Prospects of nanosorption and photocatalysis in remediation of oil spills

Authors

  • S. E. Shaibu Department of Chemistry, University of Uyo, Uyo, Nigeria
  • E. J. Inam Department of Chemistry, University of Uyo, Uyo, Nigeria
  • E. A. Moses Department of Chemistry, University of Uyo, Uyo, Nigeria
  • U. A. Ofon Department of Microbiology, University of Uyo, Uyo, Nigeria
  • O. K. Fatunla Department of Microbiology, University of Uyo, Uyo, Nigeria
  • C. O. Obadimu Department of Chemistry, Akwa Ibom State University, Nigeria
  • N. D. Ibuotenang Department of Chemistry, University of Uyo, Uyo, Nigeria
  • N. O. Offiong Department of Chemical Sciences, Topfaith University, Mkpatak, Nigeria
  • V. F. Ekpo Department of Chemistry, University of Aberdeen, Scotland
  • T. J. Adeoye Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
  • E. L. Udokang Department of Microbiology, University of Uyo, Uyo, Nigeria
  • D. P. Fapojuwo Center for Synthesis and Catalysis, University of Johannesburg, Johannesburg, South Africa

Keywords:

Nanosorption, Oil spill, Nanomaterials, Nanoremediation

Abstract

Nanoremediation approaches have been applied to remove oil from surface and ground water as oil spills have been found to have long-term negative consequences for the ecosystem. Nanoremediation via the nanosorption mechanism of different environmental matrices in the world at large is at its formative stages despite the alarming and extensive prevalence of petroleum related environmental pollution. Over 9 million barrels of oil have been leaked in the last five decades, making that ecosystem one of the most deteriorated by oil exploration and extraction activities. The goal of this research is to assess the current status, trends, and future prospects of the nanosorption of surface and ground water in oil spill regions. High surface area of nanomaterials, wide spectrum of treatable contaminants, non-generation of intermediate or secondary products, as well as speed and extent of contaminant destruction give nanoremediation a superior comparative edge over other treatment technologies. Notably, the remediation efficiency of a cleanup is highly dependent on the type of material and treatment routes employed. It is imperative to employ a concerted and practical approach to the development of nanotechnology to combat the bedeviling oil pollution challenges faced in oil producing counties.

Dimensions

H. Jafarzadeh, M. Mahdianpari, S. Homayouni, F. Mohammadimanesh, & M. Dabboor, “Oil spill detection from synthetic aperture radar earth observations: a meta-analysis and comprehensive review”, GIScience Remote Sensing 58 (2021) 1022. https://doi.org/10.1080/15481603.2021.1952542

A. G. Kostianoy & A. Carpenter, History, Sources and Volumes of Oil Pollution in the Mediterranean Sea, In: A. Carpenter & A. Kostianoy (Eds.), Oil Pollution in the Mediterranean Sea: Part I. Handbook of Environmental Chemistry. Springer, 83, (2018) 9. https://doi.org/10.1007/698 2018 369

U. Passow & S. A. Stout, “Character and sedimentation of “lingering” macondo oil to the deep-sea after the Deepwater Horizon Oil Spill”, Marine Chemmistry 218 (2020) 103733. https://doi.org/10.1016/j.marchem.2019.103733

O. N. Albert, D. Amaratunga, & R. P. Haigh, “Evaluation of the impacts of oil spill disaster on communities and evaluation of the impacts of oil spill disaster on communities and its influence on restiveness in Niger Delta , Nigeria”, Procedia Engineering 212 (2018) 1054. https://doi.org/10.1016/j.proeng.2018.01.136

A. J. Pete, B. Bharti, & M. G. Benton, “Nano-enhanced bioremediation for oil spills: a review”, ACS ES&T Engineering 1 (2021) 928.

T. Nordam, C. J. Beegle-Krause, J. Skancke, R. Nepstad, & M. Reed, “Improving oil spill trajectory modelling in the Arctic”, Marine Pollution Bulletin 140 (2019) 65.

D. Dave & A. E. Ghaly, “Remediation technologies for marine oil spills: a critical review and comparative analysis”, American Journal of Environmental Sciences 7 (2011) 424.

G. Guidi, M. Sliskovic, A. C. Violante, & L. Vukic, “Application of the analytic hierarchy process (AHP) to select the best oil spill cleanup method in marine protected areas for calm sea condition”, Global Nest Journal 22 (2020) 354.

A. M. Atta, M. M. S. Abdullah, H. A. Al-Lohedan, & N. H. Mohamed, “Novel superhydrophobic sand and polyurethane sponge coated with silica/modified asphaltene nanoparticles for rapid oil spill cleanup”, Nanomaterials 9 (2019) 187.

M. S. Islam, N. R. Sarker, M. Habib, M. Y. Ali, & T. Yeasmin, “Effect of different soil types on growth and production of Napier-4 at the Regional Station of BLRI”, Asian Journal of Medical and Biological Research 3 (2017) 182. https://doi.org/10.3329/ajmbr.v3i2.33566

S. Chakrabortty, J. Nayak, & P. Chakraborty, “Chemical Stabilization of Oil by Elastomizers, In: P. Das, S. Manna & J. K. Pandey (Eds.), Advances in Oil-Water Separation. Elsevier, 2022, 233–248. https://doi.org/10.1016/B978-0-323-89978-9.00022-7

M. O. Adebajo, R. L. Frost, J. T. Kloprogge, O. Carmody, & S. Kokot, “Porous materials for oil spill cleanup: a review of synthesis and absorbing properties”, Journal of Porous Materials 10 (2003) 159. https://doi.org/10.1023/A:1027484117065

V. L. Bopp, N. A. Mistratova, E. A. Petrakovskaya, M. I. Teremova, & Y. L. Gurevich, “The use of biogenic nanoparticles of ferrihydrite in the propagation of horticultural crops by cutting”, IOP Conference Series: Earth and Environmental Science 421 (2020) 062014. https://doi.org/10.1088/1755-1315/421/6/062014

O. K. Karakasi & A. Moutsatsou, “Surface modification of high calcium fly ash for its application in oil spill clean up”, Fuel 89 (2010) 3966. https://doi.org/10.1016/j.fuel.2010.06.029

R. K. Ibrahim, A. El-Shafie, L. S. Hin, N. S. B. Mohd, M. M. Aljumaily, S. Ibraim, & M. A. AlSaadi, “A clean approach for functionalized carbon nanotubes by deep eutectic solvents and their performance in the adsorption of methyl orange from aqueous solution”, Journal of Environmental Management 235 (2019) 521. https://doi.org/10.1016/j.jenvman.2019.01.070

R. E. Mfon, J. J. Deshi, Z. Al Amri, & J. S. Madugu, “Biochemical synthesis, characterization and electrodeposition of silver nanoparticles on a gold substrate”, Journal of the Nigerian Society of Physical Sciences 4 (2022) 1. https://doi.org/10.46481/jnsps.2022.796

L. O. Animasahun, B. A. Taleatu, S. A. Adewinbi, H. S. Bolarinwa, & A. Y. Fasasi, “Synthesis of SnO 2 /CuO/SnO 2 multi-layered structure for photoabsorption: compositional and some interfacial structural studies”, Journal of the Nigerian Society of Physical Sciences 3 (2021) 74. https://doi.org/10.46481/jnsps.2021.160

B. Z. Mutaliyeva, A. B. Tleuova, G. M. Madybekova, & A. S. Kurmanbayeva, “Study of submicrocapsules structure stabilized by modified silica dioxide nanoparticles”, IOP Conference Series: Materials Science and Engineering 826 (2020) 012029. https://doi.org/10.1088/1757-899X/826/1/012029

A. Sadeghpour, F. Pirolt, & O. Glatter, “Submicrometer-sized pickering emulsions stabilized by silica nanoparticles with adsorbed oleic acid”, Langmuir 29 (2013) 6004. https://doi.org/10.1021/la4008685

D. Mehta, S. Mazumdar, & S. K. Singh, “Magnetic adsorbents for the treatment of water / wastewater -a review”, Journal of Water Process Engineering 7 (2015) 244. https://doi.org/10.1016/j.jwpe.2015.07.001

R. Gu, C. Li, X. Shi, & H. Xiao, “Naturally occurring protein/polysaccharide hybrid nanoparticles for stabilizing oil-in-water pickering emulsions and the formation mechanism”, Food Chemistry 395 (2022) 133641. https://doi.org/10.1016/j.foodchem.2022.133641

J. Texter, “Pickering emulsions and dispersions—an early perspective”, Colloid and Polymer Science 300 (2022) 587. https://doi.org/10.1007/s00396-022-04973-3

C. Brekke & A. H. S. Solberg, Oil spill detection by satellite remote sensing, Remote Sensing of Environment 95 (2005) 1. https://doi.org/10.1016/j.rse.2004.11.015

D. Hatchell & H. Daigle, “Examining the Dynamic Stability of Pickering Emulsions during Flow through Porous Media”, 5 (2019).

K. Qiao, W. Tian, J. Bai, L. Wang, J. Zhao, Z. Du, & X. Gong, “Application of magnetic adsorbents based on iron oxide nanoparticles for oil spill remediation: a review”, Journal of the Taiwan Institute of Chemical Engineers 97 (2019) 227. https://doi.org/10.1016/j.jtice.2019.01.029

W. G. Kreyling, M. Semmler-Behnke, & Q. Chaudhry, “A complementary definition of nanomaterial”, Nano Today 5 (2010) 165. https://doi.org/10.1016/j.nantod.2010.03.004

A. A. Nikkhah, H. Zilouei, A. Asadinezhad, & A. Keshavarz, “Removal of oil from water using polyurethane foam modified with nanoclay”, Chemical Engineering Journal 262 (2015) 278. https://doi.org/10.1016/j.cej.2014.09.077

E. A. J. Bleeker, W. H. de Jong, R. E. Geertsma, M. Groenewold, E. H. W. Heugens, M. Koers-Jacquemijns, D. van de Meent, J. R. Popma, A. G. Rietveld, S. W. P. Wijnhoven, F. R. Cassee, & A. G. Oomen, “Considerations on the eu definition of a nanomaterial: science to support policy making”, Regulatory Toxicology and Pharmacology 65 (2013) 119. https://doi.org/10.1016/j.yrtph.2012.11.007

J. Tian, J. Xu, F. Zhu, T. Lu, C. Su, & G. Ouyang, “Application of nanomaterials in sample preparation”, J Journal of Chromatography A 1300 (2013) 2. https://doi.org/10.1016/j.chroma.2013.04.010

A. Kolhatkar, A. Jamison, D. Litvinov, R. Willson, & T. Lee, “Tuning the magnetic properties of nanoparticles”, International Journal of Molecular Sciences 14 (2013) 15977. https://doi.org/10.3390/ijms140815977

P. Nigam, I. M. Banat, D. Singh, & R. Marchant, “Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes”, Process Biochemistry 31 (1996) 435.

K. Vijayaraghavan & Y.-S. Yun, “bacterial biosorbents and biosorption”, Biotechnology Advances 26 (2008) 266. https://doi.org/10.1016/j.biotechadv.2008.02.002

A. Orue, M. A. Corcuera, C. Peña, A. Eceiza, & A. Arbelaiz, “Bionanocomposites based on thermoplastic starch and cellulose nanofibers”, Journal of Thermoplastic Composite Materials 29 (2016) 817. https://doi.org/10.1177/0892705714536424

H. Li, J. Zhai, J. Tian, Y. Luo, & X. Sun, “Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury(II) ion in aqueous solution”, Biosensors and Bioelectronics 26 (2011) 4656. https://doi.org/10.1016/j.bios.2011.03.026

H. I. Gomes, L. M. Ottosen, A. B. Ribeiro, & C. Dias-Ferreira, “Treatment of a suspension of PCB contaminated soil using iron nanoparticles and electric current”, Journal of Environmental Management 151 (2015) 550. https://doi.org/10.1016/j.jenvman.2015.01.015

B. Thomas, B. S. M. Vithiya, T. A. A. Prasad, S. B. Mohamed, C. M. Magdalane, K. Kaviyarasu, & M. Maaza, “Antioxidant and photocatalytic activity of aqueous leaf extract mediated green synthesis of silver nanoparticles using Passiflora Edulis f. Flavicarpa, Journal of Nanoscience and Nanotechnology 19 (2019) 2640. https://doi.org/10.1166/jnn.2019.16025

M. T. Alsaba, M. F. Al Dushaishi, & A. K. Abbas, “A comprehensive review of nanoparticles applications in the oil and gas industry”, Journal of Petroleum Exploration and Production Technology 10 (2020) 1389. https://doi.org/10.1007/s13202-019-00825-z

I. A. Amar, S. S. Kanah, H. A. Hijaz, M. A. Abdulqadir, S. A. Shamsi, I. A. Abdalsamed, & M. A. Samba, “Surfactant-assisted sol-gel synthesis of zinc ferrite magnetic nanoparticles for oil spills cleanup from seawater and antibacterial activity applications”, World Journal of Engineering (2022). https://doi.org/10.1108/WJE-10-2021-0605

R. Sivarethinamohan & S. Sujatha, “An overview of nanomaterial technologies in the management of wastewater treatment, Materials Today: Proceedings 47 (2021) 1078. https://doi.org/10.1016/j.matpr.2021.06.447

J. Pandey, Biopolymers and Their Application in Wastewater Treatment, in Emerging Eco-friendly Green Technologies for Wastewater Treatment, R. N. Bharagava (Ed.), Springer 2020, 245–266. https://doi.org/10.1007/978-981-15-1390-9 11

F. Guerra, M. Attia, D. Whitehead, & F. Alexis, “Nanotechnology for environmental remediation: materials and applications”, Molecules 23 (2018) 1760. https://doi.org/10.3390/molecules23071760

O. S. Fatoki, O. S. Ayanda, F. A. Adekola, & B. J. Ximba, “Sorption of triphenyltin chloride to nFe3O4, fly ash, and nFe3O4 /fly ash composite material in seawater”, CLEAN - Soil, Air, Water 42 (2014) 472. https://doi.org/10.1002/clen.201300180

O. S. Ayanda, O. S. Fatoki, F. A. Adekola, & B. J. Ximba, “Remediation of tributyltin contaminated seawater by adsorption using nFe 3 O 4 , activated carbon and NFe 3 O 4 /activated carbon composite material”, Water, Air, & Soil Pollution 224 (2013) 1684. https://doi.org/10.1007/s11270-013-1684-0

P. G. Tratnyek & R. L. Johnson, “Nanotechnologies for environmental cleanup”, Nano Today 1 (2006) 44. https://doi.org/10.1016/S1748-0132(06)70048-2

N. N. Nassar, “Kinetics, equilibrium and thermodynamic studies on the adsorptive removal of nickel, cadmium and cobalt from wastewater by superparamagnetic iron oxide nanoadsorbents”, The Canadian Journal of Chemical Engineering 90 (2012) 1231. https://doi.org/10.1002/cjce.20613

M. Chen, W. Jiang, F. Wang, P. Shen, P. Ma, J. Gu, J. Mao, & F. Li, “Synthesis of highly hydrophobic floating magnetic polymer nanocomposites for the removal of oils from water surface”, Applied Surface Science 286 (2013) 249. https://doi.org/10.1016/j.apsusc.2013.09.059

C. A. Franco, F. B. Cortés, & N. N. Nassar, “Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue”, Journal of Colloid and Interface Science 425 (2014) 168. https://doi.org/10.1016/j.jcis.2014.03.051

J. Shojaeiarani, D. S. Bajwa, & K. Hartman, “Esterified cellulose nanocrystals as reinforcement in poly(lactic acid) nanocomposites”, Cellulose 26 (2019) 2349. https://doi.org/10.1007/s10570-018-02237-4

T. Heinze, “Nanoscience and nanotechnology in Europe: analysis of publications and patent applications including comparisons with the United States”, Nanotech. L. Bus. 1 (2004) 427.

S. R. Collinson & W. Thielemans, “The catalytic oxidation of biomass to new materials focusing on starch, cellulose and lignin”, Coordination Chemistry Reviews 254 (2010) 1854. https://doi.org/10.1016/j.ccr.2010.04.007

A. Lawal, M. Wang, P. Stephenson, & H. Yeung, “Dynamic modelling of CO 2 absorption for post combustion capture in coal-fired power plants”, Fuel 88 (2009) 2455. https://doi.org/10.1016/j.fuel.2008.11.00

A. Chen, J. Xu, W. Chiang, & C. L. L. Chai, “L-threonine-catalysed asymmetric ?-hydroxymethylation of cyclohexanone: application to the synthesis of pharmaceutical compounds and natural products”, Tetrahedron 66 (2010) 1489. https://doi.org/10.1016/j.tet.2009.11.100

M. R. Zakaria, M. H. Abdul Kudus, H. Md. Akil, & M. Z. Mohd Thirmizir, “Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties”, Composites Part B: Engineering 119 (2017) 57. https://doi.org/10.1016/j.compositesb.2017.03.023

K. M. Mostafa & A. A. EL-Sanabary, “Green and efficient tool for grafting acrylonitrile onto starch nanoparticles using microwave irradiation”, Journal of Polymer Research 27 (2020) 92. https://doi.org/10.1007/s10965-020-02069-6

B. Singh, A. Bhattacharya, V. A. Channashettar, C. P. Jeyaseelan, S. Gupta, P. M. Sarma, A. K. Mandal, & B. Lal, “Biodegradation of oil spill by petroleum refineries using consortia of novel bacterial strains”, Bulletin of Environmental Contamination and Toxicology 89 (2012) 257. https://doi.org/10.1007/s00128-012-0668-x

N. N. Nassar, “Asphaltene adsorption onto alumina nanoparticles: kinetics and thermodynamic studies”, Energy & Fuels 24 (2010) 4116. https://doi.org/10.1021/ef101230g

N. N. Nassar, A. Hassan, L. Carbognani, F. Lopez-Linares, & P. Pereira-Almao, “Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes”, Fuel 95 (2012) 257. https://doi.org/10.1016/j.fuel.2011.09.022

N. N. Nassar, A. Hassan, & P. Pereira-Almao, “Metal oxide nanoparticles for asphaltene adsorption and oxidation”, Energy & Fuels 25 (2011) 1017. https://doi.org/10.1021/ef101230g

A. Atta, H. Al-Lohedan, & S. Al-Hussain, “Functionalization of magnetite nanoparticles as oil spill collector”, International Journal of Molecular Sciences 16 (2015) 6911. https://doi.org/10.3390/ijms16046911

A. Abolghasemi Mahani, S. Motahari, & A. Mohebbi, “Sol-gel derived flexible silica aerogel as selective adsorbent for water decontamination from crude oil”, Marine Pollution Bulletin 129 (2018) 438. https://doi.org/10.1016/j.marpolbul.2017.10.012

C. Zhang, C. Dai, H. Zhang, S. Peng, X. Wei, & Y. Hu, “Regeneration of mesoporous silica aerogel for hydrocarbon adsorption and recovery”, Marine Pollution Bulletin 122 (2017) 129. https://doi.org/10.1016/j.marpolbul.2017.06.036

M. M. A Aziz, K. A. Kassim, M. ElSergany, S. Anuar, M. E. Jorat, H. Yaacob, A. Ahsan, M. A. Imteaz, & Arifuzzaman, “Recent advances on palm oil mill effluent (pome) pretreatment and anaerobic reactor for sustainable biogas production”, Renewable and Sustainable Energy Reviews 119 (2020) 109603. https://doi.org/10.1016/j.rser.2019.109603

A. F. Avila, V. C. Munhoz, A. M. de Oliveira, M. C. G. Santos, G. R. B. S. Lacerda, & C. P. Gonçalves, “Nano-based systems for oil spills control and cleanup”, Journal of Hazardous Materials 272 (2014) 20. https://doi.org/10.1016/j.jhazmat.2014.02.038

K. Sharma, S. Kalita, N. Sen Sarma, & A. Devi, “Treatment of crude oil contaminated wastewater via an electrochemical reaction”, RSC Advances 10 (2020) 1925. https://doi.org/10.1039/C9RA09202A

M. E. M. Soudagar, N. R. Banapurmath, A. Afzal, N. Hossain, M. M. Abbas, M. A. C. M. Haniffa, B. Naik, W. Ahmed, S. Nizamuddin, & N. M. Mubarak, “Study of diesel engine characteristics by adding nanosized zinc oxide and diethyl ether additives in mahua biodiesel–diesel fuel blend”, Scientific Reports 10 (2020) 15326. https://doi.org/10.1038/s41598-020-72150-z

M. Sadeghnejad & G. Shafabakhsh, “Experimental study on the physical and rheological properties of bitumen modified with different nano materials (nano SiO 2 & Nano TiO 2 ), International Journal of Nanoscience and Nanotechnology 13 (2017) 253.

P. Calandra, V. Loise, M. Porto, C. Oliviero Rossi, D. Lombardo, & P. Caputo, “Exploiting nanoparticles to improve the properties of bitumens and asphalts: At what extent is it really worth it?, Applied Sciences 10, (2020) 5230. https://doi.org/10.3390/app10155230

R. Ahmadi, Z. Farmani, S. Osfouri, & R. Azin, “Condensate blockage remediation in a gas reservoir through wettability alteration using natural CaCO 3 nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects 579 (2019) 123702. https://doi.org/10.1016/j.colsurfa.2019.123702

E. Rozhina, S. Batasheva, R. Miftakhova, X. Yan, A. Vikulina, D. Volodkin, & R. Fakhrullin, “Comparative cytotoxicity of kaolinite, halloysite, multiwalled carbon nanotubes and graphene oxide”, Applied Clay Science 205 (2021) 106041. https://doi.org/10.1016/j.clay.2021.106041

Y. Liu & S. Kumar, “Polymer/carbon nanotube nano composite fibers - a review”, ACS Applied Materials & Interfaces 6 (2014) 6069. https://doi.org/10.1021/am405136s

X. Gui, H. Li, K. Wang, J. Wei, Y. Jia, Z. Li, L. Fan, A. Cao, H. Zhu, & D. Wu, “Recyclable carbon nanotube sponges for oil absorption”, Acta Materialia 59 (2011) 4798.

https://doi.org/10.1016/j.actamat.2011.04.022

M.-Q. Zhao, J.-Q. Huang, Q. Zhang, W.-L. Luo, & F. Wei, “Improvement of oil adsorption performance by a sponge-like natural vermiculite-carbon nanotube hybrid”, Applied Clay Science 53 (2011) 1. https://doi.org/10.1016/j.clay.2011.04.003

L. Y. Jun, N. M. Mubarak, M. J. Yee, L. S. Yon, C. H. Bing, M. Khalid, & E. C. Abdullah, “An overview of functionalised carbon nanomaterial for organic pollutant removal”, Journal of Industrial and Engineering Chemistry 67 (2018) 175.

K. Geim, “Graphene: status https://doi.org/10.1126/science.1158877 and prospects”, Science 324 (2009) 5934.

R. H. Liu, “Health-promoting components of fruits and vegetables in the diet”, Advances in Nutrition 4 (2013) 384S.

K. Lu, X. Yang, J. Shen, B. Robinson, H. Huang, D. Liu, N. Bolan, J. Pei, & H. Wang, “Effect of bamboo and rice straw biochars on the bioavailability of Cd , Cu , Pb and Zn to Sedum plumbizincicola”, Agriculture, Ecosystems and Environment 191 (2014) 124.

G. Ersan, Y. Kaya, O. G. Apul, & T. Karanfil, “Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions”, Science of the Total Environment 565 (2016) 811. https://doi.org/10.1016/j.scitotenv.2016.03.224

S. Guo, G. Zhang, Y. Guo, & J. C. Yu, “Graphene oxide–Fe 2 O 3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants”, Carbon 60 (2013) 437. https://doi.org/10.1016/j.carbon.2013.04.058

Zambianchi, M., Durso, M., Liscio, A., Treossi, E., Capobianco, M. L., Aluigi, A., Kovtun, A., Corticelli, F., Brucale, M., Palermo, V., Luisa, M., & Melucci, M. (2017). Engineering, “Graphene oxide doped polysulfone membrane adsorbers for the removal of organic contaminants from water”, Chemical Engineering Journal 326 (2017) 130. https://doi.org/10.1016/j.cej.2017.05.143

X. Dong, X. Wang, J. Wang, H. Song, X. Li, L. Wang, M. B. Chan-Park, C. M. Li, & P. Chen, “Synthesis of a MnO 2 -Graphene foam hybrid with controlled MnO 2 particle shape and its use as a supercapacitor electrode”, Carbon 50 (2012) 4865. https://doi.org/10.1016/j.carbon.2012.06.014

J. Niu, Y. J. Shin, Y. Lee, J. Ahn, & H. Yang, “Graphene induced tunability of the surface plasmon resonance”, Applied Physics Letters 100 (2012) 061116. https://doi.org/10.1063/1.3683534

Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, & H.-M. Cheng, “Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition”, Nature Materials 10 (2011) 424. https://doi.org/10.1038/nmat3001

M. Z. Iqbal & A. A. Abdala, “Oil spill cleanup using graphene”, Environmental Science and Pollution Research 20 (2013) 3271. https://doi.org/10.1007/s11356-012-1257-6

O. Christiana, A. Bamidele, I. E. Taiwo, & O. A. Olubunmi, “Parasitological and epidemiological studies of Wuchereria bancrofti in Imobi , Ijebu East , Local Government Area of Ogun State , South Western Nigeria”, The Journal of Basic and Applied Zoology 82 (2021) 49.

P. He, K. Yang, W. Wang, F. Dong, L. Du, & Y. Deng, “Reduced graphene oxide CoFe2O4 composites for supercapacitor electrode 1”, Russian Journal of Electrochemistry 49 (2013) 405. https://doi.org/10.1134/S1023193513040101

D. Wang, S. C. Pillai, S. H. Ho, J. Zeng, Y. Li, & D. D. Dionysiou, “Plasmonic-based nano-materials for environmental remediation”, Applied Catalysis B: Environmenta 237 (2018) 721. https://doi.org/10.1016/j.apcatb.2018.05.094

J. Zuo, J. Zhu, M. Zhang, Q. Hong, J. Han, & J. Liu, “Synergistic photoelectrochemical performance of la-doped RuO2-TiO2/Ti electrodes”, Applied Surface Science 502 (2020) 144288. https://doi.org/10.1016/j.apsusc.2019.144288

A. Kumar, P. Choudhary, A. Kumar, P. H. C. Camargo, & V. Krishnan, “Recent advances in plasmonic photocatalysis based on TiO 2 and noble metal nanoparticles for energy conversion, environmental remediation, and organic synthesis, Small 18 (2022) 2101638. https://doi.org/10.1002/smll.202101638

M. Hu, J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, & Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications”, Chemical Society Reviews 35 (2006) 1084. https://doi.org/10.1039/b517615h

Q. Zhang, D. Q. Lima, I. Lee, F. Zaera, M. Chi, & Y. Yin, “A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration”, Angewandte Chemie 50 (2011) 7088. https://doi.org/10.1002/anie.201101969

L. Nie, J. Yu, M. Jaroniec, & F. F. Tao, “Room-temperature catalytic oxidation of formaldehyde on catalysts”, Catalysis Science & Technology 6 (2016) 3649. https://doi.org/10.1016/0032-9592(95)00085-2

H. Tan, J. Wang, S. Yu, & K. Zhou, “Support morphology-dependent catalytic activity of Pd/CeO 2 for formaldehyde oxidation”, ACS Environmental Science & Technology 49 (2015) 14. https://doi.org/10.1021/acs.est.5b01264

H. J. Osofsky, L. A. Palinkas, & J. M. Galloway, “Mental health effects of the gulf oil spill”, Disaster Medicine and Public Health Preparedness 4 (2010) 273. https://doi.org/10s.1001/dmp.2010.45

E. Ayad, A. Cayla, F. Rault, A. Gonthier, T. LeBlan, C. Campagne, & E. Devaux, “Influence of rheological and thermal properties of polymers during melt spinning on bicomponent fiber morphology”, Journal of Materials Engineering and Performance 25 (2016) 3296. https://doi.org/10.1007/s11665-016-2193-2

C. J. Ellison, A. Phatak, D. W. Giles, C. W. Macosko, & F. S. Bates, “Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup”, Polymer 48 (2007) 3306. https://doi.org/10.1016/j.polymer.2007.04.005

A. Houshangi, S. Jamehbozorgi, M. Yousefi, & R. Ghiasi, “Preparation of CoFe 2 O 4 /sawdust and NiFe 2 O 4 /sawdust magnetic nanocomposites for removal of oil from the water surface”, Journal of the Chinese Chemical Society 67 (2020) 288. https://doi.org/10.1002/jccs.201800452

P. Pascariu Dorneanu, C. Cojocaru, P. Samoila, N. Olaru, A. Airinei, & A. Rotaru, “Novel fibrous composites based on electrospun PSF and PVDF ultrathin fibers reinforced with inorganic nanoparticles: evaluation as oil spill sorbents”, Polymers for Advanced Technologies 29 (2018) 1435. https://doi.org/10.1002/pat.4255

B. Song, J. Zhu, & H. Fan, “Magnetic fibrous sorbent for remote and efficient oil adsorption”, Marine Pollution Bulletin 120 (2017) 159. https://doi.org/10.1016/j.marpolbul.2017.05.011

X. Zhou, F. Wang, Y. Ji, W. Chen, & J. Wei, “Fabrication of hydrophilic and hydrophobic sites on polypropylene nonwoven for oil spill cleanup: two dilemmas affecting oil sorption”, Environmental Science and Technology 50 (2016) 3860. https://doi.org/10.1021/acs.est.5b06007

Q. Liu, L. Bin Zhong, Q. B. Zhao, C. Frear, & Y. M. Zheng, “Synthesis of Fe 3 O 4 /polyacrylonitrile composite electrospun nanofiber mat for effective Adsorption of Tetracycline”, ACS Applied Materials and Interfaces 7 (2015) 14573. https://doi.org/10.1021/acsami.5b04598

S. Mishra, M. Mandhan, & H. Mahalingam, “Highly efficient solar light-driven BiOX (X=Br/Cl/I) and BiOY heterojunction (Y=Br/Cl) nano photocatalysts in suspended and immobilised forms for malachite green dye wastewater treatment”, Environmental Science and Pollution Research (2021). https://doi.org/10.1007/s11356-021-17636-7

Y.-Y. Hsu, T.-L. Hsiung, H. Paul Wang, Y. Fukushima, Y.-L. Wei, & J.-E. Chang, “Photocatalytic degradation of spill oils on TiO 2 nanotube thin films”, MarinePollution Bulletin 57 (2008) 873.

R. L. Ziolli & W. F. Jardim, “Photochemical transformations of water-soluble fraction (wsf) of crude oil in marine waters”, Journal of Photochemistry and Photobiology A: Chemistry 155 (2003) 243. https://doi.org/10.1016/S1010-6030(02)00397-0

M. A. Tony, Y. Q. Zhao, P. J. Purcell, & M. F. El-Sherbiny, “Evaluating the photo-catalytic application of fenton’s reagent augmented with TiO 2 and ZnO for the mineralization of an oil-water emulsion”, Journal of Environmental Science and Health, Part A 44 (2009) 488. https://doi.org/10.1080/10934520902719894

S. R. Joshi & D. Kalita, Biological, “Chemical and Nanosorption Approaches in Remediation of Metal Wastes, in Remediation Measures for Radioactively Contaminated Areas”, Springer International Publishing, Cham, 2019, pp. 93–111.

A. Garg, P. R. Shukla, D. Ghosh, M. Kapshe, & N. Rajesh, “Future greenhouse gas and local pollutant emissions for india: policy links and disjoints”, Mitigation and Adaptation Strategies for Global Change 8 (2003) 71. https://doi.org/10.1023/A:1025828208823

S. E. Shaibu, F. A. Adekola, H. I. Adegoke, & O. S. Ayanda, “A comparative study of the adsorption of methylene blue onto synthesized nanoscale zero-valent iron-bamboo and manganese-bamboo composites”, Materials (Basel) 7 (2014) 4493. https://doi.org/10.3390/ma7064493

S. E. Shaibu, E. J. Inam, E. A. Moses, N. A. Abraham, & N.-A. O. Offiong, Remediation of Organic Pollutants Using Biobased Nanomaterials, In: N. Kumar &V. Shukla (Eds.), Persistent Organic Pollutants in the Environment: Origin and Role. CRC Press, 2021. https://www.doi.org/10.1201/9781003053170-11-11

Y. Bulut & H. Aydin, “A kinetics and thermodynamics study of methylene blue adsorption on wheat shells”, Desalination 194 (2006) 259 https://.doi:10.1016/j.desal.2005.10.032

V. K. Gupta, I. Ali, T. A. Saleh, A. Nayak, & S. Agarwal, “Chemical treatment technologies for waste water recycling - an overview”, RSC Advances 2 (2012) 6380. https://doi.org/10.1039/c2ra20340e

S. K. Gupta, “Study of nanotechnology and its application”, Journal of Physics & Optics Sciences 2 (2020) 1. https://doi.org/10.47363/jpsos/2020(2)107

F. Fu & Q. Wang, “Removal of heavy metal ions from wastewaters: a review”, Journal of Environmental Management 92 (2011) 407. https://doi.org/10.1016/j.jenvman.2010.11.011

C. L. Mangun, K. R. Benak, J. Economy, & K. L. Foster, “Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia”, Carbon 39 (2001) 1809.

M. L. Murray, S. M. Poulsen, & B. R. Murray, “Decontaminating terrestrial oil spills : a comparative assessment of dog fur , human hair , peat moss and polypropylene sorbents”, IOP Conference Series. Materials Science and Engineering 12 (2020) 8. https://doi.org/10.1088/1757-899X/826/1/012029

S. Pourmand, M. Abdouss, & A. Rashidi, “Journal of industrial and engineering chemistry fabrication of nanoporous graphene by chemical vapor deposition ( cvd ) and its application in oil spill removal as a recyclable nanosorbent”, Journal of Industrial and Engineering Chemistry 22 (2015) 8. https://doi.org/10.1016/j.jiec.2014.06.018

C. M. Navarathna N. B. Dewage, C. K. Jaylen Pennisson, R. Henderson, B. Lashley, X. Zhang, E. B. Hassan, F. Perez, D. Mohan, C. U. Pittman Jr., and T. Mlsna, “Biochar adsorbents with enhanced hydrophobicity for oil spill removal”, ACS Applied Materials and Interfaces 12 (2020) 9248. https://doi.org/10.1021/acsami.9b20924

I. A. Amar, S. I. Faraj, M. A. Abdulqadir, A. Ihssin, F. A. Altohami, & M. A. Samba, “Oil spill removal from water surfaces using zinc ferrite magnetic nanoparticles as a sorbent material”, Iraqi Journl of Science 62 (2021) 718.

M. M. Roberto & C. A. Christofoletti, “How to assess nanomaterial toxicity? an environmental and human health approach”, Nanomaterials - Toxicity, Human Health and Environment 1 (2020). https://doi.org/10.5772/intechopen.88970

X. He, P. Fu, W. G. Aker, & H. M. Hwang, “Toxicity of engineered nanomaterials mediated by nano–bioeco interactions”, Journal of Environmental Science and Health - Part C Environmental Carcinogenesis and Ecotoxicology Reviews 36 (2018) 21. https://doi.org/10.1080/10590501.2017.1418793

M. Sonane, N. Moin, & A. Satish, “The role of antioxidants in attenuation of caenorhabditis elegans lethality on exposure to tio2 and zno nanoparticles”, Chemosphere 187 (2017) 240. https://doi.org/10.1016/j.chemosphere.2017.08.080

M. Toledano, M. Toledano-Osorio, M. D. Navarro-Hortal, A. Varela-López, R. Osorio, & J. L. Quiles, “Novel polymeric nanocarriers reduced zinc and doxycycline toxicity in the nematode caenorhabditis elegans”, Antioxidants 8 (2019) 19. https://doi.org/10.3390/antiox8110550

P. Ganguly, A. Breen, & S. C. Pillai, “Toxicity of nanomaterials: exposure, pathways, assessment, & recent advances”, ACS Biomaterials Science and Engineering 4 (2018) 2237. https://doi.org/10.1021/acsbiomaterials.8b00068

A. M. Studer, L. K. Limbach, L. Van Duc, F. Krumeich, E. K. Athanassiou, L. C. Gerber, H. Moch, & W. J. Stark, “Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles”, Toxicology Letters 197 (2010) 169. https://doi.org/10.1016/j.toxlet.2010.05.012

R. Ortega, C. Bresson, C. Gautier, S. Roudeau, L. Perrin, M. Janin, M. Floriani,V. Aloin, A. Carmona, V. Malard, “Low-solubility particles and a trojan-horse type mechanism of toxicity: the case of cobalt oxide on human lung cells”, Particle and Fibre Toxicology 11 (2014) 1. https://doi.org/10.1186/1743-8977-11-14

J. W. Ballway & B. Song, “Translational approaches with antioxidant phytochemicals against alcohol-mediated oxidative stress , gut dysbiosis , intestinal barrier dysfunction , and fatty liver disease”, Antioxidants 10 (2021) 384.

L. Voss, E. Hoché, V. Stock, L. Böhmert, A. Braeuning, A. F. Thünemann, & H. Sieg, “Intestinal and hepatic effects of iron oxide nanoparticles”, Archives of Toxicology 95 (2021) 895. https://doi.org/10.1007/s00204-020-02960-7

G. Maiorano, S. Sabella, B. Sorce, V. Brunetti, M. A. Malvindi, R. Cingolani, & P. P. Pompa, “Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response”, ACS Nano 4 (2010) 7481. https://doi.org/10.1021/nn101557e

C. Carnovale, D. Guarnieri, L. Di Cristo, I. De Angelis, G. Veronesi, A. Scarpellini, M. A. Malvindi, F. Barone, P. P. Pompa, & S. Sabella, “Biotransformation of silver nanoparticles into oro-gastrointestinal tract by integrated in vitro testing assay: generation of exposure-dependent physical descriptors for nanomaterial grouping”, Nanomaterials 11 (2021) 1587. https://doi.org/10.3390/nano11061587

S. Attarilar, J. Yang, M. Ebrahimi, Q. Wang, J. Liu, Y. Tang, & J. Yang, “The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: a brief review from the biomedical perspective”, Frontiers in Bioengineering and Biotechnology 8 (2020) 822. https://doi.org/10.3389/fbioe.2020.00822

R. Zheng & H. Zhang, “Regulation of electronic properties of metal oxide nanoparticles to reveal their toxicity mechanism and safe-by-design approach”, Advanced Biology 5 (2021) 1. https://doi.org/10.1002/adbi.202000220

M. Auffan, W. Achouak, J. Rose, M. A. Roncato, C. Chanéac, D. T. Waite, A. Masion, J. C. Woicik, M. R. Wiesner, & J. Y. Bottero, “Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward escherichia coli”, Environmental Science and Technology 42 (2008) 6730. https://doi.org/10.1021/es800086f

R. Madannejad, N. Shoaie, F. Jahanpeyma, M. H. Darvishi, M. Azimzadeh, & H. Javadi, “Toxicity of carbon-based nanomaterials: reviewing recent reports in medical and biological systems”, ChemicoBiological Interactions 307 (2019) 206. https://doi.org/10.1016/j.cbi.2019.04.036

H. Isobe, T. Tanaka, R. Maeda, E. Noiri, N. Solin, M. Yudasaka, S. Iijima, & E. Nakamura, “Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal-free carbon nanotube aggregates”, Angewandte Chemie 118 (2006) 6828. https://doi.org/10.1002/ange.200601718

M. Farmand, F. Jahanpeyma, A. Gholaminejad, M. Azimzadeh, F. Malaei, & N. Shoaie, “Carbon nanostructures: a comprehensive review of potential applications and toxic effects”, 3 Biotech 12 (2022) 1. https://doi.org/10.1007/s13205-022-03175-6

Published

2023-02-24

How to Cite

Prospects of nanosorption and photocatalysis in remediation of oil spills. (2023). Journal of the Nigerian Society of Physical Sciences, 5(1), 1043. https://doi.org/10.46481/jnsps.2023.1043

Issue

Section

Review Article

How to Cite

Prospects of nanosorption and photocatalysis in remediation of oil spills. (2023). Journal of the Nigerian Society of Physical Sciences, 5(1), 1043. https://doi.org/10.46481/jnsps.2023.1043