Theoretical Investigation of Diameter Effects and Edge Configuration on the Optical Properties of Graphdiyne Nanotubes in the Presence of Electric Field

Authors

  • T. M. J. Abdulkadhim College of Basic Education, University of Babylon, Babylon 51002, Iraq
  • S. A. A. Alsaati College of Basic Education, University of Babylon, Babylon 51002, Iraq
  • M. H. Shinen College of Science, University of Babylon, Babylon 51002, Iraq

Keywords:

Graphdiyne nanotubes, Electric field, Band gap, Optical properties, SIESTA code, Density functional theory

Abstract

In this research, the structural, electronic and optical properties of the armchair (ant) and zigzag (znt) Graphdiyne nanotubes (GDY-NT) with different diameters were studied based on density functional theory (DFT). The computations were done using SIESTA code, based on linear combination of localized atomic orbitals (LCAO) method and the generalized gradient approximation (GGA). The results from the band structure analysis show that all these nanotubes are semiconductor with direct band gap at gamma point. The band gap of the nanotubes is clearly dependent on the nanotube diameter, and by increasing the nanotube diameter, the band gap is decreased. Optical properties such as dielectric function; absorption coefficient, optical conductivity and refractive index were examined and calculated for all samples. The results show that all these functions have an inverse relationship with the nanotube diameter and a direct relationship with the band gap. The effect of applying the external electric field with intensity of 0.1 V/Å, 0.2 V/Å in the direction of x-axis (perpendicular to the nanotube axis) on the structural and electronic features of these nanotubes has been studied and calculated.

Dimensions

A. Hirsch, “Graphene is probably the only system where ideas from quantum field theory”, Nat Mater 9 (2010) 868.

H. W. K. Roto, J. R. Heath, C. S. O’Brien, R. F. Curl & R. E. Smalley, “ This Week’s Citation Classic”, Nature 318 (1985) 162.

S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354 (1981) 56.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang & S. V. Dubonos, “Electric field e ect in atomically thin carbon films”, Science 306 (2004) 666.

K. S. Novoselov, D. Jiang, F. Schedin, T. Booth, V. V. Khotkevich & S. V. Morozov, “Two-dimensional atomic crystals”, Proc. Natl. Acad. Sci USA 102 (2005) 10451.

Y. Zhang, Y. W. Tan, H. L. Stormer & P. Kim, “Creation of bielectron of dirac cone: the tachyon solution in magnetic field”, Nature 438 (2005) 201.

C. Amente & K. Dharamvir, “Thermally agitated self assembled carbon nanotubes and the scenario of extrinsic defects”, World Journal of Nano Science and Engineering 5 (2015) 17.

I. Suarez-Martinez, N. Grobert & C. P. Ewels, “Nomenclature of sp2 carbon nanoforms”, Carbon 50 (2012) 741.

W. A. Chalifoux & R. R. Tykwinski, “Synthesis of extended polyynes: Toward carbyne”, Comptes Rendus Chimie 12 (2009) 341.

R. H. Baughman, H. Eckhardt & M. Kertesz, “Structure-property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms”, J. Chem. Phys 87 (1987) 6687.

A. L. Ivanovskii, “Graphynes and graphdyines”, Progress in Solid State Chemistry 41 (2013) 1.

J. M. Soler, E. Artacho, J. D. Gale, A. Garc´?a, J. Junquera, P. Ordej´on, D. Sanchez-Portal, The SIESTA method for abinitio order-N materials simulation”, J. Phys. Cond. Matt. 14 (2002) 2745.

J. P. Perdew, K. Burke & M. Ernzerhof, “Generalized gradient approximation made simple”, Phys. Rev. Lett. 77 (1996) 3865.

X. M. Wang & S. S. Lu, “Remarkable reduction of thermal conductivity in graphyne nanotubes by local resonance” J. Phys. Chem. C 117 (2013) 19740.

B. G. Shohany, M. R. Roknabadi & A. Kompany, “Theoretical study of electronic properties of nanostructures composed of blue Phosphorene and Graphene sheet”, Physica E 84 (2016) 146.

B. G. Shohany, M. R. Roknabadi & A. Kompany, “Theoretical study of electronic properties of nanostructures composed of blue Phosphorene and Graphene sheet”, Computational Materials Science 144 (2018) 280.

B. G. Shohany, M. R. Roknabadi & A. Kompany, “Theoretical study of electronic properties of nanostructures composed of blue Phosphorene and Graphene sheet”, Commun. Theor. Phys. 65 (2016) 99.

L. D. Landau & E. M. Lifshitz, Mechanics, third edition, Pergamon Press Ltd, 1 (1960)165.

H. Raza & E. C. Kan, “Armchair graphen nanoribbons electronic structure and electric field modulation”, Physical Review B 77 (2008) 245434.

L. Yu-Pin, T. Li-Gan, T. Chuen-Horng, L. Ming-Hsien & L. Feng-Yin, “Effect of vacancy defect on electrical properties of chiral single-walled carbon nanotube under external electrical field”, Chin. Phys. B 20 (2011) 017302.

E. P. Onokare, L. O. Odokuma, F. D. Sikoki, B. M. Nziwu, P. O. Iniagh & J. C. Ossai, “Physicochemical characteristics and toxicity studies of crude oil, dispersant and crude oil– dispersant test media to marine organism”, Journal of the Nigerian Society of Physical Sciences 4 (2022) 427.

I. L. Ikhioya, Eli Danladi, O. D. Nnanyere, A. O. Salawu, “Influence of precursor temperature on bi doped ZnSe material via electrochemical deposition technique for photovoltaic application”, Journal of the Nigerian Society of Physical Sciences 4 (2022) 502.

Published

2023-03-02

How to Cite

Theoretical Investigation of Diameter Effects and Edge Configuration on the Optical Properties of Graphdiyne Nanotubes in the Presence of Electric Field. (2023). Journal of the Nigerian Society of Physical Sciences, 5(2), 1083. https://doi.org/10.46481/jnsps.2023.1083

Issue

Section

Original Research

How to Cite

Theoretical Investigation of Diameter Effects and Edge Configuration on the Optical Properties of Graphdiyne Nanotubes in the Presence of Electric Field. (2023). Journal of the Nigerian Society of Physical Sciences, 5(2), 1083. https://doi.org/10.46481/jnsps.2023.1083