On logistic regression versus support vectors machine using vaccination dataset

Authors

  • Olumide S. Adesina Department of Mathematical Sciences, Redeemer’s University, Ede 232101, Osun State, Nigeria
  • Adedayo F. Adedotuun Department of Mathematics, Covenant University, Ota 11001, Ogun, Nigeria
  • Kayode S. Adekeye Department of Mathematical Sciences, Redeemer’s University, Ede 232101, Osun State, Nigeria
  • Ogbu F. Imaga Department of Mathematics, Covenant University, Ota 11001, Ogun State, Nigeria
  • Adeleke J. Adeyiga Department of Computer Science and Information Technology, Bells University of Technology, Ota 11001, Ogun State, Nigeria
  • Toluwalase J. Akingbade Department of Mathematics, Covenant University, Ota 11001, Ogun State, Nigeria

Keywords:

Logistic regression, Leave out-one validation, Support vectors machine, Prediction, Vaccination

Abstract

The performance of two classification techniques, logistic regression and Support Vector Machines (SVMs), in assessing vaccination data is investigated in this study. The model was trained based on leave-out-one cross validation to obtain an accurate result. Simulated with ten thousand replications, a life data set was used to establish a better model. The findings from the simulation revealed that the logistic regression model slightly outperformed the SVM while the life data shows that the tuned SVM outperformed both the logistic and the SVM. This demonstrates the practical utility of advanced approaches such as SVMs in difficult categorization scenarios such as vaccination prediction. The study emphasizes the superiority of the customized SVM model in this setting, as well as the potential of machine learning approaches to increase comprehension of complicated healthcare scenarios and guide data-driven decision-making for influencing vaccination plans and public health. The study recommends the use of logistic regression if the data point is high.

Dimensions

T. P. Iyiola, H. I. Okagbue, A. F. Adedotun & T. J. Akingbade, “The effects of decomposition of the goals scored in classifying the outcomes of five English Premier League seasons using machine learning models”, Advances and Applications in Statistics 87 (2023) 13. http://dx.doi.org/10.17654/0972361723026.

O. S. Adesina, A. F. Adedotun, D. S. Oladepo & T. F. Adesina, “Knowledge, attitude, and perception of health and non-healthcare workers towards COVID-19 vaccination: Machine learning approach”, International Journal of Sustainable Development and Planning 17 (2022) 2015. https://doi.org/10.18280/ijsdp.170702.

O. S. Adesina, A. F. Adedotun, N. O. Adeboye, T. F. Adesina, H. I. Okagbue & A. F. Gboyega, “On COVID-19 vaccination in Nigeria: An empirical study”, International Journal of Design & Nature and Ecodynamics 18 (2023) 219. https://doi.org/10.18280/ijdne.180128.

M. H. Alsharif, A. H. Kelechi, K. Yahya & S. A. Chaudhry, “Machine learning algorithms for smart data analysis in internet of things environment: Taxonomies and research trends”, Symmetry 12 (2020) 88. https://doi.org/10.3390/sym12010088.

C. T. Bauch, E. Szusz & L. P. Garrison, “Scheduling of measles vaccination in low-income countries: Projections of a dynamic model”, Vaccine 27 (2009) 4090. http://dx.doi.org/10.1016/j.vaccine.2009.04.079.

A. Rajkomar, E. Oren, K. Chen, A. M. Dai, N. Hajaj, M. Hardt & A. Esteva, “Scalable and accurate deep learning with electronic health records”, npj Digital Medicine 1 (2018) 1. http://dx.doi.org/10.1038/s41746-018-0029-1.

J. Wiens, E. S. Shenoy & R. B. Parikh, “Machine learning for healthcare: On the verge of a major shift in healthcare epidemiology”, Clinical Infectious Diseases 66 (2017) 149. http://dx.doi.org/10.1093/cid/cix731.

Z. Obermeyer, B. Powers, C. Vogeli & S. Mullainathan, “Dissecting racial bias in an algorithm used to manage the health of populations”, Science 366 (2019) 447. http://dx.doi.org/10.1126/science.aax2342.

R. Caruana, Y. Lou, J. Gentry & G. Hooker, “Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission”, In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2 (2015) 1721. http://dx.doi.org/10.1145/2783258.2788613.

A. O. Eni, M. G. Soluade, P. E. Efekemo, P. Oghenevwairhe, T. T. Igwe & A. Olabode, “Poor knowledge of human Papilloma virus and vaccination among respondents from three Nigerian states”, Journal of Community Health 43 (2018) 1201. http://dx.doi.org/10.1007/s10900-018-0540-y.

D. Rey, L. Fressard, S. Cortaredona, A. Bocquier & P. Peretti-Watel, “Vaccine hesitancy in the French population in 2016, and its association with vaccine uptake and perceived vaccine risk-benefit balance 23 (2016) 17. http://dx.doi.org/10.2807/1560-7917.ES.2018.23.17.17-00816.

M. C. Nunes, S. Walaza, S. Meiring, H. J. Zar, G. Reubenson, M. Mc-Morrow, S. Tempia, L. Rossi, R. Itzikowitz, K. Bishop, A. Mathunjwa, A. Wise, F. K. Treurnicht, O. Hellferscee, M. Laubscher, Serafin N, C. L. Cutland, S. A. Madhi & C. Cohen, “Effectiveness of Influenza vaccination of pregnant women for prevention of maternal and early infant Influenza-associated hospitalizations in South Africa: A prospective test-negative study”, Open Forum Infect Dis. 9 (2022) 11. https://doi.org/10.1093/ofid/ofac552.

S. L. Wilson & C. Wiysonge, “Social-media and vaccine hesitancy working group”, BMJ Global Health 5 (2020) 1. http://dx.doi.org/10.1136/bmjgh-2020-004206.

J. Pinchoff, J. Chipeta & G. C. Banda, “Spatial clustering of measles cases during endemic (1998–2002) and epidemic (2010) periods in Lusaka, Zambia”, BMC Infect Dis. 15 (2015) 121. https://doi.org/10.1186/s12879-015-0842-y.

I. U. Rehman, A. Bukhsh & T. M. Khan, “Measles in Pakistan: Time to make steps towards eradication”, Travel Med Infect Dis. 18 (2017) 67. https://doi.org/10.1016/j.tmaid.2017.08.002.

T. M. Lincoln, B. Schlier & F. Strakeljahn, “Taking a machine learning approach to optimize prediction of vaccine hesitancy in high income countries”, Sci Rep. 12 (2022) 2055. https://doi.org/10.1038/s41598-022-05915-3.

F. A. Awwad, K. A. Odeniyi, I. Dawoud, Z. Y. Algamal, M. R. Abonazel, B. M. G. Kibria & E. T. Eldin, “New Two-Parameter estimators for the logistic regression model with multicollinearity”, WSEAS Transactions on Mathematics 21 (2022) 403. https://doi.org/10.37394/23206.2022.21.48.

S. A. Abdulraheem, S. Aliyu & F. B. Abdullahi, “Hyper-parameter tuning for support vector machine using an improved cat swarm optimization algorithm”, Journal of the Nigerian Society of Physical Sciences 4 (2023) 1007. https://doi.org/10.46481/jnsps.2023.1007.

H. A. Zisserman, “Machine Learning Lecture 2: The SVM classifier”, 2015. https://www.robots.ox.ac.uk/?az/lectures/ml/lect2.pdf.

Published

2024-03-06

How to Cite

On logistic regression versus support vectors machine using vaccination dataset. (2024). Journal of the Nigerian Society of Physical Sciences, 6(1), 1092. https://doi.org/10.46481/jnsps.2024.1092

Issue

Section

Mathematics & Statistics

How to Cite

On logistic regression versus support vectors machine using vaccination dataset. (2024). Journal of the Nigerian Society of Physical Sciences, 6(1), 1092. https://doi.org/10.46481/jnsps.2024.1092