Optimization of Potassium Carbonate-based DES as Catalyst in the Production of Biodiesel via Transesterification



  • Abdulwasiu Abdurrahman Department of Chemical Engineering, Ahmadu Bello University, Zaria, Nigeria
  • Saidu Muhammad Waziri Department of Chemical Engineering, Ahmadu Bello University, Zaria, Nigeria
  • Olusegun Ayoola Ajayi Department of Chemical Engineering, Ahmadu Bello University, Zaria, Nigeria
  • Fadimatu Nyako Dabai Department of Chemical Engineering, University of Abuja, Nigeria


deep eutectic solvent, fatty acid methyl ester, Jatropha curcas oil, potassium carbonate, transesterification


Increasing energy demand necessitates the production of sustainable fuels, which can be in the form of bio-fuels. One of such bio-fuels is biodiesel, which is typically produced via transesterification. The development of homogeneous catalyst that is relatively easy to synthesize, cheap, reusable, and environmentally friendly, is a major issue in transesterification reaction. The use of Deep eutectic solvent (DES) as catalyst, is believed to be a significant step in the direction of attaining a sustainable bio-economy. In this study, deep eutectic solvent was synthesized from different mole ratios of K2CO3/glycerol. The synthesized DES was used as catalyst in the transesterification reaction to produce biodiesel from Jatropha curcas oil. Box-Behnken design (BBD) was used to determine the factors that significantly affect the biodiesel yield. Optimum fatty acid methyl ester (FAME) yield of 98.2845% was achieved at optimum conditions of 1:32.58 mole ratio of K2CO3/glycerol, 8.96% w/w concentration of DES, and 69.58 minutes. GC-MS analysis revealed that the produced biodiesel contained 98.87% ester content. The properties of the biodiesel produced were characterized and found to agree with those of ASTM D6751-12 standard. Thus, suggesting the synthesized DES is a promising catalyst in the transesterification reaction to produce biodiesel from Jatropha curcas oil.


P. Maheshwari, M. B. Haider, M. Yusuf, J. J. Kleme?s, A. Bokhari, M. Beg, A. Al-Othman, R. Kumar, A. K. Jaiswal, “A review on latest trends in cleaner biodiesel production: Role of feedstock, production methods, and catalysts”, Journal of Cleaner Production 355 (2022) 131588. https://doi.org/10.1016/j.jclepro.2022.131588.

O. O. Oluwasina, “Analysis of Adenanthera pavonine L. (Febaceae) Pod and Seed as Potential Pyrolysis Feedstock for Energy production”, Journal of the Nigerian Society of Physical Sciences 4 (2022) 555. https://doi.org/10.46481/jnsps.2022.555.

S. Sivamani, M A. S. Al Aamri, A. M. A. A. Jaboob, A. M. M. Kashoob, L. K. A. Al-Hakeem, M. S. M. S. Almashany, M. A. M. Safrar, “Heterogeneous Catalyzed Synthesis of Biodiesel from Crude Sunflower Oil”, Journal of the Nigerian Society of Physical Sciences 4 (2022) 230. https://doi.org/10.46481/jnsps.2022.230.

D. Y. C. Leung, X. Wu, M. K. H. Leung, “A review on biodiesel production using catalyzed transesterification”, Applied Energy 87 (2010) 1083. https://doi.org/10.1016/j.apenergy.2009.10.006.

P. Kalhor, K. Ghandi, “Deep Eutectic Solvents as Catalysts for Upgrading Biomass”, Catalysts 11 (2021) 178. https://doi.org/10.3390/catal11020178

L. Meher, D. Vidyasagar, S. Naik, “Technical aspects of biodiesel production by transesterification—a review”, Renewable and Sustainable Energy Reviews 10 (2006) 2, https://doi.org/10.1016/j.rser.2004.09.002.

A. Petracic, “Separation of Free Glycerol and Glycerides from Biodiesel by Means of Liquid-Liquid Extraction”, Science Journal of Energy Engineering 5 (2017) 87. https://doi.org/10.11648/j.sjee.20170504.12.87.

G. Laus, G. Bentivoglio, H. Schottenberger, V. Kahlenberg, H. Kopacka, T. R¨oder, H. Sixta, “Ionic Liquids: Current Developments, Potential and Drawbacks for Industrial Applications”, Lenzinger Berichte 84 (2005) 15.

T. Long, Y. Deng, S. Gan, J. Chen, “Application of Choline Chloride·xZnCl2 Ionic Liquids for Preparation of Biodiesel”, Chinese Journal of Chemical Engineering 18 (2010) 6. https://doi.org/10.1016/S1004-9541(08)60359-6.

H. Olivier-Bourbigou, L. Magna, D. Morvan, “Ionic liquids and catalysis: Recent progress from knowledge to applications”, Applied Catalysis A: General 373 (2010) 8. https://doi.org/10.1016/j.apcata.2009.10.008.

A. C. Cole, J. L. Jensen, I. Ntai, K. L. T. Tran, K. J. Weaver, D. C. Forbes, J. H. Davis, “Novel Brønsted Acidic Ionic Liquids and Their Use as Dual Solvent-Catalysts”, Journal of the American Chemical Society 124 (2002) 90. https://doi.org/10.1021/ja026290w.

A. A. Shamsuri, “Ionic Liquids: Preparations And Limitations”, MAKARA of Science Series 14 (2011) 677. https://doi.org/10.7454/mss.v14i2.677.

A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, “Novel solvent properties of choline chloride/urea mixturesElectronic supplementary information (ESI) available: spectroscopic data”, See http://www.rsc.org/suppdata/cc/b2/b210714g/, Chemical Communications 1 (2003) 70. https://doi.org/10.1039/b210714g.

L. Longo Jr., M. Craveiro, “Deep Eutectic Solvents as Unconventional Media for Multicomponent Reactions”, Journal of the Brazilian Chemical Society (2018) 147. https://doi.org/10.21577/0103-5053.20180147.

I. J. Stojkovi´c, O. S. Stamenkovi´c, D. S. Povrenovi´c, V. B. Veljkovi´c, “Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification”, Renewable and Sustainable Energy Reviews 32 (2014) 5. https://doi.org/10.1016/j.rser.2014.01.005.

D. Z. Troter, Z. B. Todorovi´c, D.R. Doki´c-Stojanovi´c, O.S. Stamenkovi´c, V.B. Veljkovi´c, “Application of ionic liquids and deep eutectic solvents in biodiesel production: A review”, Renewable and Sustainable Energy Reviews 61 (2016) 11. https://doi.org/10.1016/j.rser.2016.04.011.

N. Muhammad, Y. A. Elsheikh, M. I. A. Mutalib, A. A. Bazmi, R. A. Khan, H. Khan, S. Rafiq, Z. Man, I. khan, “An overview of the role of ionic liquids in biodiesel reactions”, Journal of Industrial and Engineering Chemistry 21 (2015) 46. https://doi.org/10.1016/j.jiec.2014.01.046.

A. P. Abbott, P. M. Cullis, M. J. Gibson, R. C. Harris, E. Raven, “Extraction of glycerol from biodiesel into a eutectic based ionic liquid”, Green Chemistry 9 (2007) 868. https://doi.org/10.1039/b702833d.

M. Hayyan, F. S. Mjalli, M. A. Hashim, I. M. AlNashef, “A novel technique for separating glycerine from palm oil-based biodiesel using ionic liquids”, Fuel Processing Technology. 91 (2010) 2, https://doi.org/10.1016/j.fuproc.2009.09.002.

K. Shahbaz, F. S. Mjalli, M. A. Hashim, I. M. AlNashef, “Eutectic solvents for the removal of residual palm oil-based biodiesel catalyst”, Separation and Purification Technology 81 (2011) 32. https://doi.org/10.1016/j.seppur.2011.07.032.

K. Shahbaz, S. Baroutian, F. S. Mjalli, M. A. Hashim, I. M. Al-Nashef, “Prediction of glycerol removal from biodiesel using ammonium and phosphunium based deep eutectic solvents using artificial intelligence techniques”, Chemometrics and Intelligent Laboratory Systems 118 (2012) 5. https://doi.org/10.1016/j.chemolab.2012.06.005.

H. Zhao, G.A. Baker, “Ionic liquids and deep eutectic solvents for biodiesel synthesis: a review”, Journal of Chemical Technology and Biotechnology 88 (2013). https://doi.org/10.1002/jctb.3935.

W. Huang, S. Tang, H. Zhao, S. Tian, “Activation of Commercial CaO for Biodiesel Production from Rapeseed Oil Using a Novel Deep Eutectic Solvent”, Industrial & Engineering Chemistry Research 52 (2013) 11943.


A. Hayyan, M.A. Hashim, M. Hayyan, F.S. Mjalli, I.M. AlNashef, “A novel ammonium based eutectic solvent for the treatment of free fatty acid and synthesis of biodiesel fuel”, Industrial Crops and Products 46 (2013) 33. https://doi.org/10.1016/j.indcrop.2013.01.033.

L. Gu, W. Huang, S. Tang, S. Tian, X. Zhang, “A novel deep eutectic solvent for biodiesel preparation using a homogeneous base catalyst”, Chemical Engineering Journal 259 (2015) 26. https://doi.org/10.1016/j.cej.2014.08.026.

M. L. Granados, M. D. Z. Poves, D. M. Alonso, R. Mariscal, F. C. Galisteo, R. Moreno-Tost, J. Santamar´ia, J. L. G. Fierro, “Biodiesel from sunflower oil by using activated calcium oxide”, Applied Catalysis B: Environmental 73 (2007) 17. https://doi.org/10.1016/j.apcatb.2006.12.017.

S. Gryglewicz, “Rapeseed oil methyl esters preparation using heterogeneous catalysts”, Bioresource Technology 70 (1999) 249. https://doi.org/10.1016/S0960-8524(99)00042-5.

S. Tang, C. L. Jones, H. Zhao, “Glymes as new solvents for lipase activation and biodiesel preparation”, Bioresource Technology 129 (2013) 26. https://doi.org/10.1016/j.biortech.2012.12.026.

Y. Alhassan, N. Kumar, I. M. Bugaje, “Hydrothermal liquefaction of de-oiled Jatropha curcas cake using Deep Eutectic Solvents (DESs) as catalysts and co-solvents”, Bioresource Technology 199 (2016) 116.


K. Alhassan, “Single Step Biodiesel Production from Pongamia pinnata (Karanja) Seed Oil Using Deep Eutectic Solvent (DESs) Catalysts”, Waste and Biomass Valorization 7 (2016) 1055. https://doi.org/10.1007/s12649-016-9529-x.

Y. Alhassan, H. S. Pali, N. Kumar, I. M. Bugaje, “Co-liquefaction of whole Jatropha curcas seed and glycerol using deep eutectic solvents as catalysts”, Energy 138 (2017) 38. https://doi.org/10.1016/j.energy.2017.07.038.

N. Yong, Z. Bi, H. Su, L. Yan, “Deep eutectic solvent (DES) as both solvent and catalyst for oxidation of furfural to maleic acid and fumaric acid”, Green Chemistry 21 (2019) 1075. https://doi.org/10.1039/C8GC04022B.

A. Sander, A. Petra?ci´c, J. Parlov Vukovi´c, L. Husinec, “From Coffee to Biodiesel—Deep Eutectic Solvents for Feedstock and Biodiesel Purification”, Separations 7 (2020) 22. https://doi.org/10.3390/separations7020022.

K. Mamtani, K. Shahbaz, M. M. Farid, “Deep eutectic solvents – Versatile chemicals in biodiesel production”, Fuel 295 (2021) 120604. https://doi.org/10.1016/j.fuel.2021.120604.

A. Petraci´c, Matea Gavran, A. Skunca, L. ? Stajduhar, A. Sander, “Deep eutectic solvents for purification of waste cooking oil and crude biodiesel”, Technologica Acta 13 (2020) 21, https://doi.org/10.5281/ZENODO.4059934.

J. Naser, F. Mjalli, B. Jibril, S. Al-Hatmi, Z. Gano, “Potassium Carbonate as a Salt for Deep Eutectic Solvents”, International Journal of Chemical Engineering and Applications 4 (2013) 114. https://doi.org/10.7763/IJCEA.2013.V4.275.

S. M. Majidi, M. R. Hadjmohammadi, “Hydrophobic borneol-based natural deep eutectic solvents as a green extraction media for air-assisted liquid-liquid micro-extraction of warfarin in biological samples”, Journal of Chromatography A 1621 (2020). https://doi.org/10.1016/j.chroma.2020.461030.

D. J. G. P. van Osch, L. F. Zubeir, A. van den Bruinhorst, M. A. A. Rocha, M. C. Kroon, “Hydrophobic deep eutectic solvents as waterimmiscible extractants”, Green Chemistry 17 (2015) 4518. https://doi.org/10.1039/C5GC01451D.

K. Xu, P. Xu, Y.Wang, “Aqueous biphasic systems formed by hydrophilic and hydrophobic deep eutectic solvents for the partitioning of dyes”, Talanta 213 (2020) 120839. https://doi.org/10.1016/j.talanta.2020.120839.

B. Nowosielski, M. Jamr´ogiewicz, J. ?uczak, M. ´Smiechowski, D. Warmi´nska, “Experimental and predicted physicochemical properties of monopropanolamine-based deep eutectic solvents”, Journal of Molecular Liquids 309 (2020) 113110, https://doi.org/10.1016/j.molliq.2020.113110.

A. Abdurrahman, S. M. Shuwa, F. N. Dabai, O. D. Orodu, F. T. Ogunkunle, S. Y. Adamu, B. J. El-Yakubu, “Performance Evaluation of Tetrabutylammonium Bromide-Based Deep Eutectic Solvents in Enhanced Oil Recovery Of Nigerian Heavy Oil”, Journal Of The Nigerian Society Of Chemical Engineers 37 (2022) 94. https://doi.org/10.51975/22370109.som

E. J. Gudi˜na, J. F. B. Pereira, R. Costa, J. A. P. Coutinho, J. A. Teixeira, L. R. Rodrigues, “Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns”, Journal of Hazardous Materials 261 (2013) 71. https://doi.org/10.1016/j.jhazmat.2013.06.071.



How to Cite

Optimization of Potassium Carbonate-based DES as Catalyst in the Production of Biodiesel via Transesterification. (2023). Journal of the Nigerian Society of Physical Sciences, 5(1), 1048. https://doi.org/10.46481/jnsps.2023.1048



Original Research

How to Cite

Optimization of Potassium Carbonate-based DES as Catalyst in the Production of Biodiesel via Transesterification. (2023). Journal of the Nigerian Society of Physical Sciences, 5(1), 1048. https://doi.org/10.46481/jnsps.2023.1048