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Abstract
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1. Introduction

The relativistic spin-1/2 particles in quantum mechanics is
usually described by Dirac equation. The subject has drawn
attention of physicist in the theoretical domain over the years.
The theoretical physicists under the Dirac equation have anal-
ysed the characteristic features of deformed nuclei, effective
shell models [1-6], etc for the pseudospin symmetry (PS) for
different physical potential models. The identical bands and
mesons were also studied in details for the spin symmetry (SS).
The theoretical reports of these studies showed that energy dou-
blets were produced under the SS and PS for different levels.
Very recently, tensor potential interaction was introduced to the

∗Corresponding author tel. no: +2348032652678
Email address: oluwayemimatthew@gmail.com (M. O. Oluwayemi )

Dirac equation to reduce the energy degeneracy. The reduc-
tion of the degeneracy depends on the applied tensor potential.
The Coulomb tensor potential for instance, reduced some de-
generacies leaving some doublets unbroken. The application of
Yukawa tensor potential also breaks some degeneracy doublets
and produced another form of degeneracies. Onate et al. in
their recent study applied Hellmann tensor potential and they
found out that the whole degeneracies were broken even when
the tensor strength is taken as small as 0.2. Owing to the ap-
plication of Dirac equation, different authors have studied the
Dirac equation in diverse areas using different traditional tech-
niques [7-13]. However, it is very clear that the Dirac equation
under SS and PS for energy-dependent potential (EDP) has not
received attention to the best of our knowledge. Hence, the
call for this study. Motivated by the application of relativistic
wave equations particularly the Dirac equation, this study wants
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to examine the effect of EDP potential on the eigenvalues of
the SS and PS. This study will consider two sets of potentials
using two different traditional methodologies. The two poten-
tial models are modified Mie-type-constant EDP and Kratzer
EDP respectively in the presence of an energy-dependent ten-
sor (EDT) interaction via parametric Nikiforov-Uvarov method
and supersymmetry quantum mechanics and shape invariance
method. The major aim of this study is to determine the pro-
duction of energy degenerate doublets by EDP and its removal
by EDT interaction. The modified Mie-type-constant EDP and
the Kratzer EDP respectively are given as

V(r, E) =
λ1(1 + a1E)

r2 +
λ2(1 + a2E)

r−2 + λ3(1 + a3E) (1)

V(r, E) =
λ4(1 + a4E)

r2 −
λ5(1 + a5E)

r
. (2)

Here, λi(i = 1, 2, . . . ) are potential strengths and ai(i = 1, 2, . . . )
are potential parameters. Since this paper aim at determining
the production and removal of energy degenerate state in the
presence and absence of energy-dependent tensor interaction,
we propose a Coulomb-constant energy-dependent tensor in-
teraction of the form

U(r, E) =
H1(1 + b1E)

r
+ H2(1 + b2E)r (3)

2. Dirac Equation (SS and PS)

The Dirac equation with spin-1/2 particles under the poten-
tials S (r) and V(r) as attractive scalar potential and repulsive
vector potential is of the form [14, 15, 16]

[Cα · ρ + β
(
MC2 + S (r) + V (r) − E

]
ψnκ(r) = 0, (4)

with E and M as energy and particle mass, ρ = −i~∇ defines
momentum operator with α and β as 4 × 4 Dirac matrices, i.e.

α =

(
0 σ1
σ1 0

)
, β =

(
I 0
0 I

)
(5)

and

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (6)

Here, I represents the 2×2 matrix identity and, σi are the Pauli
3-vector spin matrices. In the nuclei spherical symmetry, the
angular momentum operator J and spin-orbit matrix operator
κ = −β(σL + 1) commute with the Dirac Hamiltonian, where
L is the total orbital angular momentum operator. The spinor
wave functions can be classify following the radial quantum
number n and the spin-orbit quantum number κ and can be ex-
pressed according to the Pauli-Dirac representation [14, 15, 16].

ψnκ(r) =

(
fnκ(r)
gnκ(r)

)
=

1
r

 Fnκ(~r)Y`
jmκ(θ, ϕ)

iGnκ(~r)Y ¯̀
jm(−κ)(θ, ϕ)

 (7)

where the upper and lower spinor components Fnκ(r) and Gnκ(r)
are the real square-integral radial wave functions. Y`

jmk(θ, φ) and

Y ¯̀
jm−k(θ, φ) are the spin spherical harmonic functions coupled to

the total angular momentum j and its projection m on the z axis
for κ(κ+1) = `(`+1) and κ(κ−1) = i(`+1). The quantum number
κ is related to the quantum number ` for spin and Pseudospin
symmetries as

κ =


−(` + 1) = −( j + 1

2 ), (s1/2, p3/2, etc), j = ` + 1
2 ,

aligned spin (κ < 0)
+`( j + 1

2 ), (p1/2, d3/2, etc), j = ` − 1
2 ,

unaligned spin (κ > 0)

(8)

The quasi-degenerate doublet structure can be expressed in
terms of pseudospin angular momentum s̃ = 1/2 and pseudo-
orbital angular momentum ˜̀ which is defined as

κ =


− ˜̀ = (− j + 1

2 ), (s1/2, p3/2, etc), j = ˜̀ − 1
2 ,

aligned spin (κ < 0)
+( ˜̀ + 1) = ( j + 1

2 ), (d3/2, f5/2, etc), j = ˜̀ + 1
2 ,

unaligned spin (κ > 0)

(9)

where κ = ±1,±2, . . . . Upon direct substitution of equation
(7) into equation (4), we can obtain two radial coupled Dirac
equation for the two symmetry components as follows:(

d
dr

+
κ

r

)
Fnκ (r) =

[
MC2 + Enκ − ∆(r)

]
Gnκ(r) (10)

(
d
dr
−
κ

r

)
Gnκ (r) =

[
MC2 − Enκ +

∑
(r)

]
Fnκ(r). (11)

For the spin symmetry, ∆(r) = Cs = constant. Then, we obtain a
second-order differential equation for upper-spinor component
as[
−

d2

dr2 +
κ (κ + 1)

r2 +
1

~2C2 (MC2 + Enκ −Cs)
∑

(r)
]

Fnκ(r) =

1
~2C2

[
(E2

nk − M2C4 + Cs)
(
MC2 − Enκ

)]
Fnκ(r), (12)

and the lower-spinor component is given by

Gnκ(r) =
1

MC2 + Enκ −Cs

(
d
dr

+
κ

r

)
Fnκ(r) (13)

It is only the real positive energy states that exist when Cs = 0.
However, under the pseudospin symmetry, Σ(r) = Cp = con-
stant, one can have from equation (10) a second-order differen-
tial equation for the lower-spinor component as [14, 15][
−

d2

dr2 +
κ (κ − 1)

r2 −
1

~2C2 (MC2 − Enκ + Cps)∆(r)
]

Gnκ(r) =

1
~2C2

[
E2

nκ − M2C4 −Cps)(MC2 − Enκ)
]
Gnκ(r), (14)

and the upper-spinor component Fnκ(r) as

Fnκ(r) =
1

MC2 − Enκ + Cps

(
d
dr

+
κ

r

)
Gnκ(r) (15)

It is only real negative energy states that exist when Cp = 0.
If we now include tensor interaction, then we obtain an equa-
tion in each case for both spin and pseudospin symmetries as
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follows[
d2

dr2 −
κ (κ + 1)

r2 +
2κ
r

U(r) −
dU(r)

dr
− U2(r)

+

d∆(r)
dr

M + Enκ − ∆(r)

(
d
dr

+
κ

r
− U(r)

) Fnκ(r)

=
[
(M + Enκ − ∆(r))

(
M − Enκ +

∑
(r)

)]
Fnκ(r) (16)

[
d2

dr2 −
κ (κ − 1)

r2 +
2κ
r

U(r) +
dU(r)

dr
− U2(r)

+

d
∑

(r)
dr

M − Enκ +
∑

(r)

(
d
dr
−
κ

r
+ U(r)

)Gnκ(r)

=
[
(M + Enκ − ∆(r))

(
M − Enκ +

∑
(r)

)]
Gnκ(r). (17)

2.1. Parametric Nikiforov-Uvarov Method (PNUM)
The PNUM is one of the analytical techniques of mathe-

matical physics that solves second-order differential equations
in quantum mechanics. This method has a general form of the
Schrödinger-like equation [17, 18, 19, 20][

d2

dr2 +
c1 − c2s

s(1 − c3s)
d
ds

+
−ξ1s2 + ξ2s − ξ3

s2(1 − c3s)2

]
ψ(s) = 0 (18)

According to the PNUM, the eigenvalues and eigenfunctions
can be obtain following the condition [17, 18, 19, 20, 21]

c2n − (2n + 1)c5 +
[
n2 − n + 2c8

]
c3 +

√
c8

(√
c9 + 2nc3 + c3

)
+

√
c9

(
2n + 1 +

√
c8

)
= −c7 (19)

ψ(s) = sc12 (1 − s)−c12−
c13
c3 P

(c10−1,
c11
c3

c10−1)
n (1 − 2c3s) (20)

The values of the parametric constants in equations (19) and
(20) are obtained as follows:

c4 = 0.5(1 − c1), c5 = 0.5(c2 − 2c3), c6 = c2
5 + ξ1,

c7 = 2c4c5 − ξ2, c8 = c2
4 + ξ3, c9 = c3(c7 + c3c8) + c6,

c10 = 1 + 2
(
c4 +

√
c8

)
, c11 = c2 − 2c5 + 2c3

√
c8 + 2

√
c9,

c12 = c4 +
√

c8, c13 = c5 − c3
√

c8 −
√

c9. (21)

3. Solutions of Dirac Equation

3.1. SS Limit
The SS limit occurs when d∆(r)/dr = 0 and ∆(r) = Cz with

Σ(r) = V(r, E). Plugging equation (1) and equation (3) into
equation (16), we have

d2Fnκ(r)
dr2 +

[
χ1

s

r2 + χ2
sr2 + χ3

s

]
Fnκ(r) = 0 (22)

where

χ1
s = H1(1 + b1Enκ) − λ1(1 + a1Enκ)βs + 2κH1(1 + b1Enκ)

− H2
1(1 + b1Enκ)2 − κ(κ + 1), (23)

χ2
s = −λ2(1 + a2Enκ)βs − H2

2(1 + b2Enκ)2, (24)

χ3
s = H2(1 + b2Enκ) [2κ − 1 − 2H1(1 + b1Enκ)]

− βs [λ3(1 + a3Enκ) + M − Enκ] , (25)

βs = M + Enκ −Cs. (26)

Using a transformation of the form y = r2 in equation (22), we
obtain

d2Fnκ(y)
dy2 +

1
2y

dFnκ(y)
dy

+
χ2

sy2 + χ3
sy + χ1

s

y2 Fnκ(y) = 0. (27)

Comparing equation (27) with (18), we obtain the values of the
parametric constants in equation (21) as follows

c1 = 0.5, c2 = c3 = 0, c4 = 0.25, c5 = 0, c6 = −0.25χ2
s ,

c7 = −0.24χ3
s , c8 = 0.25(0.25 − χ1

s), c9 = −0.25χ2
s ,

c10 = 1 +

√
0.25 − χ1

s , c11 =

√
−χ2

s ,

c12 = 0.5
(
0.5 +

√
(0.25 − χ1

s)
)
, c13 = −

√
−0.25χ2

s . (28)

Plugging equation (28) into equation (19) and equation (20),
respectively, gives

λ1(1 + a1Enκ)βs

4
+

H1(1 + b1Enκ)
2

[
H1(1 + b1Enκ) − 1

2
− κ

]
+(

1 + 2κ
4

)2

+
βs[λ3(1+a3Enκ)+M−Enκ]

4 +
H2(1+b2Enκ)

2

[
H1(1 + b1Enκ) − κ − 1

2

]
+ ℵs

1 + 2n +

√
H2

2(1 + b2Enκ)2 + λ2(1 + a2Enκ)βs


2

= 0. (29)

Fnκ(y) = y0.5(0.5+
√

0.25−χ1
s e−
√
−0.25χ2

s yL
√

0.25−χ1
s

n

(√
−χ2

sy
)

(30)

ℵs =

(
n +

1
2

) √
H2

2(1 + b2Enκ)2 + λ2(1 + a2Enκ)βs. (31)

3.2. PS limit

The pseudospin symmetry limit occurs when dΣ(r)/dr = 0
and Σ(r) = Cp. In this symmetry limit, the potential is taken
as ∆(r) = V(r, E). Now, substituting equations (1) and (3) into
equation (17) and by using the same transformation as before,

3
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we have the parametric constants as

c1 = 0.5, c2 = c3 = 0, c4 = 0.25, c5 = 0,

c6 = 0.25
[
H2

2(1 + b2Enκ)2 − λ2(1 + a2Enκ)βp

]
,

c7 = 0.5H2(1 + b2Enκ) [H1(1 + b1Enκ) − 0.5 − κ]
+ 0.25 [M + Enκ − λ3(1 + a3Enκ)] βp,

c8 = 0.5H1(1 + b1Enκ) [0.5H1(1 + b1Enκ) + 0.5 − κ] +

(0.25 − 0.5κ)2 − λ1(1 + a1Enκ)βp,

c9 = 0.25
[
H2

2(1 + b2Enκ)2 − λ2(1 + a2Enκ)βp

]
,

c10 = 1+√
1 + H1(1 + b1Enκ)

[
H1(bE) + 1 − 2κ

]
+ κ(κ − 1) − λ1(aE)βp,

c11 =

√
H2

2(1 + b2Enκ)2 − λ2(1 + a2Enκ)βp,

c12 = 0.25+√
0.5H1(bE)

[
0.5H1(bE) + 0.5 − κ

]
+ (0.25 − 0.5κ)2 − λ1(aE)βp,

c13 = −0.5
√

H2
2(1 + b2Enκ)2 − λ2(1 + a2Enκ)βp, (32)

where bE = 1 + b1Enκ, aE = 1 + a1Enκ

Substituting equation (32) into equations (19) and (20), the
energy for PS limit and its corresponding wave function are
given as

H1(1 + b1Enκ)
2

[
H1(1 + b1Enκ) + 1

2
− κ

]
+

(
1 − 2κ

4

)2

−

λ1(1 + a1Enκ)βs

4
+

βp[M−λ3(1+a3Enκ)+Enκ]
4 +

H2(1+b2Enκ)
2

[
H1(1 + b1Enκ) − κ − 1

2

]
+ ℵp

1 + 2n +

√
H2

2(1 + b2Enκ)2 − λ2(1 + a2Enκ)βp


2

= 0. (33)

Fnκ(y) = y0.25+ηp1 e0.5ηp2yLηp3
n (η4y) . (34)

ℵp =

(
n +

1
2

) √
H2

2(1 + b2Enκ)2 − λ2(1 + a2Enκ)βp (35)

ηp1 =

√
0.5H1(bE)

[
0.5H1(bE) + 0.5 − κ

]
+ Γ1, (36)

where Γ1 = (0.25 − 0.5κ)2 − λ1(1 + a1Enκ)βp.

ηp2 =

√
H2

2(1 + b2Enκ)2 − λ2(1 + a2Enκ)βp, (37)

ηp3 =

√
1 + H1(bE)

[
H1(bE) + 1 − 2κ

]
+ κ(κ − 1) − Γ2, (38)

where Γ2 = λ1(1 + a1Enκ)βp.

ηp4 =

√
H2

2(1 + b2Enκ)2 − λ2(1 + a2Enκ)βp (39)

3.3. Solutions of the SS and PS via Supersymmetric Approach
In this section, we obtain the solutions of the spin and pseu-

dospin symmetry limits for Kratzer energy-dependent potential
via SUSYQM. This method involves the proposition of super-
potential function which is the solution of the non-linear Riccati
equation.

3.3.1. Solution of the SS limit
To obtain the solution of the spin symmetry limit of the

Dirac equation with Kratzer energy-dependent potential, we
substitute equations (2) and (3) into equation (16) to have a
second-order differential equation of the form

d2Fnκ(r)
dr2 =[
χs

1

r2 −
λ5(1 + a5Enκ)βs

r
+ H2

2(1 + b2Enκ)2r2 + χs
2

]
Fnκ(r) (40)

where we have defined the following for mathematical simplic-
ity

χs
1 = κ(κ + 1) + λ4(1 + a4Enκ)βs+

H1(1 + b1Enκ) [H1(1 + b1Enκ) − 2κ − 1] (41)

χs
2 = H2(1 + b2Enκ) [2H1(1 + b1Enκ) − 2κ + 1] +

(M − Enκ)βs (42)

For a non-energy-dependent potential in the absence of tensor
interaction, the energy eigenvalues in equation (40) purely de-
pends on the quantum number n and the spin-orbit coupling
term κ. This is physically related to energy as Enκ = (n, κ(κ+1)).
This shows that for κ , 0, the states are degenerate. To solve
equation (40) using SUSY approach [22, 23, 24, 25], we can
write

F0κ(r) = exp
(
−

∫
W(r)dr

)
, (43)

where W(r) is a superpotential which determines the solution
of equation (40). To proceed to the next level, it is necessary to
propose a superpotential function [22, 23, 24, 25, 26]. In this
work, our superpotential function is proposed as

W(r) = δ0 − δ1r−1 (44)

where δ0 and δ1 are two different constants. For equation (44) to
determine the solution of equation (40), the following condition
must be satisfied

W2(r) −
dW(r)

dr
=
χs

1

r2 −
λ5(1 + a5Enκ)βs

r
+

H2
2(1 + b2Enκ)2r2 + χs

2 (45)

Substituting equation (44) into equation (45), we easily deter-
mine the values of the two constants in equation (44) as

δ2
0 = χs

2 (46)

δ1 =
1
2
±

√
1 + 4

[
χs

1 + H2
2(1 + b2Enκ)2

]
2

(47)
4
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δ0 =
λ5(1 + a5Enκ)βsδ

−1
1

2
(48)

To test the correctness of the superpotential function, we
construct the partner potentials of the supersymmetric quan-
tum mechanics and examine the shape invariance condition
[27, 28, 29]. Our partner potentials are obtain in the follow-
ing forms

V+(r) = W2(r) +
dW(r)

dr
= δ2

0 −
2δ0δ1

r
+
δ1(δ1 − 1)

r2 (49)

V−(r) = W2(r) −
dW(r)

dr
= δ2

0 −
2δ0δ1

r
+
δ1(δ1 + 1)

r2 . (50)

Equations (49) and (50) satisfied the shape-invariance condition
and so, the following relationship exist

V+(r, a0) = V−(r, a1) + R(a1) (51)

In equation (51), a0 = δ1 and the Hamiltonian is shape-
invariant. However, a1 = f (a0) = a0 + 1, which simply means
that the potentials V±(r) are the same apart from a constant and
the residual term R(a1) is independent of the variable r. In this
case, a1 is uniquely determined from an old set of parameter a0.
From the mapping, we now established that δ1 → δ1 + 1 using
the negative partner potential. In terms of the newly introduced
parameters, we express the residual term as

R(a1) =
λ2

5(1 + a5Enκ)2β2
s

4a2
0

−
λ2

5(1 + a5Enκ)2β2
s

4a2
1

(52)

R(a2) =
λ2

5(1 + a5Enκ)2β2
s

4a2
1

−
λ2

5(1 + a5Enκ)2β2
s

4a2
2

(53)

R(a3) =
λ2

5(1 + a5Enκ)2β2
s

4a2
2

−
λ2

5(1 + a5Enκ)2β2
s

4a2
3

(54)

The energy of the system is obtained using the above summa-
tion given by Σn

k=1R(ak) which is generalized as

R(an) =
λ2

5(1 + a5Enκ)2β2
s

4a2
n−1

−
λ2

5(1 + a5Enκ)2β2
s

4a2
n

(55)

In view of the negative partner potential, the complete energy
equation for the spin symmetry is given as

H2(1 + b2Enκ) [1 − 2κ + H2(1 + b2Enκ)] + (M − Enκ)βs =

λ2
5
[
(1 + a5Enκ)βs

]2

4(δ1 + n)2 (56)

3.3.2. Solution of the PS limit
To obtain the solution of the pseudospin symmetry limit, we

substitute equations (2) and (3) into equation (17) to have

d2Gnκ(r)
dr2 =

χ
p
1 + λ5(1 + a5Enκ)βpr + χ

p
2r2 + H2

2(1 + b2Enκ)2r4

r2 Gnκ(r)

(57)

Table 1: Energies in the SS limit for modified Mie-type-constant EDP with
λ1 = λ2 = λ3 = 0.5, a1 = 3, a2 = 2, a3 = 1, b1 = b2 = 0.1,M = 5 f m−1 and
Cs = 1 f m−1.

` κ n (`, j) H1,2 = 0 H1,2 = 0.1 H1,2 = 0.2, 0.1 H1,2 = 0.1, 0.2
0 -1 0 0s1/2 1.942623900 1.958361278 1.959096533 1.972020529
0 -1 1 1s1/2 2.941736416 2.957567872 2.958305747 2.971859998
0 -1 2 2s1/2 4.060873315 4.076229954 4.076927679 4.090458326
0 -1 3 3s1/2 5.254527544 5.269270999 5.269915044 5.283193841
1 -2 0 0p3/2 1.841748059 1.861208075 1.850731135 1.889789645
1 -2 1 1p3/2 2.850509762 2.869662294 2.859097611 2.898566721
1 -2 2 2p3/2 3.981140297 3.999437112 3.989244626 4.027491284
1 -2 3 3p3/2 5.185188130 5.202574765 5.192859711 5.229500168
2 -3 0 0d5/2 1.644091503 1.670587775 1.650604087 1.715582858
2 -3 1 1d5/2 2.667778395 2.692515093 2.671366252 2.737514242
2 -3 2 2d5/2 3.820578636 3.843285779 3.822525569 3.886288212
2 -3 3 3d5/2 5.045509610 5.066514491 5.046609652 5.107241634
3 -4 0 0f7/2 1.362484903 1.400794769 1.374384444 1.463630855
3 -4 1 1f7/2 2.394333292 2.428432855 2.397977358 2.491841820
3 -4 2 2f7/2 3.577245062 3.606844862 3.576008806 3.666695125
3 -4 3 3f7/2 4.833507250 4.859747029 4.829865691 4.915639885
1 1 0 0p1/2 1.841748059 1.852413864 1.877371357 1.836808899
1 1 1 1p1/2 2.850509762 2.861449107 2.885908697 2.847162481
1 1 2 2p1/2 3.981140297 3.991828450 4.015024293 3.978925935
1 1 3 3p1/2 5.185188130 5.195485760 5.217335080 5.183790476
2 2 0 0d3/2 1.644091503 1.649346874 1.685727304 1.616913066
2 2 1 1d3/2 2.667778395 2.674654649 2.711126809 2.644310749
2 2 2 2d3/2 3.820578636 3.827991306 3.862736003 3.800294001
2 2 3 3d3/2 5.045509610 5.052997276 5.085717151 5.027654662
3 3 0 0f5/2 1.362484903 1.357450308 1.402754356 1.305640324
3 3 1 1f5/2 2.394333292 2.393986861 2.442017313 2.344787927
3 3 2 2f5/2 3.577245062 3.579492175 3.625897479 3.534961395
3 3 3 3f5/2 4.833507250 4.837006867 4.880792058 4.796634088

Table 2: Energies in the PS limit for modified Mie-type-constant EDP with
λ1 = λ3 = 0.5, λ2 = −0.5, a1 = −3, a2 = −2, a3 = −1, b1 = b2 = 0.1,
M = 5 f m−1 and Cs = 1 f m−1.

` κ n (`, j) H1,2 = 0 H1,2 = 0.1 H1,2 = 0.2, 0.1 H1,2 = 0.1, 0.2
1 -1 1 1s1/2 -1.758132998 -1.769902692 -1.779164454 -1.773124361
2 -2 1 1p3/2 -1.891711144 -1.914557485 -1.929357426 -1.923214633
3 -3 1 1d5/2 -2.100102133 -2.132843969 -2.153277701 -2.145586292
4 -4 1 1f7/2 -2.390428405 -2.431076159 -2.456965418 -2.446048454
1 -1 2 2s1/2 -2.424883237 -2.435163923 -2.443110934 -2.438169927
2 -2 2 2p3/2 -2.549727011 -2.569554464 -2.582073017 -2.577422600
3 -3 2 2d5/2 -2.740445644 -2.768710697 -2.785650672 -2.780425981
4 -4 2 2f7/2 -3.000000000 -3.035085686 -3.056131285 -3.049319087
1 2 1 0d3/2 -1.758132998 -1.735243670 -1.728251600 -1.719908479
2 3 1 0f5/2 -1.891711144 -1.858269052 -1.845486264 -1.837996526
3 4 1 0g7/2 -2.100102133 -2.341193985 -2.038745712 -2.316883988
4 5 1 0h9/2 -2.390428405 -2.341193985 -2.316253094 -2.316883988
1 2 2 1d3/2 -2.424883237 -2.404762492 -2.398620806 -2.391343780
2 3 2 1f5/2 -2.549727011 -2.956867588 -2.509496082 -2.502502503
3 4 2 1g7/2 -2.740445644 -2.956867588 -2.936575208 -2.682113098
4 5 2 1h9/2 -3.000000000 -2.956867588 -2.936575208 -2.934010648

where

χ
p
1 = κ(κ − 1) + H1(1 + b1Enκ) [H1(1 + b1Enκ) − 2κ + 1]−
λ4(1 + a4Enκ)βp (58)

χ
p
2 = H2(1 + b2Enκ) [2H1(1 + b1Enκ) − 2κ − 1] +

(M + Enκ)(M − Enκ + Cp) (59)

To avoid repetition of works and algebra, we follow the same
steps as in the spin symmetry and obtain the energy equation
for the pseudospin spin symmetry as

H2(1 + b2Enκ) [2H1(1 + b1Enκ) − 2κ − 1] +

(M + Enκ)βp =

[
−λ5(1 + a5Enκ)βp

2(δp + n)

]2

(60)
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δp =
1
2

+
1
2

√
4χp

1 + 1 + 4H2
2(1 + b2Enκ)2 (61)

Table 3: Energies in the SS limit for modified Mie-type-constant EDP with
λ1 = λ2 = λ3 = 0.5, a1 = 3, a2 = 2, a3 = 1, b1 = b2 = 0.1,M = 5 f m−1 and
Cs = 1 f m−1

` κ n (`, j) H1,2 = 0.2, 0 H1,2 = 0, 0.2
0 -1 0 0s 1/2 1.942079678 1.968171442
0 -1 1 1s 1/2 2.941066860 2.967805266
0 -1 2 2s 1/2 4.060044875 4.086322787
0 -1 3 3s 1/2 5.253529416 5.279016863
1 -2 0 0p3/2 1.818436560 1.897264650
1 -2 1 1p3/2 2.826966136 2.905851918
1 -2 2 2p3/2 3.958335296 4.034259115
1 -2 3 3p3/2 5.163329221 5.235688819
2 -3 0 0d5/2 1.601252028 1.732796555
2 -3 1 1d5/2 2.622584840 2.755428278
2 -3 2 2d5/2 3.776272981 3.903614939
2 -3 3 3d5/2 5.003004662 5.123603755
3 -4 0 0f7/2 1.306444952 1.487803464
3 -4 1 1f7/2 2.329887999 2.519191159
3 -4 2 2f7/2 3.512241944 3.694086997
3 -4 3 3f7/2 4.770643993 4.941943853
1 1 0 0p1/2 1.889417309 1.808576037
1 2 1 1p1/2 2.897131599 2.819215988
1 1 2 2p1/2 4.025207202 3.952158620
1 3 3 3p1/2 5.226530876 5.158310400
2 4 0 0d3/2 1.713977782 1.577278752
2 2 1 1d3/2 2.737952422 2.604208929
2 2 2 2d3/2 3.887416000 3.761839331
2 2 3 3d3/2 5.108364728 4.991200184
3 3 0 0f5/2 1.449429077 1.257493042
3 3 1 1f5/2 2.486841044 2.293004999
3 3 2 2f5/2 3.666840421 3.484650816
3 3 3 3f5/2 4.918103438 4.748960521

4. Discussion

In Table 1, we presented the energy eigenvalues of the spin
symmetry for equal and unequal values of H1 and H2. For H1 =

H2 = 0, which is the solution without energy-dependent tensor
interaction, the following degeneracies were produced: 0p3/2
= 0p1/2, 1p3/2=1p1/2, 3p3/2=3p1/2, 0d5/2, 0d3/2, 1d5/2=1d3/2,
2d5/2 = 2d3/2, 3d5/2=3d3/2, 0f7/2=0f5/2, 1f7/2=1f5/2. 2f7/2=2f5/2
and 3f7/2=3f5/2/. These degeneracies are the usual degenera-
cies obtained with non-energy-dependent potentials. However,
for H1 = H2 = 0.1, which is a solution with energy-dependent
tensor interaction, there are no degeneracies. This shows that
the energy-dependent tensor potential has broken the energy
degenerate doublets in the system. For a non-energy-dependent
tensor potential, even at H = 0.5 and H = 1, there are still
degenerate doublets. For H1 = 0.2, H2 = 0.1 and H1 = 0.1,
H2 = 0.2, there are no degeneracy production. In Table 2,
we presented energy eigenvalues of the pseudospin symmetry
for equal and unequal values of the tensor strengths i.e. H1

Table 4: Energies in the PS limit for modified Mie-type-constant EDP with
λ1 = λ3 = 0.05, λ2 = −0.05, a1 = 6, a2 = −4, a3 = 5, b1 = b2 = 0.1,
M = 15 f m−1 and Cs = 5 f m−1.

` κ n (`, j) H1,2 = 0.2, 0 H1,2 = 0, 0.2
1 -1 1 1s 1/2 -1.775253455 -1.763815218
2 -2 1 1p3/2 -1.920130164 -1.908460034
3 -3 1 1d5/2 -2.140140406 -2.125315642
4 -4 1 1f7/2 -2.441826999 -2.420424044
1 -1 2 2s1/2 -2.439648344 -2.430168824
2 -2 2 2p3/2 -2.573814603 -2.564901362
3 -3 2 2d5/2 -2.773637600 -3.028396662
4 -4 2 2f7/2 -3.041719317 -3.028396662
1 2 1 0d3/2 -1.742804990 -1.726917318
2 3 1 0f5/2 -1.865069919 -1.850942038
3 4 1 0g7/2 -2.061722917 -2.053329000
4 5 1 0h9/2 -2.340384372 -2.342315770
1 2 2 1d3/2 -2.411514069 -2.397477706
2 3 2 1f5/2 -2.526953758 -2.513529136
3 4 2 1g7/2 -2.708412767 -2.698017234
4 5 2 1h9/2 -2.959189164 -2.954567108

Table 5: Energies in the SS limit for Kratzer EDP with λ4 = λ5 = 0.5, a1 =

4.0, a2 = 2, b1 = b2 = 0.1,M = 10 f m−1 and Cs = 5 f m−1

` κ n (`, j) Kratzer potential Coulomb potential
H1,2 = 0 H1,2 = 0.1 H1,2 = 0.1 H1,2 = 0.1, 0

0 -1 0 0s1/2 0.370204340 0.393187068 1.252040915 1.230390156
0 -1 1 1s1/2 0.945739430 0.963640344 2.192321102 2.167520674
0 -1 2 2s1/2 1.435407674 1.453860405 2.839097594 2.811476651
0 -1 3 3s1/2 1.899432950 1.919827326 3.304673071 3.274484128
1 -2 0 0p3/2 0.568272837 0.605461699 2.196388371 2.167520674
1 -2 1 1p3/2 1.067819409 1.102125131 2.847354128 2.811476651
1 -2 2 2p3/2 1.530395283 1.565774885 3.316370162 3.274484128
1 -2 3 3p3/2 1.979996399 2.018417622 3.663421017 3.616377889
2 -3 0 0d5/2 1.262754541 0.865450254 2.858804254 2.811476651
2 -3 1 1d5/2 0.820311004 1.309314656 3.330517856 3.274484128
2 -3 2 2d5/2 1.694588465 1.744582496 3.679846038 3.616377889
2 -3 3 3d5/2 2.125227188 2.180498632 3.943595506 3.873809868
3 -4 0 0f7/2 1.085509689 1.138674624 3.345044630 3.274484128
3 -4 1 1f7/2 1.493098313 1.550825160 3.696546742 3.616377889
3 -4 2 2f7/2 1.901400337 1.965254589 3.962133536 3.873809868
3 -4 3 3f7/2 2.315910246 2.387891090 4.166042378 4.070830840
1 1 0 0p1/2 0.568272837 0.542744504 1.976844362 1.975929806
1 3 1 1p1/2 1.067819409 1.048345302 2.667541872 2.668584697
1 1 2 2p1/2 1.530395283 1.513218985 3.163567616 3.166216009
1 5 3 3p1/2 1.979996399 1.963746819 3.529456299 3.533423105
2 6 0 0d3/2 0.820311004 0.786755216 2.654220464 2.668584697
2 2 1 1d3/2 1.262754541 1.231133014 3.147935985 3.166216009
2 2 2 2d3/2 1.694588465 1.663175926 3.511836761 3.533423105
2 2 3 3d3/2 2.125227188 2.092809055 3.785235098 3.809600325
3 3 0 0f5/2 1.085509689 1.044886371 3.132908744 3.166216009
3 3 1 1f5/2 1.493098313 1.451243785 3.494674460 3.533423105
3 3 2 2f5/2 1.901400337 1.857234266 3.766256136 3.809600325
3 3 3 3f5/2 2.315910246 2.268233378 3.973416820 4.020621390

and H2. For H1 = H2 = 0, the following degenerate dou-
blets are obtain: 1s1/2 = 0d3/2, 1p3/2 = 0f5/2, 1d5/2 = 0g7/2,
1f7/2 = 0h9/2, 2s1/2 = 1d3/2, 2p3/2 = 1f5/2, 2d5/2 = 1g7/2 and
2f7/2 = 1h9/2. These degeneracies are also equal to the de-
generacies produced for non EDP for non-tensor interaction.
For H1 = H2 = 0.1, there are no degeneracies. Similarly, for
H1 > H2 and H1 < H2, there are no degenerate doublets. This
also shows that the inclusion of the EDT term breaks the whole
degeneracies even at small values of the tensor strengths. In
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Table 6: Energies in the PS limit for Kratzer EDP with λ4 = λ5 = 0.5, λ2 = 0,
a1 = 4.0, a2 = 2, b1 = b2 = 0.1,M = 10 f m−1 and Cs = 5 f m−1

` κ n (`, j) Kratzer potential Coulomb potential
H1,2 = 0 H1,2 = 0.1 H1,2 = 0.1 H1,2 = 0.1, 0

1 -1 1 1s1/2 -9.096854737 -9.097243710 -3.957853178 -3.956166280
2 -2 1 1p3/2 -9.103820973 -9.104900620 -4.705516764 -4.702953988
3 -3 1 1d5/2 -9.114041578 -9.115790810 -5.338447790 -5.334597330
4 -4 1 1f7/2 -9.127260481 -9.129650770 -5.877946235 -5.872766190
1 -1 2 2s1/2 -9.165271209 -9.165625395 -4.704351342 -4.702953988
2 -2 2 2p3/2 -9.171400175 -9.172390830 -5.337077070 -5.334597330
3 -3 2 2d5/2 -9.180401886 -9.182010810 -5.876538030 -5.872766190
4 -4 2 2f7/2 -9.192060938 -9.194263445 -6.338969120 -6.333932324
1 2 1 0d3/2 -9.096854737 -9.095134090 -3.852996864 -3.855104284
2 3 1 0f5/2 -9.103820973 -9.101415860 -4.624203482 -4.628695316
3 4 1 0g7/2 -9.114041578 -9.110975965 -5.272927745 -5.279249573
4 5 1 0h9/2 -9.127260481 -9.123565500 -5.823169340 -5.831036969
1 2 2 1d3/2 -9.165271209 -9.163683540 -4.625917968 -4.628695316
2 3 2 1f5/2 -9.171400175 -9.169181270 -5.274472190 -5.279249573
3 4 2 1g7/2 -9.180401886 -9.177572380 -5.824661165 -5.831036969
4 5 2 1h9/2 -9.192060938 -9.188647735 -6.294424900 -6.302161924
Note: Hi, j = 0 means Hi = H j = 0. Hi, j = 0.1, 0.2 means Hi = 0.1, H j = 0.2.

Figure 1: Energies in the SS limit against mass M for modified Mie-type-
constant EDP with λ1 = λ2 = λ3 = 1, a1 = 3, a2 = 2, a3 = 1, b1 = b2 = 1, and
Cs = 5 f m−1.

Tables 3 and 4, we presented the energy for SS and PS respec-
tively for Coulomb energy-dependent tensor potential ( H2 = 0)
and constant energy-dependent tensor potential ( H1 = 0). In
both cases, there are no degeneracies. To check the accuracy
and correctness of the energy-dependent tensor potential, we
also studied the solutions of the spin and pseudospin symme-
tries with the same energy-dependent tensor potential with the
Kratzer energy-dependent potential. The special cases of this
potential was studied numerically. The results of the two sym-
metries are given in Tables 5 and 6. In Table 5, the energy for
spin symmetry is given for both Kratzer and Coulomb energy-
dependent potentials. For Kratzer energy-dependent potential,
the degeneracies obtained in Table 1 were equal obtained. For
Coulomb energy-dependent potential ( λ4 = 0), it was consid-
ered for Coulomb-constant energy-dependent tensor potential
and Coulomb energy-dependent tensor potential ( H2 = 0).
For H1 = H2 = 0.1, the same energy degeneracies obtained

Figure 2: Energies in the PS limit against mass M for modified Mie-type-
constant EDP with λ1 = λ2 = λ3 = 1, a1 = 3, a2 = 2, a3 = 1, b1 = b2 = 1, and
Cs = 5 f m−1.

in Table 1 were also obtained, but for H2 = 0, which re-
duces the Coulomb-constant energy-dependent tensor potential
to Coulomb energy-dependent tensor potential, a new set of en-
ergy degeneracies were formed. The degeneracies formed are
1s1/2 = 0p3/2, 2s1/2 = 1p3/2 = 0d5/2, 3s1/2 = 2p3/2 = 1d5/2 =

0f7/2, 3p3/2 = 2d5/2 = 1f 7/2, 3d5/2 = 2f7/2, 1p1/2 = 0d3/2, 2p1/2
= 1d3/2 = 0f5/2, 3p1/2 = 2d3/2 = 1f5/2 and 3d3/2 = 2f5/2. These
are new degeneracies different from the degeneracies obtained
with ordinary Coulomb tensor potential. For the pseudospin
symmetry in Table 6, the following degeneracies were formed
with Coulomb energy-dependent tensor potential for Coulomb
energy-dependent potential: 1d5/2 = 2p3/2, 1f7/2 = 2d5/2, 0f5/2
= 1d3/2, 0g7/2 = 1f5/2 and 0h9/2 = 1g7/2. For ordinary Coulomb
tensor potential with H = 0.5 and H = 1, the degeneracies
formed in each case are different from those formed in the
present work. Figure 1 and Figure 2 showed the variation of
the energy of SS and PS respectively with the mass M for the
modified Mie-type potential. The energy of the SS increases
with the mass while that of the PS decreases with the mass.

5. Conclusion

In this work, we have employed two traditional techniques
to solve Dirac equation with two energy-dependent potential
and an energy-dependent tensor interaction without the use of
any approximation scheme to the centrifugal term. The degen-
eracies formed in our results without the application of tensor
potential are exactly the degeneracies formed for non-energy-
dependent potential. However, the degeneracies formed when
the energy-dependent tensor potential was applied differ from
the degeneracies formed with non-energy-dependent tensor po-
tential. In the case of Coulomb energy-dependent potential with
Coulomb energy-dependent tensor potential under spin symme-
try, there are four degenerate doublets, three degenerate dou-
blets and two degenerate doublets which cannot be formed in
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the case of non-energy-dependent tensor potentials. For the
combination of Coulomb-constant energy-dependent tensor po-
tential, a small value of the tensor strengths can easily break the
energy doublets which is not possible for ordinary tensor poten-
tial.
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