Analysis of the Bioactive Compounds from Carica papaya in the Management of Psoriasis using Computational Techniques

Authors

  • Misbaudeen Abdul-Hammed Computational and Biophysical Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
  • Ibrahim Olaide Adedotun Computational and Biophysical Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
  • Tolulope Irapada Afolabi Afolabi Computational and Biophysical Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
  • Ubeydat Temitope Ismail Computational and Biophysical Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
  • Praise Toluwalase Akande Computational and Biophysical Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
  • Balqees Funmilayo Issa Computational and Biophysical Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria

Keywords:

Psoriasis, Carica Papaya, Molecular docking, Anti-inflammatory, Skin disorder

Abstract

Psoriasis is a persistent and mysterious autoimmune skin condition that affects 2-3% of the world’s population. Currently, topical therapies, light therapy, and systemic drugs are the three main forms of treatment used to lessen inflammation and skin irritation/itching. However, all these treatments are only used to manage the disease each time it surfaces. Therefore, the main target of this work is to search for a safer and more effective remedy for psoriasis from the reservoir of phytochemicals present in Carica papaya via in silico studies due to its anti-psoriatic and anti-inflammatory properties. Reported phytochemicals isolated from Carica papaya were subjected to computational simulations using the PyRx docking tool and were docked against Janus Kinase 1 (JAK1) and Tumor necrosis factor \aplha (TNF\aplha) target receptors. The results obtained were visualized using PyMol, and Biovia 2019. Analysis of the results identified both Chlorogenic acid and Coumaroylquinic-acid with docking scores (-8.6 kcal/mol and -7.9 kcal/mol) respectively as potential inhibitors for the JAK1 receptor. The identified compounds also possessed excellent ADMET, drug-likeness, bioactivity, and activity spectra for substances (PASS) prediction properties. Their binding mode and the molecular interactions with the targets also affirmed their potency. In comparison with the standards (Methotrexate and Cyclosporine), Chlorogenic acid and Coumaroylquinic-acid have better ADMET properties, binding affinities, drug-likeness, PASS properties, bioactivities, oral bioavailability, binding mechanism, and interactions with the active site of the target receptor and are hereby recommended for further analysis towards the development of a new therapeutic agent for psoriasis treatment and management.

Dimensions

C. E. M. Griffths & J. N. W. N. Barker, “Pathogenesis and clinical features of psoriasis”, The Lancet 370 (2007) 263.

A. Brandon, A. Mufti & R. G. Sibbald, “Diagnosis and management of cutaneous psoriasis: a review”, Advances in Skin & Wound Care 32 (2019) 58.

P. Rahman & J. T. Elder, “Genetic epidemiology of psoriasis and psoriatic arthritis”, Annals of the Rheumatic Diseases 64 (2005) ii37.

H. Takahashi & H. Iizuka, “Psoriasis and metabolic syndrome”, The Journal of Dermatology 39 (2012) 212.

C. Ni & M.W. Chiu, “Psoriasis and comorbidities: links and risks”, Clinical, Cosmetic and Investigational Dermatology 7 (2014) 119.

J. Takeshita, S. Grewal, S. M. Langan, N. N. Mehta, A. Ogdie, A. S. Van Voorhees & J. M. Gelfand, “Psoriasis and comorbid diseases: epidemiology”, Journal of the American Academy of Dermatology 76 (2017) 377.

K. Ghoreschi, C. Weigert & M. R¨ocken, “Immunopathogenesis and role of T-cells in psoriasis”, Clinics in Dermatology 25 (2007) 574–580.

A. O. Wang & Y. Bai, “Dendritic cells: The driver of psoriasis”, The Journal of Dermatology 47 (2020) 104.

L. Naldi, “Epidemiology of psoriasis”, Current Drug Targets Inflammation & Allergy 3 (2004) 121.

J. W. Choi, B. R. Kim & S. W. Youn, “Adherence to topical therapies for the treatment of psoriasis: surveys of physicians and patients”, Annals of Dermatology 29 (2017) 559.

A. G. Pardasani, S. Feldman & A. R. Clark, “Treatment of psoriasis: an algorithm-based approach for primary care physicians”, American Family Physician 61 (2000) 725.

M. B. Ho man, D. Hill & S. R. Feldman, “Current challenges and emerging drug delivery strategies for the treatment of psoriasis”, Expert Opinion on Drug Delivery 13 (2016) 1461.

M. M. Tollefson, H. K. Van Houten, D. Asante, X. Yao & H. M. Kremers, “Association of psoriasis with comorbidity development in children with psoriasis”, JAMA Dermatology 154 (2018) 286.

P. Ansari, S. Akther, J. M. A. Hannan, V. Seidel, N. J. Nujat & Y. H. A. AbdelWahab, “Pharmacologically Active Phytomolecules isolated from traditional Antidiabetic Plants and their Therapeutic Role for the Management of Diabetes Mellitus”, Molecules 27 (2022) 4278.

F. Saeed, M. U. Arshad, I. Pasha, R. Naz, R. Batool, A. A. Khan, M. A. Nasir & B. Shafique, “Nutritional and Phyto-Therapeutic Potential of Papaya (Carica papaya Linn.): An Overview”, International Journal of Food Properties 17 (2014) 1637.

M. Abdul-Hammed, I. O. Adedotun, V. A. Falade, A. J. Adepoju, S. B. Olasupo, & M. W. Akinboade, “Target-Based Drug Discovery, ADMET Profiling and Bioactivity Studies of Antibiotics as Potential Inhibitors of SARS-CoV-2 Main Protease (Mpro)”, Virus Disease 32 (2021) 642.

M. Abdul-Hammed, I. O. Adedotun, M. Olajide, C. O. Irabor, T. I. Afolabi, I. O. Gbadebo, L. Rhyman & P. Ramasami, “Virtual Screening, ADMET Profiling, PASS Prediction, and Bioactivity Studies of Potential Inhibitory

Roles of Alkaloids, Phytosterol, and Flavonoids against COVID-19 main protease (Mpro)”, Natural Product Research 36 (2021) 3110.

C. Duru, I. Duru & C. Chidiebere, “Virtual Screening of Selected Natural Products as Human Tyrosinase-Related Protein 1 Blockers, Journal of the Nigerian Society of Physical Sciences 3 (2021) 154.

S. Kim, J. Chen, T. Cheng, A. Gindulte, J. He, S. He et al., “Pubchem in 2021: new data content and improved web”, Nucleic acid Research 49 (2021) D1388.

D. S. Biovia, Discovery Studio Modelling Environment, San Diego: Dassault Systemes (2019).

W. Tian, C. Chen, X. Lei, J. Zhao & J. Liang, “CASTp 3.0: computed atlas of surface topography of proteins”, Nucleic Acids Research 46 (2018) W363.

M. M. He, A. S. Smith, J. D. Oslob, W. M. Flanagan, A. C. Braisted, A. Whitty, M. T. Cancilla, J.Wang, A. A. Lugovskoy & J. C. Yoburn, “Small molecule inhibition of TNF ”., Science 310 (2005) 1022.

M. Zak, E. J. Hanan, P. Lupardus, D. G. Brown, C. Robinson, M. Siu, J. P. Lyssikatos, F. A. Romero, G. Zhao & T. Kellar, “Discovery of a class of highly potent Janus kinase 1/2 (JAK1/2) inhibitors demonstrating effective cell-based blockade of IL13 signaling”, Bioorganic & Medicinal Chemistry Letters 29 (2019) 1522.

N. L. Caspers, S. Han, F. Rajamohan, L. R. Hoth, K. F. Geoghegan, T. A.Subashi, M. L. Vazquez, N. Kaila, C. N. Cronin & E. Johnson, “Developmentof a high throughput crystal structure determination platform for JAK1 using a novel metalchelator soaking system”, Acta Crystallographica Section F: Structural Biology Communications 72 (2016) 840.

F. Cheng, W. Li, Y. Zhou, J. Shen, Z. Wu, G. Liu, P.W. Lee & Y. Tang, “admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties”, J. Chem. Inf. Model 52 (2012) 3099.

A. Daina, O. Michielin & V. Zoete, “SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules”, Scientific Reports 7 (2017) 1.

D.A. Filimonov, A.A. Lagunin, T.A. Gloriozova, A.V. Rudik, D.S. Druzhilovskii, P.V. Pogodin & V.V. Poroikov, “Prediction of the biological activity spectra of organic compounds using the PASS online web resource”, Chemistry of Heterocyclic Compounds 50 (2014) 444.

W. Swardfager, K. Lanctˆot, L. Rothenburg, A. Wong, J. Cappell & N. Herrmann, “A MetaAnalysis of Cytokines in Alzheimer’s Disease”, Biological Psychiatry 21 (2010) 930.

Y. Dowlati, N. Herrmann, W. Swardfager, H. Liu, L. Sham, E. K. Reim & K. L. Lanctˆot, “A meta-analysis of cytokines in major depression”, Biological Psychiatry 67 (2010) 446.

F. C. Victor & A. B. Gottlieb, “TNF alpha and apoptosis: implications for the pathogenesis and treatment of psoriasis”, Journal of Drugs in Dermatology 1 (2002) 264.

J. Brynskov, P. Foegh, G. Pedersen, C. Ellervik, T. Kirkegaard, A. Bingham & T. Saermark, “Tumour necrosis factor alpha converting enzyme (TACE) activity in the colonic mucosa of patients with inflammatory bowel disease”, Gut 51 (2002) 37.

R. Ferrao & P. J. Lupardus, “The Janus kinase (JAK) FERM and SH2 domains: Bringing specificity to JAK–receptor interactions”, Frontiers in Endocrinology (2017) 71. https://doi.org/10.3389/fendo.2017.00071

J. D. Clark, M. E. Flanagan & J. B. Telliez, “Discovery and development of Janus Kinase (JAK) inhibitors for inflammatory diseases: Miniperspective”, Journal of Medicinal Chemistry 57 (2014) 5023.

P. Saharinen & O. Silvennoinen, “The pseudo-kinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine inducible activation of signal transduction”, Journal of Biological Chemistry 277 (2002) 47954.

L. R. de Souza Neto, J. T. MoreiraFilho, B. J. Neves, R. L. B. R. Maidana, A. C. R. Guimar˜aes, N. Furnham, C. H. Andrade & F. P. Silva Jr, “In silico strategies to support fragment to lead optimization

in drug discovery”, Frontiers in Chemistry (2020) 93. https://doi.org/10.3389/fchem.2020.00093

L. Guan, H. Yang, Y. Cai, L. Sun, P. Di, W. Li, G. Liu & Y. Tang, “ADMET score – a comprehensive scoring function for evaluation of chemical drug-likeness”, MedChemComm 10 (2019) 148.

K. Tsaioun & S. A. Kates, “ADMET for medicinal chemists: a practical guide”, John Wiley & Sons, 2011.

J. P. Hughes, S. Rees, S. B. Kalindjian & K. L. Philpott, “Principles of early drug discovery”, British Journal of Pharmacology 162 (2011) 1239.

M. C. Sanguinetti & M. TristaniFirouzi,” hERG potassium channels and cardiac arrhythmia”, Nature 440 (2006) 463.

C. A. Lipinski, “Lead and drug-like compounds: the ruleffive revolution”, Drug Discovery Today: Technologies 1 (2004) 337.

Y. N. Mabkhot, F. Alatibi, N. N. El-Sayed, S. Al-Showiman, N. A. Kheder, A. Wadood, A. Rauf, S. Bawazeer & T. B. Hadda, “Antimicrobial activity of some novel armed thiophene derivatives and Petra/Osiris/Molinspiration (POM) analyses”, Molecules 21 (2016) 222.

V. A. Falade, T. I. Adelusi, I. O. Adedotun, M. Abdul-Hammed, T. A. Lawal & S. A. Agboluaje, “In silico investigation of saponins and tannins as potential inhibitors of SARSCoV2 main protease (Mpro)”, In Silico Pharmacology 9 (2021) 1.

A. L. Hopkins, G. M. Keser¨u, P. D. Leeson, D. C. Rees & C. H. Reynolds, “The role of ligand efficiency metrics in drug discovery”, Nature Reviews Drug Discovery 13 (2014) 105.

Published

2023-02-27

How to Cite

Analysis of the Bioactive Compounds from Carica papaya in the Management of Psoriasis using Computational Techniques. (2023). Journal of the Nigerian Society of Physical Sciences, 5(1), 1116. https://doi.org/10.46481/jnsps.2023.1116

Issue

Section

Original Research

How to Cite

Analysis of the Bioactive Compounds from Carica papaya in the Management of Psoriasis using Computational Techniques. (2023). Journal of the Nigerian Society of Physical Sciences, 5(1), 1116. https://doi.org/10.46481/jnsps.2023.1116