Study of MHD SWCNT-Blood Nanofluid Flow in Presence of Viscous Dissipation and Radiation Effects through Porous Medium


  • M. Ramanuja Department of Mathematics, Marri Laxman Reddy Institute of Technology & Management, Dundigal, Hyderabad – 500 043, India; Department of Mathematics, GITAM Institute of Technology and Management, Bangalore, Karnataka – 561203, India
  • J. Kavitha Department of Mathematics D K, Government College for Women, SPSR Nellore-524003, India
  • A. Sudhakar Department of Mathematics, Marri Laxman Reddy Institute of Technology & Management, Dundigal, Hyderabad – 500 043, India
  • N. Radhika Department of Mathematics, GITAM Institute of Technology and Management, Bangalore, Karnataka – 561203, India


SWCNT, Blood, Viscous dissipation, Radiation, Nusselt number, Skin friction


In this analysis, a computational study is conducted to examine the two-dimensional flow of an incompressible MHD SWCNT-blood nanofluid, saturated mass and porous medium .In addition to viscous dissipation, thermal radiation is taken into consideration. We developed the mathematical model and useful boundary intensity approximations to diminish the structure of partial differential equations based on the fluid for blood-based SWCNT underflow assumptions. Converted the partial differential equations by applying corresponding transformations to arrive at ODE’s. The above results are solved numerically by the Runge-Kutta 4th order technique. Noticed that there is desirable conformity when interpolated with the numerical one. The effects exhibited the velocity of SWCNT-blood nanofluid enhanced for defined standards of the viscosity parameter. Rise in temperature when various parameters like Prandtl number, Eckert number, and slip parameter are applied on SWCNT-blood. The impact of fluid flow on blood-based SWCNT is discussed graphically, and our results are tabulated along with illustrations. The design concepts, such as the Nusselt quantity and the local skin friction, conform to the analytical approach. Velocity reductions with an increase in CNT’s volume fraction, whereas enhancement in the blood temperature, is noted, which is directed to the rise in the heat mass transfer rates.


N. J. Salman Ahmed., T. M. Yunus Khan, Sarfaraz Kamangar & Azeem, “Effect of viscous Dissipation and radiation in an annular cone”, AIP Conference Proceedings 1751 (2016).

S. P. Anjali Devi & D. Vasantha Kumara., “Thermal radiation, viscous dissipation, ohmic dissipation, and mass transfer effects on unsteady hydromagnetic flow over a stretching surface”, Ain Shams Engineering Journal 9 (2018) 1161. DOI:

M. Abd El Aziz, “Thermal di usion and di usion thermo e ects on combined heat and mass transfer hydromagnetic three-dimensional free convection flow over a permeable stretching surface with radiation”, Phys Lett. A .372 (2007) 263. DOI:

S. P. Anjali Devi & M. Kayalvizhi, “Analytical solutions of MHD flow with radiation over a the stretching sheet is embedded in a porous medium”, Int J Appl Math. 6 (2010) 82.

O. D. Makinde & P. Sibanda, “E ects of chemical reaction on boundary layer flow past a vertical stretching surface in the presence of internal heat generation”, Int J Numer Math Heat Fluid Flow 21 (2011) 779. DOI:

Y. I. Seini & O. D. Makinde, “MHD boundary layer due to the exponentially stretching surface with Radiation and chemical reaction”, Math Prob Eng. 7 (2013). DOI:

A. K. Abdul Hakeem, R. Kalaivanan, N. Vishnu Ganesh & B. Ganga, “Effect of partial slip on hydromagnetic flow over a porous stretching sheet with non-uniform heat source/sink, thermal radiation, and wall mass transfer”, Ain Shams Eng J. 5 (2014) 913. DOI:

C. K. Chen, M. I. Char, “Heat transfer of a continuous stretching surface with suction or blowing”, J Math Anal. 135 (1988) 568. DOI:

K. Bhagya Lakshmi, G.S.S. Raju, P.M. Kishore & N. V. R. V. Prasada Rao, “The Study of heat generation and viscous dissipation on MHD heat And mass diffusion flow past a surface”, IOSR Journal of Applied Physics (IOSR-JAP) 5 (2013) 17. DOI:

C. S. K. Raju & N. Sandeep, “MHD slip flow of a dissipative Casson fluid over a moving geometry with heat source/sink: a numerical study”, Acta Astronautica 133 (2017) 436. DOI:

S. Suneetha, N. Bhaskar Reddy and V. Ramachandra Prasad, “The thermal radiation effects on MHD free convection flow past an impulsively started vertical plate with variable surface temperature and concentration”,

Journal of Naval Architecture and Marine Engineering 5 (2008) 57.

H. Kumar, “Radiative heat transfer with hydromagnetic flow and viscous dissipation over a stretching surface in the presence of variable heat flux”, Thermal Science 13 (2009) 163. DOI:

S.A.Al-Sanea, “Mixed convection heat transfer along with a continuously moving heated vertical plate with suction or injection”, International Journal of Heat and Mass Transfer 47 (2004) 1445. DOI:

H. S. Takhar., S. Roy & G. Nath, “Unsteady free convection flow over an infinite vertical porous plate due to the combined effects of thermal and mass diffusion, magnetic field and Hall currents”, Heat and Mass Transfer 39 (2003) 825. DOI:

R.Cortell, “Suction, viscous dissipation and thermal radiation e ects on the flow and heat transfer of a power-law fluid past an infinite porous plate”, Chemical Engineering Research and Design 89 (2011) 85. DOI:

B. K. Jha, A. K. Samaila & A. O. Ajibade, “Unsteady/steady natural convection flow of reactive viscous fluid in a vertical annulus”, International Journal of Fluid Mechanics Research 39 (2012) 301. DOI:

M. Shamshuddin., S. R. Mishra O., Anwar B´eg A. Kadir, “Viscous dissipation and Joule heating effects in non-Fourier MHD squeezing flow, heat and mass transfer between riga plates with thermal radiation: variational

parameter method solutions”, Arabian Journal for Science and Engineering 5 (2019) 8053.

Z. Shah, P. Kumam & W. Deeban., “Radiative MHD Casson Nanofluid flow with activation energy and chemical reaction over past nonlinearly stretching surface through entropy generation”, Scientific Reports 10 (2020). DOI:

S. Reddy, K. Naikoti& M. M. Rashidi, “MHD flow and heat transfer characteristics of Williamson nanofluid over a stretching sheet with variable thickness and variable thermal conductivity”, Transactions of Razmadze Mathematical Institute 171 (2017) 195. DOI:

T. Hayat, S. A. Shehzad & A. Alsaedi, “Soret and Dufour effects on magneto Hydrodynamic (MHD) the flow of Casson fluid”, Applied Mathematics and Mechanics (English Edition) 33 (2012) 1301. DOI:

F. Ali, N. A. Sheikh., I. Khan & M. Saqib, “Magnetic field effect on blood flow of Casson fluid in an axisymmetric cylindrical tube: a fractional model”, Journal of Magnetism and Magnetic Materials 423 (2017) 327. DOI:

A. Dawar, Z. Shah, W. Khan, M. Idrees & S. Islam, “Unsteady squeezing flow of magnetohydrodynamic carbon nanotube nanofluid in rotating channels with entropy generation and viscous dissipation”, Advances in Mechanical Engineering 11 (2019). DOI:

K. A. Kumar, J. V. Reddy, V. Sugunamma & N. Sandeep, “Simultaneous solutions for MHD flow of Williamson fluid over a curved sheet with non-uniform heat source/sink”, Heat Transfer Research 50 (2019) 581. DOI:

C. Sus., “Enhancing thermal conductivity of fluids with nanoparticles”, International Mechanical Engineering Congress and Exposition 66 (1995) 99.

R.U. Haq, S. Nadeem, Z. H. Khan & N. F. M. Noor, “Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes”, Physica B: Condensed Matter 457 (2015) 40. DOI:

M. S. Liu, M. Ching-Cheng Lin., I. T. Huang & C. C. Wang, “Enhancement of thermal conductivity with carbon nanotube for nanofluids”, International Communications in Heat and Mass Transfer 32 (2005) 1202. DOI:

S. Nadeem & C. Lee, “Boundary layer flow of nanofluid over an exponentially stretching surface”, Nanoscale Research Letters 94 (2012). DOI:

A. Bejan, “Second law analysis in heat transfer”, Energy 5 (1980) 720. DOI:

T. Hayat, M. Rafiq, B. Ahmad & S. Asghar, “Entropy generation analysis for peristaltic flow of nanoparticles in a rotating frame”, Int. J. Heat Mass Transf. 108 (2017) 1775. DOI:

D. Nouri, M. Pasandideh-Fard, M. J. Oboodi, O Mahian & A. Z. Sahin, “Entropy generation analysis of nanofluid flow over spherical heat source inside a channel with sudden expansion and contraction”, Int. J.Heat Mass Transf. 116 (2018) 1036. DOI:

S. Das, A. S. Banu, R. N. Jana & O. D. Makinde, “Entropy analysis on MHD pseudo-plastic nanofluid flow through a vertical porous channel with convective heating”, Alexand. Eng. J. 54 (2015) 325. DOI:

M. Sheremet, I. Pop, H. F. Oztop & N. Abu-Hamden, “Natural convection of nanofluid inside a wavy cavity with non-uniform heating: Entropy generation analysis”, Int. J. Numer. Math. Heat Fluid Flow 27 (2017) 958. DOI:

S. O. Alharbi, A. Dawar, Z. Shah,W. Khan, M. Idrees, S. Islam & I. Khan, “Entropy Generation in MHD Eyring–Powell fluid flow over an unsteady oscillatory porous stretching surface under the impact of thermal radiation and heat source/sink”, Appl. Sci. 8 (2018). DOI:

Z. Jordan & J. Network, “Simulation method applied to radiation and dissipation effects on MHD unsteady free convection over vertical porous plate”, Applied Mathematical Modelling 31 (2007) 2019. DOI:

S. Uchida & H. Aoki, “Unsteady flows in a semi-infinite contracting or expanding pipe”, Journal of Fluid Mechanics 82 (1977) 371. DOI:

E. C. Dauenhauer & J. Majdalani, Unsteady flows in semi-infinite expanding channels with wall injection, AIAA (1999). DOI:

J. Majdalani & C. Zhou, “Moderate-to-large injection and suction driven channel flows with expanding or contracting walls”, Journal of Applied Mathematics and Mechanics 83 (2003) 181. DOI:

S. Xin-Hui, Z, Liacun, Z. Xinxin & S. Xinyi, “Homotopy analysis solutions for the asymmetric laminar flow in a porous channel with expanding or contracting walls”, Acta Mechanica Sinica 27 (2011) 208. DOI:

M. Q. Brewster, Thermal Radioactive transfer and properties, Wiley, New York (1992).

M, Hatami, M, Sheikholeslami & D. D, Ganji, “Nanofluid flow and heat transfer in an asymmetric porous channel with expanding or contracting walls”, Journal of Molecular Liquids 195 (2014) 230. DOI:

A. Vijayalakshmi, S. Srinivas, B. Satyanarayana & A. Subramanyam Reddy, “The hydromagnetic pulsating flow of nanofluid between two parallel walls with a porous medium”, Materials Today: Proceedings 9 (2019) 306. DOI:

A. R. Bestman, “Pulsatilr flow in heated porous channel”, Int. J. Heat Mass Transfer 25 (1982) 675. DOI:

S. Srinivas, T. Malathy & P. L. Sachdev, “On pulsatile hydromagnetic fow of an Oldroyd fuid with heat transfer”, Eng. Trans. 55 (2007) 79.

G. Radhakrinshnamacharya, & M. K. Maiti, “Heat transfer to pulsatile flow in a porous channel”, Int. J. Heat Mass Transfer 20 (1977) 171. DOI:

H. T. Alkasasbeha, M. Z. Swalmeh, H. G. Bani Saeed, F. M. Al-Faqih & A. G. Talafha, “Investigation on cnts-water and human blood-based Casson nanofluid flow over a stretching sheet under the impact of the magnetic field”, Frontiers in Heat and Mass Transfer (FHMT) 14 (2020) 1. DOI:

N. A. Zainal, R. Nazar, K. Naganthran & I. Pop. “Magnetic impact on the unsteady separated stagnation-point flow of hybrid nanofluid with viscous dissipation and joule heating”, Computational and Applied Mathematics 10 (2022). DOI:

N. A. Zainal, R. Nazar, K. Naganthran & I. Pop. “Viscous dissipation and MHD hybrid nanofluid flow towards an exponentially stretching/shrinking surface”, Neural Comput & Appl. 33 (2021) 11285. DOI:

T. Gul, J. ur Rahman, M. Bilal, A. Saeed, W. Alghamdi, S. Mukhtar, H. Alrabaiah & E. Bonyah. “Viscous dissipated hybrid nano liquid flow with Darcy–Forchheimer and forced convection over a moving thin needle”, AIP Advances 10 (2020). DOI:

A. K. Pati, A. Misra & S. K. Mishra, “Effect of electrification of nanoparticles on heat and mass transfer in boundary layer flow of a copper water nanofluid over a stretching cylinder with viscous dissipation”, JP Journal

of Heat and Mass Transfer 17 (2019) 97. DOI:

O. Adedire & J. N. Ndam, “Mathematical modelling of concentration profiles for species transport through the single and the interconnected multiple-compartment systems”, J. Nig. Soc. Phys. Sci. 2 (2020) 61. DOI:

M. Ramanuja, B. T. Raju, V, Nagaradhika, R. B. Madhusudhana, P. Durgaprasad & C. S. K. Raju, “Significance of Axisymmetric Flow of Casson Darcy Unsteady Slip Flow in a Suspension of Nanoparticles with Contracting Walls”. Journal of Nano-fluids 11 (2022) 350. DOI:

H. C. Brikman, “The viscosity of concentrated suspensions and solutions”, Journal of Chemical Physics 20 (1952) 571. DOI:

R. I. Hamilton, O. K. Crosser, “Thermal conductivity of heterogeneous two-componentSystem”, I and EC Fundamentals 1 (1962) 187. DOI:

M. Kida, S. Adam, O. O. Aduroja & T. P. Pantuvo, “Numerical solution of stiff and oscillatory problems using third derivative trigonometrically fitted block method”,.J. Nig. Soc. Phys. Sci. 4 (2022) 34. DOI:



How to Cite

Ramanuja, M., Kavitha, J., Sudhakar, A., & Radhika, N. (2023). Study of MHD SWCNT-Blood Nanofluid Flow in Presence of Viscous Dissipation and Radiation Effects through Porous Medium. Journal of the Nigerian Society of Physical Sciences, 5(1), 1054.



Original Research