − (1 + θ1t1)φ1

)) (
1 − exp

(
1 − (1 + θ2t2)φ2

))]
(11)

To obtain the joint density function for the random variables T1
and T2, we obtain the second derivative of S (t1, t2) with respect
to t1 and t2. That is, f (t1, t2) =

∂2S (t1,t2)
∂t1∂t2

which yields:

f (t1, t2) = θ1θ2φ1φ2 pq1q2
[
1 + λ (1 + 4p − 2p1 − 2p2)

]
(12)

where p = exp
(
2 − (1 + θ1t1)φ1 − (1 + θ2t2)φ2

)
, p1 =

exp
(
1 − (1 + θ1t1)φ1

)
, p2 = exp

(
1 − (1 + θ2t2)φ2

)
, q1 =

(1 + θ1t1)φ1−1 and q2 = (1 + θ2t2)φ2−1

The joint cumulative distribution function is easily obtain as:

F (t1, t2) = p (1 + λ(1 − p1)(1 − p2)) − p1 − p2 + 1 (13)

The marginal distribution functions are given by F (t1) = 1 −
S (t1) and F (t2) = 1 − S (t2). The first partial derivatives with
respect to t1i and t2i are given by:

∂S (t1i, t2i)
∂t1i

= −θ1φ1 p1 p
[
1 + λ (1 − p1) (1 − p2)

]
+

λθ1φ1 pq1 p1 (1 − p2) (14)
and

∂S (t1i, t2i)
∂t2i

= −θ2φ2q2 p
[
1 + λ (1 − p1) (1 − p2)

]
+

p (1 − p1) p2 (15)

respectively. The survival function in (11) reduce to the survival
function of the product bivariate Nadarajah-Haghighi distribu-
tion when the dependent parameter assumed the value zero. It
also reduce to the FGM bivariate exponential distribution when
φ1 = φ2 = 1 and to the product bivariate exponential distribu-
tion when φ1 = φ2 = 1 and λ = 0.

2.2. Estimation

In this section, the problem of estimating the parameters of
the Farlie-Gumbel-Mogenstern bivariate Nadarajah-Haghighi
(FGMBNH) distribution based on random samples of size n
was addressed using the Bayesian estimation procedure.

Let (T11, T21), (T12, T22) , · · · , (T1n, T2n) be bi-
variate random sample of size n from the FGMBNH
distribution, let w = (θ1, θ2, φ1, φ2, λ)′ be the
vector of parameters. Then, the likelihood func-
tion L (w) when the lifetimes (T11, T21), (T12, T22) ,
· · · , (T1n, T2n) is assumed to be non-censored can be
expressed as:

L (w) =

n∏
i=1

f (t1i, t2i) (16)

substituting equation (12) and taking natural logarithm gives:

`(Θ) = nlog(θ1) + nlog(θ2) + nlog(φ1) + nlog(φ2)+

2n −
n∑

i=1

[
(1 + θ1t1i)φ1 + (1 + θ2t2i)φ2

]
+ (φ1 − 1)

n∑
i=1

log (1 + θ1t1i) + (φ2 − 1)
n∑

i=1

log (1 + θ2t2i) +

n∑
i=1

[
1 + λ

[
1 + 4exp

(
2 − (1 + θ1t1i)φ1 − (1 + θ2t2i)φ2

)
−

2exp
(
1 − (1 + θ1t1i)φ1

)
− 2exp

(
1 − (1 + θ2t2i)φ2

)]]
(17)

On the other hand, assume the lifetimes T1 or T2 or both T1
and T2 may be right censored. Assume also that, the cen-
soring is independent of the time to the event of interest in
the study. Let (T11,T21) , (T12,T22) , · · · , (T1n,T2n) be a ran-
dom sample from the FGMBNH distribution with parameter
w where w = (θ1, θ2, φ1, φ2, λ)′ is a parameter space. Then,
each ith observation i = 1, 2, · · · , n fall in one of the following
groups:

• U1 : both t1i and t2i are uncensored observations.

• U2 : t1i is uncensored and t2i is censored observation.

• U3 : t1i is censored and t2i is uncensored observation.

• U4 : both t1i and t2i are censored observations.
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Then, the likelihood based on these conditions can be expressed
as:

L =
∏
i∈U1

[
∂2S (t1i, t2i)
∂t1i∂t2i

]∏
i∈U2

[
−∂S (t1i, t2i)

∂t1i

]
×

∏
i∈U3

[
∂S (t1i, t2i)

∂t2i

]∏
i∈U4

S (t1i, t2i) (18)

Assume τ1i and τ2i be indicator variables, such that{
τki = 1 when tki is an uncensored observation
τki = 0 when tki is censored observation

Then, the likelihood function in equation (18) is written as:

L =

n∏
i=1

[
∂2S (t1i, t2i)
∂t1i∂t2i

]τ1iτ2i [
−∂S (t1i, t2i)

∂t1i

]τ1i(1−τ2i)

×

[
−∂S (t1i, t2i)

∂t2i

](1−τ1i)τ2i

[S (t1i, t2i)](1−τ1i)(1−τ2i) (19)

observe that, the likelihood function in expression (19) reduces
to the likelihood function of the non-censored observation in
expression (16) when τ1i = τ2i = 1.

Furthermore, in the presence of m covariates x1, x2, · · · , xm

affecting the parameters of the FGMBNH distribution, a link
function is assumed for the parameters φ1, φ2, θ1 and θ2. That
is,

φ1 = exp (φ10 + φ11x1 + φ12x2 + · · · + φ1mxm) (20)
φ2 = exp (φ20 + φ21x1 + φk2x2 + · · · + φ2mxm) (21)
θ1 = exp (θ10 + θ11x1 + θ12x2 + · · · + θ1mxm) (22)

and

θ2 = exp (θ20 + θ21x1 + θ22x2 + · · · + θ2mxm) (23)

Therefore, to obtained inferences from the FGMBNH distri-
bution in the presence of covariate(s), values of φ1, φ2, θ1
and θ2 in equations (20), (21), (22) and (23) respectively are
appropriately substituted in the model.

In Bayesian method of estimation, the joint posterior dis-
tribution of the model parameters is proportional to the
product of the joint prior distribution of the parameters and
the likelihood function for w given by equation (16) when the
lifetimes T1i and T2i are uncensored and by equation (19) when
the lifetimes T1i and T2i are censored. Thus, assume the prior
distributions

π11(θ1) ∝ θb1−1
1 ea1θ1 θ1 > 0

π12(θ2) ∝ θb2−1
2 ea2θ2 θ2 > 0

π21(φ1) ∝ φd1−1
1 ec1φ1 φ1 > 0

and

π22(φ2) ∝ φd2−1
2 ec2φ2 φ2 > 0

for the parameters θ1, θ2, φ1 and φ2 respectively, while the prior
distribution of the dependence parameter (λ) was assumed to
be uniform distribution. That is π3(λ) ∼ Uni f (p, q), where
a1, a2, b1, b2, c1, c2, d1, d2, p and q are known hyper-
parameters. The hyper-parameters a1, a2, b1 b2, c1, c2, d1
and d2 are assumed to be non-negative while the parameters
p and q are assumed to be between ±1. Lets further assumed
prior independence and let the joint prior distribution for the
parameters θ1, θ2, φ1, φ2 and λ be

Π(w) = π11(θ1)π12(θ2)π21(φ1)π22(φ2)π3(λ) (24)

Moreover, assumed normal prior distribution for the covariate
parameters. That is φ jk ∼ N(µ, σ2) and θ jk ∼ N(µ, σ2) for
j = 1, 2 and k = 1, 2, · · ·m, where µ and σ2 are known hyper-
parameters. Hence, the joint posterior density function for w is
given by:

`(w/x) ∝ L × Π(w) (25)

where x = (t1, t2, τ1, τ2)′ is the vector of observed lifetimes,
L is the likelihood function given by equations (16) and
(19), while Π(w) is the product of the product of the prior
probability density functions. The full conditional posterior
distributions are obtained by deriving the posterior distribution
of each parameter given the data and all other parameters of
the model. Posterior summaries of interest were obtained by
using Markov Chain Monte Carlo (MCMC) technique. In our
applications, 220,000 Gibbs samples for each model parameter
was generated. However, to minimized the effect of initial
values, the first 20,000 simulated samples were discarded as
burn-in. Furthermore, each 20th simulated sample was stored
so as to avoid auto-correlation between successive samples.
The Bayesian estimates for the parameters were obtained using
the medians of the respective posterior distributions since some
simulated distributions were quite skewed. Credible intervals
were also determine for each model parameter from the 2.5th
and 97.5th centiles of the posterior distribution of each model
parameter. Auto-correlation and trace plots were used in
assessing the convergence of simulated samples.

Different formulations were assessed using the Deviance
Information Criteria (DIC). The DIC a generalization of
the Akaike Information Criteria for the Bayesian anal-
ysis, is obtained from the samples generated from the
MCMC simulation [42]. According to [43], the DIC
is computed as: DIC = D(ŵ) + 2np = 2D̄ − D(ŵ),
where D(ŵ) is the deviance evaluated using the mean
of the model parameters which is obtained from the
MCMC samples, D̄ is the posterior mean of the deviance
and np is the effective number of the model parameters which
is computed as np = D̄ − D(ŵ). Better model fits are indicated
by lower DIC values. All Bayesian parameter estimates, their
95% credible Interval (CrI) and the DIC for each formulation
were obtained using the OpenBUGS software version 3.2.3.
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3. Applications

In this section, infections in kidney patients data from [44]
and Tobacco-stained-fingers data set from [45] were used in
demonstrating the applicability of the introduced methodology.
The FGMBNH model is compared with its special case (prod-
uct bivariate Nadarajah-Haghighi (PBNH) model) and that of
some competing bivariate distributions.

3.1. Kidney data

The kidney data show the recurrence times to infection at
point of insertion of catheter using portable dialysis equipment.
Two recurrence times were recorded for each patient together
with censoring indicator (Infection occurs =1 and censored=0)
and the risk variable values: age, sex (male=1, female=2) and
disease type. Assume T1 and T2 refers to first and second
recurrence time respectively. The data was first fitted to the
FGMBNH distribution in the presence of right censoring not in-
cluding covariate and compared its performance with the fits of
FGM bivariate exponential (FGMBE), FGM bivariate Weibull
(FGMBW), FGM bivariate generalized exponential (FGM-
BGE) and FGM bivariate modified weibull (FGMBMW)
distributions. It is also fitted to the special case
of these bivariate distributions. That is, the prod-
uct bivariate Nadarajah-Haghighi (PBNH), product bi-
variate exponential (PBE), product bivariate Weibull
(PBW), product bivariate generalized exponential (PBGE)
and product bivariate modified Weibull (PBMW) distributions.
In addition, the data is then fitted to the FGMBNH model in the
presence of right censoring and covariates.

In analyzing this data set, the procedure discussed in section
2.2 was followed. To be specific with the prior distributions, we
assumed Gamma(1, 1) for θ1, θ2, φ1 and φ2 while we assume
U(−1, 1) for the dependence parameter(λ). Furthermore,
N(0, 10) was assumed for the covariate parameters.

Table 1 give the posterior summary statistics for the bi-
variate Nadarajah-Haghighi distribution considering the FGM
copula function compared to the aforementioned bivariate
distributions. The table also gives the MC error for each
posterior estimate. The MC error of the posterior estimates of
the fitted models were all less than 1

20 of standard deviation
of the estimates, this showed that the posterior estimates have
reasonably good precision. The results also showed that, the
FGMBNH distribution is more efficient than the FGMBE,
FGMBW, FGMBGE and FGMBMW distributions, since it
has the least information criteria value. Furthermore, the
estimates of the dependent parameter (λ) are similar for all the
distributions considered.

Table 2 give the posterior summary statistics for the bivari-
ate Nadarajah-Haghighi distribution considering the product
copula function compared to the aforementioned bivariate
distributions. Similar to the results for the distributions based
on the FGM copula, the FGMBNH distribution is more efficient
than the aforementioned distributions since it has the least
information criteria value. Comparing between the estimates
of the bivariate distributions considering the FGM and product

Table 1. posterior summaries considering FGM copula - Kidney data
model para- med- sd MC 95% DIC

meter ian error CrI
FGM λ 0.5556 0.3546 0.0059 (-0.3138, 0.9781) 682.5
BNH φ1 0.4526 0.1496 0.0039 (0.2727, 0.8525)

φ2 0.6546 0.2932 0.0079 (0.3430, 1.5020)
θ1 0.0351 0.0330 0.0007 (0.0094, 0.1226)
θ2 0.0152 0.0139 0.0003 (0.0039, 0.0535)

FGM λ 0.5225 0.3345 0.0067 (-0.2720,0.9676) 686.5
BE θ1 0.0077 0.0013 0.0000 (0.0053,0.0106)

θ2 0.0074 0.0015 0.0000 (0.0050,0.0106)
FGM β1 0.7454 0.1022 0.0024 (0.5560,0.9589) 686.4
BW β2 0.8874 0.1225 0.0028 (0.6599,1.1390)

λ 0.5608 0.3536 0.0073 (-0.3120,0.9780)
θ1 0.0292 0.0190 0.0005 (0.0090,0.0797)
θ2 0.0134 0.0108 0.0002 (0.0035,0.0433)

FGM β1 0.7479 0.1595 0.0047 (0.4950,1.1240) 687.8
BGE β2 1.0470 0.2368 0.0072 (0.6696,1.5840)

λ 0.5318 0.346 0.0105 (-0.2887,0.9743)
θ1 0.0062 0.0016 0.0000 (0.0036,0.0098)
θ2 0.0079 0.0020 0.0000 (0.0045,0.0122)

FGM α1 0.0427 0.0211 0.0016 (0.0134,0.0942) 689.3
BMW α2 0.0217 0.0189 0.0013 (0.0047,0.0770)

β1 0.6246 0.1068 0.0084 (0.4233,0.8568)
β2 0.7354 0.1594 0.0128 (0.4085,1.0780)
λ 0.0009 0.0007 0.0000 (0.0001,0.0026)
φ1 0.0011 0.0009 0.0001 (0.0001,0.0035)
φ2 0.6511 0.3084 0.0263 (-0.1261,0.9863)

Table 2. posterior summaries considering product copula - Kidney data
model para- med- sd MC 95% DIC

meter ian error CrI
PB φ1 0.4545 0.1598 0.0043 (0.2727, 0.8799) 683.2
NH φ2 0.6627 0.2860 0.0072 (0.3551, 1.4520)

θ1 0.0346 0.0308 0.0005 (0.0092, 0.1237)
θ2 0.0149 0.0124 0.0002 (0.0041, 0.0513)

PBE θ1 0.0077 0.0013 0.0000 (0.0054,0.0106) 687.4
θ2 0.0076 0.0015 0.0000 (0.0051,0.0110)

PBW β1 0.7487 0.0972 0.0034 (0.5675,0.9525) 686.9
β2 0.8998 0.1298 0.0047 (0.6717,1.1770)
θ1 0.0286 0.0172 0.0005 (0.0094,0.0754)
θ2 0.0126 0.0104 0.0003 (0.0029,0.0416)

PB β1 0.7498 0.1574 0.0039 (0.4968,1.1180) 688.9
GE β2 1.0510 0.2453 0.0058 (0.6632,1.6240)

θ1 0.0063 0.0016 0.0000 (0.0036,0.0098)
θ2 0.0080 0.0020 0.0000 (0.0045,0.0124)

PB α1 0.0378 0.0247 0.0018 (0.0113,0.1058) 688.7
MW α2 0.0185 0.0170 0.0011 (0.0056,0.0695)

β1 0.6436 0.1259 0.0096 (0.4083,0.9010)
β2 0.7752 0.1457 0.0108 (0.4663,1.0110)
φ1 0.0009 0.0007 0.0000 (0.0001,0.0026)
φ2 0.0010 0.0008 0.0000 (0.0000,0.0031)

copula functions reveal that, the estimates for each FGM
bivariate distribution are similar to its corresponding product
bivariate distribution. Furthermore, comparing between the
fits of the bivariate distributions considering the FGM copula
and the bivariate distributions considering the product copula
reveal that, except for the FGMBMW distribution, the fits of
the bivariate distributions considering the FGM copula are
more efficient than the bivariate distributions considering the
product copula function since they have the least information
criteria values.

Furthermore, the data is fitted to the FGMBNH distribu-
5
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Table 3. posterior summaries considering FGM copula in the presence of co-
variate - Kidney data

model para- med- sd MC 95% DIC
meter ian error CrI

model λ 0.5223 0.3526 0.0145 (-0.3288,0.9705) 682.7
I φ10 -0.3115 0.2658 0.0111 (-0.8238,0.2320)

φ11 0.5135 0.2207 0.0081 (0.0716,0.9167)
φ12 -0.0015 0.0070 0.0002 (-0.0149,0.0126)
φ20 -0.1204 0.2739 0.0107 (-0.6340,0.4389)
φ21 0.0129 0.2110 0.0074 (-0.4173,0.4083)
φ22 -0.0035 0.0077 0.0002 (-0.0181,0.0124)
θ1 0.0137 0.0111 0.0004 (0.0035,0.0450)
θ2 0.0111 0.0076 0.0002 (0.0033,0.0323)

model λ 0.7428 0.2967 0.0052 (-0.1071,0.9901) 708.9
II φ1 0.2761 0.0417 0.0007 (0.2032,0.3684)

φ2 0.3175 0.0541 0.0009 (0.2226,0.4331)
θ10 -0.2323 0.3129 0.0046 (-0.8392,0.3709)
θ11 0.2237 0.2903 0.0047 (-0.3455,0.7947)
θ12 -0.0452 0.0111 0.0002 (-0.0662,-0.0226)
θ20 -0.2378 0.3175 0.0053 (-0.8479,0.4009)
θ21 0.0416 0.2903 0.0045 (-0.5374,0.6097)
θ22 -0.0582 0.0105 0.0002 (-0.0780,-0.0371)

model λ 0.7477 0.2645 0.0024 (0.0022,0.9893) 709.1
III φ10 -1.1140 0.1865 0.0039 (-1.4900,-0.7674)

φ11 0.3020 0.2131 0.0022 (-0.1292,0.7034)
φ12 0.0010 0.0080 0.0002 (-0.0138,0.0178)
φ20 -0.9954 0.1906 0.0034 (-1.3930,-0.6387)
φ21 0.0777 0.2234 0.0027 (-0.3676,0.5077)
φ22 0.0040 0.0087 0.0002 (-0.0125,0.0218)
θ10 -0.4131 0.3111 0.0038 (-1.0280,0.2000)
θ11 0.1566 0.2959 0.0032 (-0.4234,0.7434)
θ12 -0.0537 0.0135 0.0003 (-0.0803,-0.0273)
θ20 -0.3647 0.3090 0.0030 (-0.9615,0.2536)
θ21 -0.0040 0.2932 0.0030 (-0.5818,0.5714)
θ22 -0.0687 0.0127 0.0002 (-0.0935,-0.0434)

Table 4. posterior summaries considering FGM copula - Tobacco-stained-
fingers data

model para- med- sd MC 95% DIC
meter ian error CrI

FGM λ 0.9036 0.1220 0.0019 (0.5478,0.9967) 627.4
BNH φ1 0.2200 0.0723 0.0016 (0.1334,0.4149)

φ2 0.2115 0.0446 0.0007 (0.1497,0.3258)
θ1 1.4660 0.8177 0.0151 (0.4833,3.6510)
θ2 1.4890 0.7025 0.0123 (0.6029,3.2950)

FGM λ 0.9089 0.1155 0.0014 (0.5742,0.9966) 659.4
BE θ1 0.1417 0.0227 0.0003 (0.1017,0.1900)

θ2 0.1037 0.0122 0.0001 (0.0817,0.1292)
FGM β1 0.6686 0.0882 0.0009 (0.5051,0.8524) 631.1
BW β2 0.6192 0.0665 0.0009 (0.4964,0.7597)

λ 0.9018 0.1244 0.0016 (0.5383,0.9963)
θ1 0.2040 0.0369 0.0004 (0.1419,0.2863)
θ2 0.2029 0.0325 0.0004 (0.1452,0.2723)

FGM β1 0.6528 0.0994 0.0013 (0.486,0.8726) 634.2
BGE β2 0.5807 0.0742 0.0009 (0.4479,0.7384)

λ 0.9032 0.1205 0.0015 (0.5487,0.9963)
θ1 0.0733 0.0258 0.0003 (0.0333,0.1336)
θ2 0.0504 0.0133 0.0002 (0.0282,0.0801)

FGM α1 0.1898 0.0362 0.0006 (0.1273,0.2684) 634.4
BMW α2 0.1911 0.0325 0.0005 (0.1348,0.2607)

β1 0.6302 0.0926 0.0014 (0.4597,0.8225)
β2 0.5728 0.0745 0.0013 (0.4284,0.7207)
φ1 0.0213 0.0255 0.0004 (0.0008,0.0962)
φ2 0.0173 0.0177 0.0003 (0.0008,0.0662)
λ 0.9010 0.1299 0.0022 (0.5132,0.9961)

tion by taking sex and age as covariates. The covariates were

Table 5. posterior summaries considering product copula - Tobacco-stained-
fingers data

model para- med- sd MC 95% DIC
meter ian error CrI

PB φ1 0.1917 0.0626 0.0010 (0.1173,0.3612) 643.4
NH φ2 0.2027 0.0443 0.0008 (0.1434,0.3138)

θ1 1.6020 0.9106 0.0132 (0.5268,4.0580)
θ2 1.5930 0.7913 0.0136 (0.6229,3.5410)

PBE θ1 0.1277 0.0214 0.0002 (0.0907,0.1738) 678.7
θ2 0.1027 0.0123 0.0001 (0.0806,0.1288)

PBW β1 0.6412 0.0873 0.0009 (0.4799,0.8255) 647.6
β2 0.6080 0.0675 0.0007 (0.486,0.7496)
θ1 0.1896 0.0353 0.0004 (0.1287,0.2658)
θ2 0.2030 0.0333 0.0004 (0.1452,0.2758)

PB β1 0.6278 0.0967 0.0011 (0.4634,0.8398) 650
GE β2 0.5673 0.0747 0.0008 (0.438,0.7287)

θ1 0.0587 0.0227 0.0002 (0.0244,0.1125)
θ2 0.0476 0.0131 0.0001 (0.0263,0.0771)

PB α1 0.1771 0.0351 0.0005 (0.1186,0.2570) 650.9
MW α2 0.1916 0.0329 0.0004 (0.1343,0.2625)

β1 0.6025 0.0929 0.0013 (0.4298,0.7945)
β2 0.5646 0.0752 0.0009 (0.4180,0.7148)
φ1 0.0211 0.0249 0.0003 (0.0008,0.0941)
φ2 0.0176 0.0180 0.0002 (0.0008,0.0673)

assumed to have effect on φk, θk and on both φk and θk for
k = 1, 2. The posterior summary statistics of the fits of the
data are given in table 3. It is observed that the covariates have
effect on φk.

3.2. Tobacco-stained-fingers data set

In this section, we consider the tobacco stained finger data
set obtained from [45]. The data consist of a sample of 143
smokers screened between March 2006 and January 2010 in
a 180-bed community hospital in La Chauxde-Fonds, Switzer-
land. Information on death and hospital admission of the pa-
tients were collected until June 2014. For more details on this
data set see [45].

To demonstrate the applicability of the introduced method-
ology using this data set, it was considered as T1, the time
before the first hospital readmission in smokers with stains on
their fingers. On the other hand, the survival time of the patient
with tobacco-tar stain on their fingers was considered as T2.
This data is censored in case of death before the closure date.
Similar procedure was followed in analyzing this data set as in
section 3.1.

The posterior summary statistics of the fits of the bivari-
ate distributions to the tobacco-stained-fingers data are given
in tables 4 and 5. The MC error of the posterior estimates of
the fitted models considering the tobacco-stained-fingers data
were all less than 1

20 of standard deviation of the estimates,
this showed that the posterior estimates have reasonably good
precision. Comparing the information criteria values in tables
4 and 5 showed that, the introduced BNH distribution fits the
tobacco-stained-fingers data more efficiently than the compared
bivariate distributions. Also, comparing between fits of the
bivariate distributions considering the FGM copula and the
bivariate distributions considering the product copula showed
that, the bivariate distributions considering the FGM copula

6
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fits the tobacco-stained-fingers data better than the bivariate
distributions considering the product copula function. For the
FGM bivariate models, the estimates of the dependent param-
eter are similar for all the considered bivariate distributions.
Moreover, the estimates of the shape and scale parameters of
the bivariate distributions considering the FGM copula are
similar to their bivariate distribution counterparts considering
the product copula.

4. Conclusion

In real life applications, lifetime data of two organs affected
by a given type of treatment or therapy applied to the same in-
dividual that present some type of weak dependence are usually
obtained. In such a situation, the use of copula functions would
be a very good alternative in modelling this type of bivariate
lifetime data in presence of censored data and covariates. In
this article, the analytical structures of the statistical methodol-
ogy associated with the modelling of lifetimes assuming weak
linear dependence was introduced. FGM copula function was
used, however, there are many other copula functions that could
be used to build new bivariate lifetime models depending on the
assumptions established about the form of the relationship be-
tween the bivariate lifetimes (T1 and T2). Also, marginal NH
distributions were used since the distribution usually provide
goodness of fit for lifetime data, as constant, decreasing or in-
creasing hazard functions, features that are characteristic of the
studied variables (T1 and T2). Hence, other univariate lifetime
distributions such as inverted NH, unit NH, discrete NH distri-
butions could also be used. Two real data sets: Kidney data
and Tobacco-stained-fingers data sets were used in demonstrat-
ing the applicability of the introduced methodology. The ob-
tained results were compared assuming weak dependence that
can be model using copula function, with those obtained con-
sidering independence between lifetimes. Moreover, the intro-
duced methodology is further compared with some competing
bivariate distributions. The proposed approach could be useful
in many areas of interest, including medical sciences, physical
sciences and engineering studies.
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Appendices

The following OpenBugs computational code can be used
to obtained the posterior estimates from Bivariate Nadarajah-
Haghighi distribution with parameters θ1, θ2, φ1, φ2 and λ.

# The model assuming product copula function

model

{

for (i in 1:N) {

s1[i]< -exp(1-pow((1+theta1*t1[i]), phi1))

s2[i]< -exp(1-pow((1+theta2*t2[i]), phi2))

b1[i]<- pow((1+theta1*t1[i]), phi1-1)

b2[i]<- pow((1+theta2*t2[i]), phi2-1)

f1[i]< -theta1*phi1*b1[i]*s1[i]

f2[i]< -theta2*phi2*b2[i]*s2[i]

ft1t2[i]< - f1[i]*f2[i]

del1[i]<- -f1[i]*s2[i]

del2[i]<- -f2[i]*s1[i]

st1t2[i]<- s1[i]*s2[i]

L1[i]< - pow(ft1t2[i], d1[i]*d2[i])*pow(st1t2[i],

(1-d1[i])*(1-d2[i]))*pow(del1[i], d1[i]*(1-d2[i]))*

pow( del2[i], d2[i]*(1-d1[i]))

L[i]<- abs(L1[i])

logL[i] < - log(L[i])

zeros[i] < - 0

zeros[i] ~ dloglik(logL[i])

}

# prior distributions

theta1 ~ dgamma(1,1)

theta2 ~ dgamma(1,1)

phi1 ~ dgamma(1,1)

phi2 ~ dgamma(1,1)

}

# The model assuming FGM copula function

model

{

for (i in 1:N) {

s1[i]< -exp(1-pow((1+theta1*t1[i]), phi1))

s2[i]< -exp(1-pow((1+theta2*t2[i]), phi2))

b1[i]<- pow((1+theta1*t1[i]), phi1-1)

b2[i]<- pow((1+theta2*t2[i]), phi2-1)

f1[i]< -theta1*phi1*b1[i]*s1[i]

f2[i]< -theta2*phi2*b2[i]*s2[i]

f12[i]<- exp(2-pow((1+theta1*t1[i]), phi1)-

pow((1+theta2*t2[i]), phi2))

ft1t2[i]< - theta1*theta2*phi1*phi2*f12[i]*

b1[i]*b2[i]*(1+lambda*(1-2*s1[i])*(1-2*s2[i]))

del1[i]<- f1[i]*s2[i]* (1+lambda*(1-2*s1[i])

*(1-s2[i]))

del2[i]<- f2[i]*s1[i]* (1+lambda*(1-2*s2[i])

*(1-s1[i]))

st1t2[i]<- f12[i]* (1+lambda*(1-s2[i])*(1-s1[i]))

L1[i]< - pow(ft1t2[i], d1[i]*d2[i])*pow(st1t2[i],

(1-d1[i])*(1-d2[i]))*pow(del1[i], d1[i]*(1-d2[i]))

*pow( del2[i], d2[i]*(1-d1[i]))

L[i]<- abs(L1[i])

logL[i] < - log(L1[i])

zeros[i] < - 0

zeros[i] ~ dloglik(logL[i])

}

# prior distributions

theta1 ~ dgamma(1,1)

theta2 ~ dgamma(1,1)

phi1 ~ dgamma(1,1)

phi2 ~ dgamma(1,1)

lambda~ dunif(-1,1)
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}

# The model assuming FGM copula function assuming

covariate effect on the shape parameters

model

{

for (i in 1:N) {

phi1[i]<-exp(phi10+phi11*x1[i]+phi12*x2[i])

phi2[i]<-exp(phi20+phi21*x1[i]+phi22*x2[i])

s1[i]< -exp(1-pow((1+theta1*t1[i]), phi1[i]))

s2[i]< -exp(1-pow((1+theta2*t2[i]), phi2[i]))

b1[i]<- pow((1+theta1*t1[i]), phi1[i]-1)

b2[i]<- pow((1+theta2*t2[i]), phi2[i]-1)

f1[i]< -theta1*phi1[i]*b1[i]*s1[i]

f2[i]< -theta2*phi2[i]*b2[i]*s2[i]

f12[i]<- exp(2-pow((1+theta1*t1[i]), phi1[i])-

pow((1+theta2*t2[i]), phi2[i]))

ft1t2[i]< - theta1*theta2*phi1[i]*phi2[i]*f12[i]*

b1[i]*b2[i]*(1+lambda*(1-2*s1[i])*(1-2*s2[i]))

del1[i]<- f1[i]*s2[i]* (1+lambda*(1-2*s1[i])

*(1-s2[i]))

del2[i]<- f2[i]*s1[i]* (1+lambda*(1-2*s2[i])

*(1-s1[i]))

st1t2[i]<- f12[i]* (1+lambda*(1-s2[i])*(1-s1[i]))

L1[i]< - pow(ft1t2[i], d1[i]*d2[i])*pow(st1t2[i],

(1-d1[i])*(1-d2[i]))*pow(del1[i], d1[i]*(1-d2[i]))

*pow( del2[i], d2[i]*(1-d1[i]))

L[i]<- abs(L1[i])

logL[i] < - log(L1[i])

zeros[i] < - 0

zeros[i] ~ dloglik(logL[i])

}

# prior distributions

theta1 ~ dgamma(1,1)

theta2 ~ dgamma(1,1)

phi10~dnorm(0, 10)

phi11~dnorm(0, 10)

phi12~dnorm(0, 10)

phi20~dnorm(0, 10)

phi21~dnorm(0, 10)

phi22~dnorm(0, 10)

lambda ~ dunif(-1, 1)

}

In this codes, N is the sample size, S1[i] is the survival function
given in equation (9), S2[i] is the survival function given in
equation (10), f1[i] is the probability density function given in
equation (7), f2[i] is the probability density function given in
equation (8), ft1t2 [i] is the joint probability density function
(pdf) given in equation (12), del1[i] is an expression given in
equation (14), del2[i] is an expression given in equation (15),
St1t2[i] is the joint survival function given in equation (11) and
L[i] is the likelihood function given in equation (19). For the
product copula function, the dependence parameter (lambda)
assumes the value zero, and hence, the joint density function
reduces to the product of the pdfs in equations (7) and (8). The
joint survival function also reduces to the product of the survival
functions in equations (9) and (10). For the models that assume
covariate effect on the parameter(s) of the model, appropriate
substitutions are made in the codes for the FGM copula function
as discussed in the work.
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Table 5. Kidney data
Patient T1 T2 δ1 δ1 Sex Age Disease types
1 8 16 1 1 1 28 3
2 23 13 1 0 0 48 0
3 22 28 1 1 1 32 3
4 447 318 1 1 0 31.5 3
5 30 12 1 1 1 10 3
6 24 245 1 1 0 16.5 3
7 7 9 1 1 1 51 0
8 511 30 1 1 0 55.5 0
9 53 196 1 1 0 69 1
10 15 154 1 1 1 51.5 0
11 7 333 1 1 0 44 1
12 141 8 1 0 0 34 3
13 96 38 1 1 0 35 1
14 149 70 0 0 0 42 1
15 536 25 1 0 0 17 3
16 17 4 1 0 1 60 1
17 185 177 1 1 0 60 3
18 292 114 1 1 0 43.5 3
19 22 159 0 0 0 53 0
20 15 108 1 0 0 44 3
21 152 562 1 1 1 46.5 2
22 402 24 1 0 0 30 3
23 13 66 1 1 0 62.5 1
24 39 46 1 0 0 42.5 1
25 12 40 1 1 1 43 1
26 113 201 0 1 0 57.5 1
27 132 156 1 1 0 10 0
28 34 30 1 1 0 52 1
29 2 25 1 1 1 53 0
30 130 26 1 1 0 54 0
31 27 58 1 1 0 56 1
32 5 43 0 1 0 50.5 1
33 152 30 1 1 0 57 2
34 190 5 1 0 0 44.5 0
35 119 8 1 1 0 22 3
36 54 16 0 0 0 42 3
37 6 78 0 1 0 52 2
38 63 8 1 0 1 60 2

Table 5. Tobacco data
n sex age T1 δ1 T2 δ2

control31 M 83 0.063014 1 0.013699 0
control34 M 36 6.69863 0 6.079452 0
control69 M 49 5.021918 0 4.40274 0
control55 M 39 5.59726 0 4.978082 0
control4 M 49 7.879452 0 3.876712 0
control39 F 85 5.309589 1 4.060274 0
control54 F 50 5.6 0 4.980822 0
control14 M 58 6.093151 1 2.490411 1
control24 F 80 0.065753 1 0.249315 0
control11 M 33 7.739726 0 0.646575 0
control5 M 64 1.405479 1 1.389041 1
control53 M 47 5.791781 0 3.4 0
control62 F 57 5.227397 0 4.545206 0
control27 M 46 7.435616 0 4.945206 0
control44 F 83 6.019178 0 1.654795 1
control17 M 64 0.668493 1 0.454795 1
control25 F 76 3.038356 1 0.227397 0
control16 M 64 0.347945 1 0.347945 0
control32 F 83 6.460274 0 2.753425 0
control57 M 71 5.536986 0 0.10137 1
control66 M 65 0.383562 1 0.375342 1
control8 M 50 7.605479 0 6.986301 0
control65 M 60 5.213699 0 4.594521 0
control59 F 41 5.536986 0 0.052055 0
control9 M 55 7.80274 0 7.183562 0
control33 F 35 6.506849 0 1.19726 0
control3 M 57 4.693151 1 2.139726 0
control63 M 55 0.575342 1 0.065753 0
control56 M 51 4.652055 1 4.109589 0
control7 F 51 7.80548 0 7.186301 0
control47 M 59 6.079452 0 2.767123 1
control71 M 50 4.978082 0 4.358904 0
control26 M 56 0.252055 1 0.252055 1
control15 M 70 0.005479 1 0.005479 0
control60 M 41 5.161644 0 4.542466 0
control36 F 82 2.736986 1 1.865753 0
control1 F 46 7.928767 0 0.654795 0
control68 M 74 5.410959 0 0.334247 1
control51 F 71 3.263014 1 3.126027 1
control46 F 46 0.257534 1 0.109589 0
control21 F 76 6.627397 1 2.161644 0
control41 F 59 6.243835 0 1.043836 1
control37 M 59 6.112329 0 3.271233 0
control18 F 58 7.835617 0 7.216438 0
control19 F 75 1.734247 1 0.69589 1
control67 F 68 5.367123 0 4.747945 0
control64 F 60 5.19726 0 4.578082 0
control45 F 71 6.172603 0 5.553425 0
control10 F 50 7.739726 0 7.120548 0
control61 M 64 5.254795 0 1.189041 0
control35 M 62 4.257534 1 2.553425 0
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Table 5. Tobacco data cont.
n sex age T1 δ1 T2 δ2

control13 M 37 3.512329 1 3.512329 0
control30 M 66 7.041096 0 1.252055 0
control70 F 83 0.167123 1 0.167123 0
control28 M 53 6.923288 0 0.052055 0
control2 M 50 7.969863 0 6.70411 0
control12 F 77 1.561644 1 1.49863 1
control58 F 81 5.534246 0 4.915069 0
control40 F 78 0.29589 1 0.167123 1
control29 M 65 6.926027 0 0.432877 1
control48 M 37 5.646575 0 0.638356 0
control43 M 64 0.243836 1 0.032877 1
control52 F 50 5.657534 0 5.038356 0
control49 M 76 0.682192 1 0.569863 0
control23 F 66 7.210959 0 0.216438 1
control20 M 66 7.827397 0 1.131507 0
control6 M 51 7.816438 0 0.276712 0
control50 M 40 5.619178 0 5 0
control22 F 65 7.128767 0 0.169863 0
control38 F 60 5.904109 0 3.413699 0
Tache40 M 68 1.183562 1 0.687671 1
Tache7 M 45 8.819178 0 1.747945 0
Tache64 M 54 7.419178 0 0.550685 0
Tache60 M 55 7.419178 0 1.59726 0
Tache61 F 71 7.512329 0 0.339726 0
Tache16 F 57 1.394521 1 0.071233 0
Tache57 M 64 0.315068 1 0.150685 1
Tache26 F 49 8.372602 0 0.463014 0
Tache73 M 65 2.180822 1 0.027397 0
Tache50 F 75 1.90411 1 1.69589 1
Tache42 M 73 7.260274 1 1.863014 1
Tache9 M 63 5.99726 1 0.482192 0
Tache25 M 62 0.128767 1 0.120548 1
Tache37 F 69 5.624658 1 0.320548 0
Tache6 M 50 8.819178 0 5.969863 0
Tache31 M 79 2.021918 1 0.076712 0
Tache67 F 88 1.780822 1 0.90411 0
Tache72 F 63 2.161644 1 0.071233 0
Tache8 M 71 8.873973 0 0.567123 1
Tache33 M 27 8.284931 0 7.665753 0
Tache30 M 56 8.265754 0 0.030137 0
Tache56 F 70 6.838356 1 2.616438 1
Tache13 M 69 7.882192 0 1.139726 1
Tache70 M 78 7.339726 0 1.936986 1
Tache19 M 50 0.679452 1 0.679452 0
Tache14 F 72 3.230137 1 0.8 0
Tache59 M 74 0.30137 1 0.30137 0
Tache22 M 52 2.123288 1 0.956164 1
Tache36 M 85 0.550685 1 0.139726 1
Tache53 M 50 3.60274 1 1.038356 0
Tache2 M 47 5.323287 1 4.482192 1

Table 5. Tobacco data cont.
n sex age T1 δ1 T2 δ2

Tache18 M 69 8.452055 0 0.136986 0
Tache3 M 61 2.89589 1 1.649315 0
Tache1 M 67 0.071233 1 0.071233 0
Tache11 M 53 3.923288 1 1.994521 0
Tache35 F 44 8.30137 0 4.073973 0
Tache46 M 63 7.808219 0 0.09589 0
Tache47 F 66 7.769863 1 3.106849 1
Tache58 F 51 7.904109 0 0.424658 0
Tache21 F 69 2.232877 1 0.060274 0
Tache55 M 50 0.520548 1 0.109589 1
Tache29 M 45 0.052055 1 0.052055 0
Tache27 M 54 8.378082 0 1.032877 0
Tache5 M 38 8.821918 0 1.830137 0
Tache24 M 37 8.394521 0 7.775342 0
Tache51 M 62 7.547945 0 0.906849 0
Tache39 M 67 0.238356 1 0.013699 1
Tache54 M 53 7.616438 0 0.035616 0
Tache45 M 36 8.128767 0 7.509589 0
Tache20 M 49 8.380822 0 5.019178 0
Tache48 M 80 0.252055 1 0.016438 0
Tache4 F 64 0.136986 1 0.136986 0
Tache38 M 79 3.468493 1 0.39726 0
Tache49 M 67 7.654795 0 7.035616 0
Tache34 M 75 0.665753 1 0.386301 0
Tache65 F 63 7.128767 0 0.323288 0
Tache69 M 77 0.947945 1 0.071233 1
Tache17 M 83 6.306849 1 1.243836 0
Tache71 M 52 0.915069 1 0.868493 0
Tache41 M 59 7.846575 0 1.084931 0
Tache63 M 72 7.383562 0 0.213699 0
Tache15 M 50 1.20274 1 1.20274 0
Tache62 M 66 7.383562 0 5.243835 1
Tache12 F 75 0.021918 1 0.021918 0
Tache23 F 73 2.336986 1 2.336986 0
Tache66 M 44 7.189041 0 1.221918 0
Tache52 M 87 0.405479 1 0.405479 0
Tache10 F 69 2.386301 1 2.386301 0
Tache68 M 56 2.616438 1 2.610959 0
Tache28 M 54 8.40274 0 1.271233 1
Tache44 M 46 4.950685 1 1.991781 0
Tache43 F 69 8 0 1.30411 0
Tache32 F 71 5.134246 1 0.136986 1

11


