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Abstract

This study modelled and estimated climatic data using the state-space model. The study was specifically to identify the pattern of the trend
movement i.e., increase or decrease in the occurrence of the climatic change; to use of Univariate Kalman Filter for the computation of the
likelihood function for climatic projections; to modelling the climatic dataset using the state-space model and to assess the forecasting power
of the state-space models. The data used for the work includes temperature and rainfall for periods January 1991 to December 2017. The data
are tested for normality. Shapiro-Wilk, Anderson-Darling and Kolmogorov-Smirnov test of normality for the climatic data all showed that the
variables are not normally distributed. The work spans the use of breaking trend regression model to fit climatic data to estimate the slopes which
show much increase in climatic data has been recorded from the initial time data collection until the present. Investigations and diagnostic are
carried out by checking for corrections in the residuals and also checking for periodicity in the residuals. The results of this investigation show
significant autocorrelation in the residuals indicating the presence of underlying noise terms which is not accounted for. By treating the residual
as an autoregressive moving average (ARMA) process whereby we can obtain its spectral density, the result from the parametric spectral estimate
shows underlying periodic patterns for monthly data, thus, leads to a discussion on the need to treat climatic data as a structural time series
model. We select appropriate models by considering the goodness of fit of the model by comparing the Akaike information criterion (AIC) values.
Parameters are estimated and accomplished with some measures of precision.
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1. Introduction

Largely, state-space models (SSMs) have been used in several
areas of applied statistics. In specifically, there are some desir-
able properties of the linear state-space models and also, they
have vast potential in time series modelling that incorporates
latent processes. When a model is found to be in the linear

∗Corresponding author tel. no: +2348032801624
Email address: tolulope.latunde@fuoye.edu.ng (T. Latunde )

state-space form, the most used algorithm to predict the latent
process, the state, is the Kalman filter algorithm. This algo-
rithm is a technique for computing, at each time (t = 1, 2, ...),
the optimal estimator of the state vector based on the existing
information until t and its success lies on the fact that is an on-
line estimation procedure.

This predicting structure, whose performance was in recent
times compared to other numerous forecasting methods across
thousands of time series [1], adapts to underlying alterations
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in series dynamics and automatically revises forecasts as new
observations. In agreement with the above, the study adopts the
state-space model to analyse and forecast for the temperature
and rainfall data in Nigeria.

The purpose of this study is to model and estimate the cli-
mate using the state-space model and the specific objectives are
to: identify the pattern of the trend movement i.e. increase
or decrease in the occurrence of the climatic change; use of
Univariate Kalman Filter for the computation of the likelihood
function for climatic projections; modelling the climatic dataset
using the state-space model and assess the forecasting power of
the state-space models.

Shamshad et al. [2] show a comparison of Artificial Neural
Networking Multilayer Perceptron (ANN-MLP) with the Auto-
matic Exponential Smoothing Algorithm (ETS) and the Auto-
Regressive Integrated Moving Average (ARIMA) models for
forecasting Lahore, Pakistan’s main weather parameter. Models
are built by taking into account average monthly maximum and
minimum temperature, relative humidity, wind speed and pre-
cipitation amount. Data covering thirty years (1987-2016) was
used to build the models. ANN-MLP is a mathematical method,
and the computational methods are ARIMA and ETS. They di-
vide the thirty years data (1987-2018) data into training (1987
till 2016) and test (2017 till 2018) set to ensure the efficiency
and reliability of all these models along with the performance
criteria of the estimates. The research explained in brief how
the various methods of learning can be used to formulate ANN-
MLP. Deciding the most appropriate model and network config-
uration is based on their performance forecast. MAE (Moving
Average Error), RMSE (Root-Mean-Square error), ME (mean
error), MASE (mean absolute scaled error) suggest better re-
sults for ANN-MLP. Afsar et al. [3] investigated variability
in temperature and precipitation in the Gilgit-Baltistan region.
They used regression and stochastic models to show temper-
ature and rainfall predictions. We observed precipitation pro-
longed with temperature increasing. A decrease in the amount
of precipitation is observed from 2007 to 2011 with an increase
in the monthly average maximum temperature. They consid-
ered AR(1) ideally suited to temperature forecasting.

In the study of Faisal and Ghaffar [4] on the Thiessen Poly-
gon technique to test Pakistan’s 56 stations for 50 years (1961-
2010) weighted rainfall area (AWR). Month-to-month precipi-
tation records of fifty-six stations, storm measurements for the
fifty-year season (1961-2010) and a standard precipitation size
relationship were used by the Theissen system. Yusof et al. [5]
used an amount of rainfall to be categorised into seven cate-
gories (extremely wet to extremely dry) to analyze dry and wet
events using Peninsular Malaysia data. They used precipita-
tion index (SPI) standardizes to model the best fit distribution
to reflect the rainfall. In comparison with Gamma and Weibull
distributions, the lognormal distribution is found to be better

matched to the daily rainfall in the area.
Extreme Pakistan temperature events and rainfall for the pe-

riod 1965-2009 were examined in Zahid and Rasul work [6] to
quantify Pakistan frequency. They used F-test to determine the
country minimum and maximum extreme temperature events.
We pointed out that all over the country, certain extreme events
are increasing. Regarding extreme rainfall events, they used
the K-S method at a confidence interval of 95 per cent and
concluded that the southern half of Pakistan faces more wet
spells due to global warming and climate change. In the same
vein, rainfall data in Queensland, Australia including climate
indices, monthly rainfall and temperature was surveyed in Ab-
bot and Marohasy [7]. They brought ANN into the area to pre-
dict monthly rainfall. They suggested there is scope for im-
provement in this product design. Analysis of ANN to fore-
cast lasting monthly temperature and rainfall from 76 stations
in Turkey at any point for the period 1975-2006 was also carried
out in Bilgili and Sahin’s work [8] based on knowledge from
neighbouring stations. They divided 76 measuring stations into
training sets and test sets. The fitted model was satisfactory
because the errors are within reasonable limits.

2. Materials and Methods

2.1. State-Space Model

A state-space representation in control engineering is a math-
ematical model of a physical system as a collection of input,
output and state variables similar to first-order differential equa-
tions or difference equations. State variables are variables whose
values change over time in a way that depends on the values
they have at any given time and often depends on the values
of input variables placed externally. The values of the output
variables depend on the values of the state variables.

”State-space” is the Euclidean space, where the variables on
the axes are the variables of the body. The state of the system
within that space can be expressed as a vector. The state-space
method is characterized by significant algebraization of gen-
eral system theory, which makes it possible to use Kronecker
vector-matrix structures. The ability of these structures can
be efficiently used to study systems with modulation or with-
out modulation. The state-space representation (also called the
”time-domain method”) gives a convenient and compact way
to model and analyze systems with multiple inputs and outputs.
With p and q outputs, we would otherwise have to write down
q × p Laplace transforms to encode all the information about a
system.

2.2. State-Space Representation

In the time domain, a system can be described in general
by a set of linear differential and algebraic equations (i.e., state-
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space model):

dx
dt

= Ax + Bu (1)

y = Cx + Du (2)

Where xis the vector of the state variable
u is the vector of inputs (manipulated variables)
y is the vector of outputs (controlled/measured variables), and
A, B, C, and D are constant matrices of appropriate dimen-
sions.
Taking Laplace transform of Equations (1) and (2) using zero
initial conditions, and re-arranging, the system transfer func-
tion matrix G(s), the relationship between the inputs uand the
outputsyrelates the state model equations (1) and (2) as:

G (s) =
y(s)
u(s)

= C(sI − A)−1B + D (3)

The representation of the (SSM) was developed based on graph
theory principles. Two major types are used:

1. The signal-flow-graph (SFG) type.
2. The matrix representation.

The first type is easier to use and hence has been adopted by
many researchers [9-10], and it has also been adopted in this
research for the same reason.

Each SFG consists of directed branches interconnected at
nodes. In the state-space model, the nodes represent the vari-
ables (signals), and the branches connecting the nodes indicate
that these nodes are related. Each branch is assigned a numer-
ical value or a function, which quantifies the relationship be-
tween the two variables in terms of a gain factor or a transfer
function.

2.3. Identification and estimation of a state-space model pro-
cess

Before the analysis can be processed, identification of the state-
space model would be carried out in the following ways:

The measurement equation has the form

Yt = Ztαt + dt + ett = 1. . . T (4)

To accommodate data properties as temporal correlation and
the periodic behaviour, a periodic state-space model is proposed.
This model is defined as

Ys,n = [S (n − 1) + s] Xs,n + Ds,n + es,n (5)

Xs,n = µs + s(Xs−1,n − µs−1) + es,n (6)

where
s is the season of the year with s = 1, 2, .., S ;
n is the year with n = 1, 2, ...,N;

Ys,n represents the time series observation in the Sth season
of the nth year;

[S (n − 1) + s]th is the observation of the time series;
[1, 2, 3, 4, . . ., S ] are the unknown parameters representing

the fixed effects in the model;
Ds,n is a 1 × S matrix of known values, a design matrix;
the error process (es,n) is a white noise disturbance, which

is assumed to have var (es,n) = 2
e

µs is the mean of the process (Xs,n) for the sth season, s is
the autoregressive parameter for season s and es,n is the white
noise disturbance;

The means, standard deviations and variances of the dif-
ferent series gotten for each sector would be examined where
the series with a lesser variance being the most efficient. Their
skewness and kurtosis will also be determined. Also, the ex-
istence of stationarity, unit root and long memory properties
would be determined.

2.4. Univariate Kalman Filter for the computation of the like-
lihood function for climatic projection

Parameter estimation that specifies the state-space model is very
important in analyzing various components of the time series
model. The idea is that

Θ = {µ0,
∑

0, ϕ,Q,R,Y,Γ} used to represent the vector of un-
known parameters containing the elements of the initial mean
µ0, the covariance

∑
0, the transition matrix, θ, the state and ob-

servation covariance matrices, Q and R are inputs Y and Γ are
estimated using the maximum likelihood estimation. The maxi-
mum likelihood, for a time series model where the observations
y1, y2, . . . , yn are not independent, is defined as a conditional
probability density function to write the joint density function

L(y : θ) =

n∏
t=1

p(yt |Yt−1) (7)

Where p(yt |Yt−1) is the distribution of yt conditional on the in-
formation set at time t − 1 that is Yt−1 = {y1, y2, . . . , yn}. The
maximum likelihood is used under the assumption that the ini-
tial state is normal X0 ∼ N(µ0 :

∑
0) and the error V1,V2..Vn

and W1,W2..Wn are jointly normal and uncorrelated vector vari-
ables. Wt ∼ N(0 : Q)andVt ∼ N(0 : σ2).
Hence, the likelihood is derivedbyusing the innovations

εt = yt − AtXt−1
t − Γµt (8)

Which are independent normal where E(εt) = 0 and the covari-
ance matrix∑

0
= AtPt−1

t At + R (9)

Where the dependence of the innovation on the parameter θ has
been emphasized using the Kalman filter for given θ, this can
be done as follow;

1. Select initial and starting values for the parameter (θ0)
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2. For θ0, compute the likelihood L(y : θ0) using the Kalman
filter

3. Apply a numerical optimization algorithm to L(y : θ0)
4. Repeat this process for n steps until the value of θ corre-

sponding to the maximum likelihood is found.

2.5. Forecasting with Kalman filter

An m-period-ahead forecast of the state vector can be calculated
from the equation below:

ξt+k = Fkξt+Fk−1Vt+1+Fk−2Vt+2+. . .F1Vt+k−1 +Vt+k for k = 1, 2, 3. . .(10)

Lead to equation

ξ̂t+k|t = E(ξt+k|, yt, yt−1, . . .y1, xt, xt−1, . . .x1) = Fkξ̂t|t (11)

The error of this forecast can be found by subtracting
ξt+k from ξ̂t+k|t

ξt+k−ξ̂t+k|t = Fk(ξt−ξ̂t|t)+Fk−1Vt+1+Fk−2Vt+2+. . .+F1Vt+k−1 +Vt+k(12)

from which it follows that the mean squared error of the
forecast is

Pt+k|t = E[(ξt+k − ξ̂t+k|t)(ξt+k − ξ̂t+k|t)] (13)

= FkPt|t(Fk)′+Fk−1Q(Fk−1)′+Fk−2Q(Fk−2)′+. . .+FQF′+Q(14)

These results can also be used to describe m-period-ahead
forecasts of the observed vector yt+m, provided that {x,} is de-
terministic. Applying the law of iterated expectations to

E(yt+k jξt, ξt−1, . . .yt, yt−1, . . .)

E[(A′xt+k,+H′ξt+k + Wt+k) jξt, ξt−1, . . .yt, yt−1, . . .) (15)

results in

ŷt+k|t = E(yt+k jyt, yt−1. . ., y1) = A′xt+k + H′Fkξ̂t|t (16)

The error of this forecast is

yt+k−ŷt+k|t = (A′xt+k+H′ξt+k+W t+k)−(A′xt+k+H′Fmξ̂t|t)(17)

= H′(ξt+m − ξ̂t|t) + W t+m (18)

With mean squared error

E[(yt+k − ŷt+k|t)(yt+k − ŷt+k|t)′] = H′Pt+k|tH + R (19)

3. Presentation of Results and Discussion

Figures 1-2 represent the time plot of temperature and rain-
fall;

Figure 1. The time plot of the monthly temperature series shows the underlying
trend and possible seasonal and cyclic patterns as well

Figure 2. The time plot of the monthly rainfall series shows the underlying
trend and possible seasonal and cyclic patterns as well

3.1. Fourier Analysis

Table 1 shows the values of the various components of the
spectral analysis for temperature. The numbers in parenthe-
ses, (d,D, s,M,T ), are defined as follows: d is the regular dif-
ferencing order, D is the seasonal differencing order, s is the
number of seasons (ignored if D is 0), M is 1 if the mean is
subtracted, 0 otherwise, T is 1 if the trend is subtracted, 0 oth-
erwise. (0, 0, 12, 1, 0) indicates that there is no regular differ-
encing. The seasonal differencing is zero, while the number of
seasons is zero. The value indicates that the mean is subtracted,
while the trend is not subtracted.

Figures 3-6 show that there exists an underlying periodic
component in the residuals obtained by fitting the smoothed and
filtered data to the observation. We can see that the first peak
looking at the monthly series corresponding to the fitted data
is at a frequency ω = 0.389, corresponding to a period of 50
months. And the second peak is at a frequency of ω = 0.35,
with a period of approximately 12 months.

Therefore, the need to extend the structural model to contain
a Seasonal and cyclic component is important.
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Table 1. Fourier Analysis of temp (0,0,12,1,0)

Frequency Wavelength Period Cosine(a’s) Sine(b’s) Spectrum
0.2010619 31.25 17392.62 21.48521 -14.59315 9522.42
0.2764601 22.72727 2180.31 0.8657146 -9.155004 7795.009
0.3518584 17.85714 3812.099 11.42719 -4.155941 4270.688
0.4272566 14.70588 6819.656 -14.50404 -7.357564 15927.96
0.5026549 12.5 37152.14 -6.556379 37.38934 17404.13
0.5780531 10.86957 8240.605 -13.99402 -11.12565 15948.32
0.6534513 9.615385 2452.211 -7.719598 5.959619 3608.136
0.7288495 8.620689 131.5911 2.229034 -0.3676695 2495.332
0.8042477 7.8125 4902.192 -12.52921 -5.757686 6569.818
0.8796459 7.142857 14675.67 4.816339 23.36665 7431.676
0.9550442 6.578948 2717.165 8.031762 6.393456 15443.23
1.030442 6.097561 28936.85 22.1179 25.16181 12334.13
1.105841 5.681818 5348.37 3.409208 -13.99337 11674.39
1.181239 5.319149 737.9613 -3.06099 4.387738 5851.817
1.256637 5 11469.12 13.69089 16.04339 5366.608
1.332035 4.716981 3892.745 2.951285 -11.92772 5620.186
1.407434 4.464286 1498.693 0.0307705 7.624041 3149.379
1.482832 4.237288 4056.698 12.02642 -3.564355 2910.082
1.55823 4.032258 3174.855 10.01725 4.774079 4193.151

1.633628 3.846154 5347.899 -13.94717 3.591002 4181.128
1.709026 3.676471 4020.631 -9.593548 7.994023 4142.489
1.784425 3.521127 3058.936 -7.539809 7.860816 2993.722
1.859823 3.378378 1901.597 2.08475 -8.331114 1728.495
1.935221 3.246753 224.9497 2.751325 1.074666 1347.075
2.010619 3.125 1914.677 8.535864 1.183197 1418.189
2.086018 3.012048 2114.941 3.061299 -8.523886 4419.094
2.161416 2.906977 9227.663 -9.289092 -16.48055 4187.763
2.236814 2.808989 1220.684 -6.871478 0.3565736 6609.169
2.312212 2.717391 9379.16 -9.712505 16.41459 5221.976
2.38761 2.631579 5066.084 11.07367 8.594324 5238.45

2.463009 2.55102 1270.106 4.720753 5.19381 2286.001
2.538407 2.475248 521.812 0.8846894 4.410879 1232.752
2.613805 2.403846 1906.337 -8.432693 1.681413 1483.803
2.689203 2.336449 2023.261 -6.378614 6.147003 1774.629
2.764601 2.272727 1394.288 -0.8783695 7.3011 2174.107

2.84 2.212389 3104.772 -10.88803 -1.367346 4679.055
2.915398 2.155172 9538.105 -18.3482 5.768869 4346.808
2.990796 2.10084 397.5458 -3.743783 1.184457 3586.218
3.066195 2.04918 823.0026 -5.125026 2.377886 668.0311
3.141593 2 783.5449 -5.5127 -2.484305E-12 809.85
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Table 2. Fourier Analysis of rainfall (0,0,12,1,0)

Frequency Wavelength Period Cosine(a’s) Sine(b’s) Spectrum
0.2010619 31.25 3505336 -155.2216 334.4563 1.340589E+07
0.2764601 22.72727 2.376145E+07 -473.745 834.9586 1.081362E+07
0.3518584 17.85714 5174079 204.4676 398.5852 1.242262E+07
0.4272566 14.70588 8332332 372.0547 429.8204 8652136
0.5026549 12.5 1.245E+07 -522.3141 458.3256 1.045092E+07
0.5780531 10.86957 1.057043E+07 496.6129 -404.1668 2.557089E+07
0.6534513 9.615385 5.369223E+07 347.9105 -1400.506 2.371912E+07
0.7288495 8.620689 6894689 310.2988 -413.6736 2.459778E+07
0.8042477 7.8125 1.320643E+07 271.7906 -662.0743 1.099229E+07
0.8796459 7.142857 1.287576E+07 -420.4702 -567.9723 9935063
0.9550442 6.578948 3723000 -203.048 -321.1984 1.345724E+07
1.030442 6.097561 2.377295E+07 -334.7887 -899.9736 1.160267E+07
1.105841 5.681818 7312064 418.9944 328.6986 1.113207E+07
1.181239 5.319149 2311208 -185.0102 235.3968 5046145
1.256637 5 5515162 108.9928 -449.4738 3876995
1.332035 4.716981 3804614 -342.3183 174.3 4267821
1.407434 4.464286 3483686 -122.2476 -346.6563 5960738
1.482832 4.237288 1.059391E+07 -237.493 -595.3847 2.304692E+07
1.55823 4.032258 5.506316E+07 -1014.657 -1051.713 2.313139E+07
1.633628 3.846154 3737106 182.7847 -333.9667 1.996097E+07
1.709026 3.676471 1082651 77.12722 -189.8476 1866007
1.784425 3.521127 778264.9 -13.22315 173.2346 1592170
1.859823 3.378378 2915595 331.0794 -58.89026 1575621
1.935221 3.246753 1033002 79.65166 183.632 2011053
2.010619 3.125 2084562 141.3623 246.7116 3220544
2.086018 3.012048 6544069 -469.2179 183.4309 5135841
2.161416 2.906977 6778893 -507.325 -74.44065 5237774
2.236814 2.808989 2390359 -264.1649 151.4172 4376703
2.312212 2.717391 3960858 -391.2391 23.54103 2330373
2.38761 2.631579 639903.6 54.25442 -147.9026 2294082
2.463009 2.55102 2281486 -274.1098 115.5485 979001.7
2.538407 2.475248 15615.94 5.175655 -24.05989 2194616
2.613805 2.403846 4286746 -333.2503 -234.9598 1575710
2.689203 2.336449 424768.6 -121.5072 -41.36044 1572592
2.764601 2.272727 6261.016 -3.307111 -15.22817 806171.2

2.84 2.212389 1987484 64.74786 269.9861 1018778
2.915398 2.155172 1062588 -102.2991 175.3496 1285118
2.990796 2.10084 805281.5 176.6789 4.182919 2102421
3.066195 2.04918 4439392 126.9668 -395.0464 2849186
3.141593 2 3302885 -357.9144 2.442917E-10 4060556
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Figure 3. Periodogram of Temperature (Frequency)

Figure 4. Periodogram of Temperature (Frequency)

Figure 5. Spectral Analysis of Temperature (Frequency)

Table 2 shows the values of the various components of the
spectral analysis for rainfall. The numbers in parentheses,
(d,D, s,M,T ), are defined as follows: d is the regular differ-
encing order, D is the seasonal differencing order, s is the num-
ber of seasons (ignored if D is 0), M is 1 if the mean is sub-
tracted, 0 otherwise, T is 1 if the trend is subtracted, 0 oth-
erwise. (0, 0, 12, 1, 0) indicates that there is no regular differ-

Figure 6. Spectral Analysis of Temperature (Wavelength)

Figure 7. Periodogram of Rainfall (Frequency)

Figure 8. Periodogram of Rainfall (Wavelength)

encing. The seasonal differencing is zero, while the number of
seasons is zero. The value indicates that the mean is subtracted,
while the trend is not subtracted.

Figures 7-10 show that there exists an underlying periodic
component in the residuals obtained by fitting the smoothed and
filtered data to the observation. We can see that the first peak
looking at the monthly series corresponding to the fitted data
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Figure 9. Spectral Analysis of Rainfall (Frequency)

Figure 10. Spectral Analysis of Rainfall (Wavelength)

is at a frequency ω = 0.25, corresponding to a period of 50
months. And the second peak is at a frequency of ω = 0.23,
with a period of approximately 12 months.

Therefore, the need to extend the structural model to contain
a Seasonal and cyclic component is important.

3.2. State-space model

From Table 3, the AR coefficients with respect to the MLEs
are given as 1.271 and -0.274, respectively also, the roots of the
characteristic equation φ = 1 − 1.271z + 0.274z2 = 0 are 0.542
and 1.998, respectively. Since these values are greater than 1,
the AR component is covariance stationary.

The variance of the permanent component is 0.000000, and
the variance of the transitory component is 1.107762854. Hence,
the variance of the transitory component is higher than the vari-
ance of the permanent component and the ratio of the variance
of the permanent component to the variance of the stationary
component is 0.000. This shows that the stationary component
is almost twice as important as the permanent component for
explaining the variation of temperature.

From Table 4, the MLEs for the AR coefficients are 1.311
and -0.456, respectively. The roots of the characteristic equa-

tion φ = 1 − 1.311z + 0.456z2 = 0 are 1.779 and 1.137, respec-
tively.

Since these values are greater than 1, the AR component is
covariance stationary.

The variance of the permanent component is 0.0000000,
and the variance of the transitory component is 2.648752906.
Hence, the variance of the transitory component is higher than
the variance of the permanent component and the ratio of the
variance of the permanent component to the variance of the
stationary component is 0.000. This shows that the stationary
component is almost twice as important as the permanent com-
ponent for explaining the variation of temperature.

3.3. Forecasting

The in-sample performance of the state-space model for
forecasting the rainfall and temperature series appears to be
more favourable to the model identified by Shittu and Yemitan
[11]. This is evident in Tables 5 and 6.

Given the relative accuracy of the model by Shittu ad Yemi-
tan [11], the improvement achieved by the Kalman filter method
is mainly as a result of the built-in the specification for updat-
ing the estimation based on latest available information. Hence,
the rainfall and temperature exhibit elements of time-varying or
regime-switching characteristics over the study period. As a re-
sult, it is an indication and a signal that the climatic data may
be best estimated using non-linear time series methodologies.

4. Conclusion

This study modelled and estimated climatic data using the
state-space model. The study was specifically to identify the
pattern of the trend movement, model the dataset using the
state-space model and to evaluate the forecasting power of the
state-space models.

The data used for the study include temperature and rain-
fall for periods January 1991 to December 2017. The data
were tested for normality. The study showed that the aver-
age temperature is 27.3◦Cand standard deviation is 1.87◦C. The
maximum temperature is 31.5◦C and minimum temperature is
23.3◦C.The average rainfall is 94.5mm with a standard deviation
of 86.3mm. The maximum rainfall is 314.3mm and the mini-
mum rainfall is 0.2mm. Shapiro-Wilk, Anderson-Darling and
Kolmogorov-Smirnov test of normality for the climatic data all
showed that the variables are not normally distributed. The plot
of the monthly temperature series shows the underlying trend
and possible seasonal and cyclic patterns as well. The plot of
the monthly rainfall series shows the underlying trend and pos-
sible seasonal and cyclic patterns as well.

The MLEs for the AR coefficients are 1.271 and -0.274, re-
spectively. The roots of the characteristic equation φ = 1 −
1.271z + 0.274z2 = 0 are 0.542 and 1.998, respectively. The
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Table 3. State-space Model (Temperature)

Sspace: SS03
Method: Maximum likelihood (Marquardt)

Date: 09/07/19 Time: 15:37
Sample: 1991M01 2017M12
Included observations: 324

Estimation settings: tol= 0.00010, derivs=accurate numeric
Initial Values: C(1)=7.79271, C(2)=1.31153, C(3)=-0.45685

Failure to improve Likelihood after 12 iterations
Coefficient Std. Error z-Statistic Prob.

C(1) 0.818740 0.079268 10.32875 0.0000
C(2) 1.271171 0.055552 22.88260 0.0000
C(3) -0.274151 0.056246 -4.874137 0.0000

Final State Root MSE z-Statistic Prob.
SV1 22.24512 1.505869 14.77229 0.0000
SV2 23.23000 0.000000 NA 0.0000

Log likelihood -600.6427 Akaike info criterion 3.726190
Parameters 3 Schwarz criterion Schwarz criterion 3.761197

Diffuse priors 0 Hannan-Quinn criter. Hannan-Quinn criter. 3.740162

Table 4. State-space Model (Rainfall)

Sspace: SS01
Method: Maximum likelihood (Marquardt)

Date: 09/07/19 Time: 01:26
Sample: 1991M01 2017M12
Included observations: 324

Estimation settings: tol= 0.00010, derivs=accurate numeric
Initial Values: C(1)=0.85106, C(2)=1.29335, C(3)=-0.29596

Convergence achieved after 42 iterations
Coefficient Std. Error z-Statistic Prob.

C(1) 7.792711 0.067286 115.8147 0.0000
C(2) 1.311527 0.049124 26.69830 0.0000
C(3) -0.456845 0.052524 -8.697765 0.0000

Final State Root MSE z-Statistic Prob.
SV1 -1.907737 49.22274 -0.038757 0.9691
SV2 2.567010 0.000000 NA 0.0000

Log likelihood -1723.221 Akaike info criterion 10.65568
Parameters 3 Schwarz criterion Schwarz criterion 10.69069

Diffuse priors 0 Hannan-Quinn criter. Hannan-Quinn criter. 10.66966
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Table 5. Foreast for Temperature

Period Forecast (SSM) 95% Limits
Lower Upper

2018 24.6816 21.8312 27.5320
2018 25.6077 22.2266 28.9888
2018 26.1985 22.6239 29.7730
2018 26.5754 22.9250 30.2258
2018 26.8158 23.1351 30.4966
2018 26.9692 23.2762 30.6623
2018 27.0671 23.3690 30.7652
2018 27.1295 23.4294 30.8296
2018 27.1694 23.4684 30.8703
2018 27.1948 23.4935 30.8960
2018 27.2110 23.5096 30.9124
2018 27.2213 23.5199 30.9228
2019 27.2279 23.5264 30.9294
2019 27.2321 23.5306 30.9336
2019 27.2348 23.5333 30.9363
2019 27.2365 23.5350 30.9380
2019 27.2376 23.5361 30.9391
2019 27.2383 23.5368 30.9398
2019 27.2388 23.5373 30.9403
2019 27.2391 23.5375 30.9406
2019 27.2392 23.5377 30.9407
2019 27.2393 23.5378 30.9409
2019 27.2394 23.5379 30.9409
2019 27.2395 23.5380 30.9410

Table 6. Foreast for Rainfall
Period Forecast (SSM) 95% Limits

Lower Upper
2018 21.9472 -83.629 127.524
2018 37.1513 -97.037 171.340
2018 49.0790 -100.014 198.172
2018 58.4364 -99.130 216.003
2018 65.7775 -96.785 228.340
2018 71.5366 -94.025 237.099
2018 76.0547 -91.327 243.436
2018 79.5992 -88.892 248.091
2018 82.3799 -86.791 251.551
2018 84.5614 -85.027 254.149
2018 86.2728 -83.571 256.117
2018 87.6154 -82.386 257.617
2019 88.6687 -81.430 258.767
2019 89.4950 -80.663 259.653
2019 90.1433 -80.051 260.338
2019 90.6518 -79.565 260.869
2019 91.0508 -79.180 261.282
2019 91.3638 -78.876 261.603
2019 91.6094 -78.635 261.854
2019 91.8020 -78.446 262.050
2019 91.9531 -78.297 262.203
2019 92.0717 -78.180 262.323
2019 92.1647 -78.087 262.417
2019 92.2377 -78.015 262.490
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MLEs for the AR coefficients are 1.311 and -0.456, respec-
tively. The roots of the characteristic equation φ = 1− 1.311z +

0.456z2 = 0 are 1.779 and 1.137, respectively.

Investigations and diagnostic were carried out by checking
for correlations in the residuals and also checking for periodic-
ity in the residuals. The results of this investigation show sig-
nificant autocorrelation in the residuals indicating the presence
of underlying noise terms which is not accounted for. Also,
the result from the parametric spectral estimate shows underly-
ing periodic patterns for monthly data, thus, leads to a discus-
sion on the need to treat climatic data as a structural time series
model. We selected the appropriate models by considering the
goodness of fit of the models and by comparing the AIC val-
ues. Parameters were estimated and accomplished with some
measures of precision. An important aspect of fitting structural
models is the underlying changes in the unobserved trend com-
ponent.

For the case of state-space models with correlated errors,
further work can be done here by taking into consideration cor-
relation between the error terms in state equation when consid-
ering structural models of the form trend, seasonal, cycle and an
autoregressive process. This type of results is important since
they show how well the Kalman filter for correlated errors car-
ries out the filtering of the unobserved component as compared

to the case when errors are not correlated.
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